5>r^’l6 FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA MINISTRY OF WATER RESOURCES ERER DAM & IRRIGATION DEVELOPMENT PROJECT Final Detail Design Report Annex E: Irrigation & Drainage Design May, 2009 CONFER T ENGINEERING AND CONSUL TING ENTERPRISE P.L.C. (CECE) ENGINEERS WATER RESOURCES A AGRICULTURAL DEI 'ELOPMENT PLANNERS p.o.nox bow fEL. 251-11 -6639244 FAX 2*1-11-64J9245Executive Summary Volume I: Dam & Appurtenant Structure Annex A: Dam Design Annex B: Dam Appurtenant Structures Annex C: Geotechnical Study Annex D: Hydrology Volume II: Irrigation & Drainage Annex E: Irrigation & Drainage Design Annex F: Road Infrastructure Annex G: Project Control Centers Annex H: Operation & Maintenance Manual Volume III: Project Worth AnalysisTable of Contents 1.0 Introduction................................................................................................................................... 1 1.1 Aim of Project.............................................................................................................................................. 1 1.2 Location of Project.......................................................................................................................................1 1.3 Access to the Project Area........................................................................................................................... 3 2. About the Project............................................................................................................................. 4 2.1 Source of Irrigation Water........................................................................................................................... 4 2.2 Climatic Conditions..................................................................................................................................... 5 2.3 Topography of Command Area................................................................................................................... 6 2.4 Population.....................................................................................................................................................6 2.5 Land Use...................................................................................................................................................... 7 2.6 Project Components.................................................................................................................................. 7 3.0 Soil Suitability................................................................................................................................ 8 3.1 Physical Characteristics............................................................................................................................... 8 3.1.1 Texture.................................................................................................................................................8 3.1.2 Drainage Class.....................................................................................................................................8 3.1.3 Soil Depth............................................................................................................................................8 3.1.4 Soil Type............................................................................................................................................. 9 3.1.5 Infiltration Rates..................................................................................................................................9 3.2 Chemical Characteristics............................................................................................................................10 4.0 Crop Water Requirement........................................................................................................... 11 4.1 Cropping Pattern........................................................................................................................................11 4.2 Proposed Cropping Pattern........................................................................................................................11 4 3 Crop Water Requirement............................................................................................................................12 4.4 Irrigation Scheduling................................................................................................................................... 13 5.0 Irrigation Water Quality............................................................................................................ 15 6.0 Field Irrigation.............................................................................................................................16 6.1 Depth of Watering......................................................................................................................................16 6.2 Field Irrigation Efficiency..........................................................................................................................17 6.3 Field Channel Discharge............................................................................................................................ 17 6.4 Field Size.................................................................................................................................................. 18 6.5 Furrow Spacing..........................................................................................................................................18 7.0 Irrigation System......................................................................................................................... 19 7.1 Canal System............................................................................................................................................. 19 7.1.1 Primary Canal................................................................................................................................... 19 7.1.2 Secondary Canals............................................................................................................................. 19 7.1.3 Tertiary Canals..................................................................................................................................20 7.1.4 Quaternary Canals............................................................................................................................ 20 7.2 GCA AND CCA....................................................................................................................................... 21 7.3 Irrigation Intensity..................................................................................................................................... 22 7.4 Night Irrigation...................................................................................................................................... 237.5 Irrigation Efficiencies.............................................................................................................................. 24 7.5.1 Storage Efficiency..........................................................................................................................25 7.5.2 Conveyance Efficiency.................................................................................................................. 25 7.5.3 Field Application Efficiency..........................................................................................................25 8.0 Planning and Design of Canal Network................................................................................. 26 8.1 Canal Alignment............................................................................................................................ 26 8 2 Canal Design...........................................................................................................................................27 8.3 Design Criteria............................................................................................................................... 28 8.3.1 Limiting Velocities....................................................................................................................... 29 8.3.2 Working Head............................................................................................................................... 29 8 3.3 Longitudinal Slope........................................................................................................................ 29 8.3.4 Critical Velocity Ratio (CVR)...................................................................................................... 30 8.3 5 Free Board............................................................................................................................ 31 8.3.6 Bank Width.................................................................................................................................. 31 8.3.7 Saturation Gradient...................................................................................................................... 31 8.3.8 Inspection Roads.......................................................................................................................... 32 8.3.9 Canal Embankment Material........................................................................................................32 8.3 10BERM................................................................................................................................. 33 8.3 11 CatchWater Drain...............................................................................................................33 8.4 Command Area And Design Discharges For Quaternary Canals........................................................ 34 8.5 Calculations of Design Capacities........................................................................................................36 8.5.1 Quaternary Canals....................................................................................................................... 36 8.5.2 Tertiary Canals............................................................................................................................ 37 8.5.3 Secondary Canals........................................................................................................................ 37 8 5.4 Primary Canal............................................................................................................................. 3S 8.5.5 Capacity Statements for Different Reaches........................................................................... 39 8.6 Procedure Adopted for Design............................................................................................................ 44 9.0 Irrigation Structures............................................................................................................. 45 9.1 ESCAPE Structures.....................................................................................................................45 9 1.1 Choice of Types of Escape......................................................................................................... 45 9.1.2 Criteria for Location................................................................................................................... 46 9.1.3 Criteria for Escapes Capacity..................................................................................................... 47 9.1.4 Design Considerations............................................................................................................... 48 9 2 Canal Head and Cross Regulators.......................................................................................................49 9.3 Outlet Structures:................................................................................................................................50 9.4 Drop Structures.................................................................................................................................. 53 9 5 Tertiary canal Head Regulator........................................................................................................... 54 9 6 Duck Bill Weir Structure....................................................................................................................55 9.7 Tail Escape Structures........................................................................................................................ 55 10.0 Cross Drainage Structures................................................................................................56 10.1 Aqueducts........................................................................................................................................56 10.2 Culverts.......................................................................................................................................... 60 11.0 Field Drainage System...................................................................................................... 63 111 Excess Rain Water........................................................................................................................... 6511.2 Excess Irrigation Water.......................................................................................................................67 11.3 Field Drain Capacity.......................................................................................................................... 67 11.4 Tertiary Drains.................................................................................................................................... 68 11.5 Drain Layout....................................................................................................................................... 69 12.0 Flood Protection Embankments........................................................................................... 71 12.1 Design Criteria................................................................................................................................... 71 12.2 Design of Embankments.................................................................................................................... 73 13.0 Construction Materials.........................................................................................................75 13.1 Earthworks......................................................................................................................................... 75 13.2 Masonry and Concrete Works........................................................................................................... 75 14.0 Operation and Maintenance of Irrigation System............................................................. 76 14.1 Dam Structure...................................................................................................................................76 14.2 Regulatory Structures....................................................................................................................... 76 14.3 Operation Of Reservoir And Conyeyance System :......................................................................... 77 14.4 Field Irrigation.................................................................................................................................. 78 14.5 Maintenance...................................................................................................................................... 78 14.5.1 Canal Network....................................................................................................78 14.5.2 Field System........................................................................................................ 78 14.5.3 Drains.................................................................................................................. 78 14.5.4 Roads................................................................................................................... 78 15. Land Grading....................................................................................................................... 79Erer Dam & Irrigation Project /CECE & CES 1.0 Introduction 1.1 Genesis of the project Ethiopia is confronted with food scarcity problem. Rain fed agriculture is being practised with age old agricultural technology which has resulted in low production. Irrigated agriculture is recognised as one of the major means to solve the food deficit problem and alleviate the poverty of rural people, besides ensuring increased production of raw materials for agro-industry, reduced food import, savings in foreign exchange and creating employment opportunities. Considering the importance of irrigated agriculture in all round development, the government of Ethiopia had initiated action to bring more and more area under irrigated agriculture In 1998, Wabe Shebelle River Integrated Master Plan was drawn up and Erer irrigation project was identified as one of the potential scheme for development of irrigated agriculture. Consequently Pre- Feasibility and Feasibility studies were carried out by Water Works Design and Supervision Enterprise ( WWDSE ) in association with WAPCOS and Synergies India Pvt,Ltd. respectively in 2002-05 and 2006-07. This project was found technically feasible, economically viable, environmentally sound and socially equitable and therefore recommended for implementation The detailed designs are now being prepared to enable the government to implement the project with promptitude. Table 1.1 Salient Features of The Project Description Figures Latitude and Longitude (Command area) UTM 1009300 N to 1028300 N (9°0717" N to 9°17 40" N) and UTM 193375 E to 199650 E (42°12 24 E to 42°1603 E) Catchment area 419.00 Sq. Km Annual rainfall 650 mm to 800 mm Net CCA 3722 Ha River Bed (deepest) • 1348.00 m Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES Dead Storage Level / New Zero Elevation (50 years) • 1369.85 m MDDL 1371.00 M FRL 1379 00M MWL 1382.60 M Dam Type Zoned Earth fill Top of Dam 1384.60 m Maximum height of dam 36.60 m Gross storage 5067 50 Ha-m Live storage 2303.40 Ha-m Spillway Type Ogee weir with inclined chute Waterway of spillway 30 m Inflow design flood (greater of 0.5 PMF and 10,000 year return period) 641.90 Cumec Spillway routed flood 440.50 Cumec Area to be irrigated (CEA) 3370hectarcs FIRR 11 16(%) E/RR 14.56 (%) B/C ratio 1.50 NPV (financial) 204* 106 birr NPU (economical) 122*106bin Financial & economic viability verified L------------------------------—---------------------------------------- i 1.2 Location of Project The Erer Irrigation Project proposes to draw irrigation supplies from Erer River which is a tributary of Wabe Shebelle River. The project is located at about 530 km from Addis Ababa and 19 km from Harar town. The command area is situated on both sides of Harar-Jijiga road which is 2 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 11 km from Babile town towards Harar. The proposed dam site is situated about 6 km on left side of Harar-Jijiga road (see figure 1.1). Erer Irrigation Project is located in two Regional States, namely Regional State of Harari and Regional State of Oromia. In Oromia, project area is situated in Babile of the East Hararge Zone In Harari it is situated in Erer and Soft Woredas. The command area is situated in 2 Kebeles (Kile and Erer Dodota) of the Harari Region and in about 7 Kebeles ( Erer Ibada, Ifadin, Gamachu, Erer Guda, Tula, Berkele and Tofiq ) of Oromia region. Major part of command lies in Erer Ibada and Efadin Kebeles. The command area starts from some distance downstream of the dam and extends only on right bank of Erer river The command area is narrower and smaller near the dam site and becomes wider in the downstream side. The irrigable area is mainly situated below the bridge on Harar Jijiga road and extends beyond confluence of Erer River and Bidisimo stream covering only the right bank of the river. Although suitable areas are available on left side of the river also, due to limitation of water availability for irrigation only the command on the right bank of Erer River is chosen for this project. The command area is located between UTM 1009300 N to 1028300 N ( 9° 07’ 17” to 9° 17’ 40”Latitude ) and UTM 193375 E to 199650 E (42°12’24”to 42° 16’ 03’’Longitude). 1.3 Access to the Project Area The project area can be accessed by an asphalt road (511 km) from Addis Ababa to Harar town and further 19 km by all weather gravel road which connects Harar with Jijiga town. Harar town can also be accessed partly by air up to Dire Dawa and remaining about54 km. by road from Dire Dawa to Harar.Babile is the nearest town which is 11 km from project area. The proposed dam site which is about 6 km from Harar- Jijiga road, is connected by fair weather road. The entire proposed command area from head to tail is connected by fair weather road and therefore, the area can be accessed for carrying construction materials and equipment without making special arrangement of approach roads , 3 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009DAM AXIS. .DAMJCC LEGEND PRIMARY CANAI. SECONDARY CANAL ROAD INDEX CONTOUR INTERVAL CONTOUR DENCH MARK RIVER NATURAL DRAIN UN SUTTADU! (AND IRRIGATION Pt£. FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA MINISTRY OF WATER RESOURCES XT's CONCERT ENGINEERING AND CONSULTING ENTERPRISE ----- --------- IN ASSOCIATION WITH CONSULTING ENGINEERING SERVICE ( INDIA ) PVT. LTD *1 r J PROJECT}- ERER IRRIGATION PROJECT DETAIL DESIGN TITLE*- SERVICE ROAD NETWORK mmmmm mil m m i ximviini* DYi hath MrIW» IM
MI|Ml N.E1M1IIErer Dam &. Irrigation Project ZCECE & CES t 2, About the Project 2,1 Source of Irrigation Water The source of irrigation water for the proposed command area is the flows of Erer River Error is n tributary of Wabe Shebelle River which is situated in the semi arid area of Wabe Shebelle basin Wabe Shebelle river basin is located between 0°N to 9° 30’ latitude and 38° 30' E to 46° E longitude , Il originates from the Bale mountains at an approximate elevation of 4000 m above mean sea level and drains in to Indian Ocean, after crossing Somalia, The total basin of Wabe Shabelle is approximately 280,000 km2, of which 72 % Iles In Ethiopia. Large part al’ Somalia, pari of Oromia, part of Southern Nations, Nationalities and People (SNNP), pail of Dire Dawn and the entire llarari, are located in Wabe Shebelle Basin Erer River and Ils tributaries originate from the highlands close to kombolcha town where general elevation Is about 2500 in above mean sea level 'flic Erer catchment up to the proposed dam site la about 419 km2 The water shed has dense network of tributaries The major tributaries are sainte, Clttdl, Ulan-ula, kombolcha, Boscnsa, Hida and Daka The topography of the catchment la dominantly mountainous and hilly with relatively flat and rolling land along Brer River Owing to intensive deforestation, cultivation and overgrazing (he land degradation Is serious problem in the Erer River catchment Thu catchment area of Erer River at bridge on Harar • -Jljiga road is 469 km2 where discharge data arc available for shoitci length of time. The discharge of Error is mainly dependent on rainfall which is highly variable in time and space. The water demand for Irrigation does not match with the water availability in the river, therefore storage darn is proposed to Htoru the llood discharge and utilise in the times for irrigation and other uses 4 Annex E : Irrigation
3D (in sand) Where B = bed width in m J 3 D = depth of water in mQ = discharge in m /sec 28 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 8.3.1 Limiting Velocities a The higher the velocity, the smaller will be the section and thus affect the economy. But to avoid 4 siltation and scouring of earthen canals the following velocities may be adopted. Maximum velocity = 0.75 m/sec in all canals Minimum velocity = 0.25 m/sec in all canals 8.3.2 Working Head For preparing command statement and deciding the full supply levels in the different component of the canal system the following minimum working heads are required: o Head over field . = 15 cm o Head for field channel at its off take from quaternary = 15 cm o Head for quaternary in tertiary canal o Head for tertiary canal in the secondary canal o Head for secondary canal in the primary canal = 15 cm = 15 cm = 30 cm o Head for primary canal at main outlet (dam site) = 60 cm 8.3.3 Longitudinal Slope Lacy’s following regime equation for given discharge and silt factor provides guidance in choosing slope for unlined earthen channel. The same is used in computations of canal dimensions. S = 0.00031 (f3/2Q1/6) Where: S = longitudinal slope Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009 29 --Erer Dam & Irrigation Project ZCECE & CES 3 Q = discharge in m /s £3 f= silt factor =1.76 mrl/2 for silts, ^4 Very fine to fine, it varies from 0.4 to 1 Ojjg And for fine sands from 1.25 to 1.50 Where mr = average particle size of the boundary material In actual practice slightly steeper slope is provided than the one worked out by above equation. 8.3.4 Critical Velocity Ratio (CVR) it According to Kennedy for non silting and non scouring channels in steady regime there is only one velocity called ‘critical velocity’ denoted oy Vo, which is function of depth of water in r .t channel and obtained by following equation: *”>• Vo =0.546 D064 Where: Vo = critical velocity in m/s D = depth of water in meter ■» This equation was applicable to the grades of s’lt existing in the observation channel (in UBDC canal in Pakistan). To take in to account of varying silt grade another factor called ‘critical velocity ratio’ was introduced which is denoted by ‘m’ and the above equation was amended as below: V = 0.546m D064 Where: m = V / Vo = CVR Xi The value of m depends on type of silt. For channels carrying appreciable suspended loads, the value of m should be taken 1.10 at head and 0.85'towards tail end. In case of Erer Project, water is released from the reservoir and expected to be silt free and thus m will lie between 1.02 and 0.85. The same has been adopted in design i.e. in head reach 1.02 and in tail reach o 0.85 30 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 8.3.5 Free Board The following minimum free board has been adopted in design of canals for different discharges indicated below: ------------------------- 3--------------------------------------------------- Discharge (m /sec) Minimum Free Board (m) <0.4 0.2 0.4-1.2 0.3 1.2-5.0 0.4 8.3.6 Bank Width As per Indian Standard Code of Practice IS: 7112-2002 titled “Criteria for Design of X-Section for Unlined Canals” the recommended top width of bank is 1.5 m for discharge 0.15 to 7.5 m3/s for non inspection bank and 5.0 m for inspection bank. The same is adopted in design of canals in Erer project. 8.3.7 Saturation Gradient Types of Soils Saturation Gradient Clayey Loam 1:4 Sandy Loam 1:5 The top width of canal banks indicated above is absolutely minimum as required from stability considerations only. However if functional requirement is integrated with the stability considerations, the width of canal banks will change. Ensure a minimum cover of 0.5m on saturation line 31 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 8.3.8 Inspection Roads The alignment of inspection roads of main canal and secondary canals shall be planned on their left banks as all the head regulators of off-taking channels are located on the left banks only. These roads will provide free excess to regulatory structures for their inspection and maintenance which otherwise will not be possible from roads on right side without provision of bridges on each site Bank Side Slopes for Main Canal Type of Soil Side Slopes Cutting Filling Loamy Soils 1 : 1 1.5 : 1 Sandy Soils 1.5 1 2: 1 For tertiary canals and field channels cutting and filling slopes have been kept 1.5:1. The bank slopes indicated in the above table are only generalized values which are found adequate in majority of cases. However in extreme cases when the banks are too high the stable slopes have been checked for stability to withstand following conditions during operation of canals: (1) Sudden drawdown condition for inner slopes (2) Water running full with banks saturated with rainfall for outer slopes. 8.3.9 Canal Embankment Material For canal embankment materials following criteria are used: o Liquid limit > 25% o Plasticity index > 10% o Gypsum <2% (to avoid solution holes) o Sulphate < 0.2% (to avoid sulphate attack on ordinary Portland Cement) 32 Annex E /irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 8.3.10 BERM Berm is the horizontal space left at ground level between the toe of the bank and excavation. Following criteria shall be used for location and size of berms in different situations. (1) When Full Supply Level(FSL) is above Natural Surface Level( NSL) and bed level is below NSL i.e. the canal is partly in cutting and partly in filling, berm is provided having 2D width at the NSL, where D is full supply depth of canal. (2) When FSL and bed level are above NSL i.e. canal is fully in filling the berm of 3D width is kept at FSL. (3) When FSL and bed level are below the NSL i.e. the canal is in full cutting, the berm having width 2D is provided at FSL 8.3.11 Catch Water Drain For the canals excavated on the slopping ground along contour, a catch water drain, having designed carrying capacity to carry expected discharge of flood from its catchment and leading to natural stream, is required to be provided. These drains are designed to carry overland flow from the area where regular drains do not exist. In this project the catch water drains of 1.0m width and 1.0 m depth having side slopes of 1:1 are recommended. These drains are proposed on upland side of primary canal and both the secondary canals. The drains shall outfall in to natural drains crossing the canals 33 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 8.4 Command Area And Design Discharges For Quaternary Canals There are total 51 number of quaternary canals Out of these 16 off take directly from primary canal and 7 and 14 offtake directly from secondary canal-I and secondary canal-II respectively. However 14 number offtake from the tertiary canals. The alignments of all the quaternary canals are finalised on the basis of topographical parameters. The areas proposed to be commanded by these quaternary canals are measured from the map. The following table gives the areas served by each quaternary canal and tertiary canal. Table 8.1 Culturable Command Area and Design Discharges for Quaternary Canals taking off from Primary Canal Chainage (km + m) Canal Name Canal Length (km) Area Covered (ha) Discharge (l/sec) Design Discharge (l/sec) 1+100 Q1P 1.40 35 19.25 22.14 2+300 Q2P 1.00 30 16.50 18.98 3+430 Q3P 1.30 60 33.00 37.95 3+700 Q4P 1.50 55 30.25 34.79 4+200 Q5P 2.30 85 46.75 53.76 5+600 Q6P 1.40 45 24.75 28.46 6+000 Q7P 1.40 55 30.25 34.79 6+400 Q8P 1.20 40 22.00 25.30 7+200 Q9P 1.20 60 33.00 37.95 7+600 Q10P 1.20 55 30.25 34.79 8+300 Q11P 0.90 45 24.75 28.46 8+850 Q12P 1.20 33 18.15 20.87 9+400 Q13P 3.00 80 44.00 50.60 10+100 Q14P 1.30 45 24.75 28.46 10+900 Q15P 2.10 60 33.00 37.95 12+950 Q16P 1.60 70 38.50 44.28 sub total 24.00 853.00 469.15 539.52 34 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES Table 8.2 Culturable Command Area and Design Discharges for Tertiary & Quaternary Canals Taking off from Primary Canal Chainage (km + m) Canal Name Canal Length (km) Area Covered (ha) Discharge (l/sec) Design Discharge (l/sec) 12+900 T1P 1.00 175 96.25 110.69 12+900 Q1T1P 1.70 75 41.25 47;44 12+900 Q2T1P 1.20 40 22.00 25.30 12+900 Q3T1P 1.50 60 33.00 37.95 Sub total 175 96.25 110.69 Note: the discharge of the tertiary canal is the sum of the quaternary canal (the same is true for the area) Length of primary canal = 13600 m Absorption loss of primary canal 15 lit/sec per km length of canal Table 8.3 Culturable Command Area and Design Discharges for Quaternary and Tertiary Canals Chainage (km + m) Canal Name Canal Length (km) Area Covered (ha) Discharge (l/sec) Design Discharge (l/sec) 1+900 T1S1 2.10 255 140.25 161.29 0+950* Q1T1S1 1.35 55 30.25 34.79 1+275* Q2T1S1 1.50 50 27.50 31.63 1+700* Q3T1S1 1.30 65 35 75 41.11 2+100* Q4T1S1 3.10 85 46.75 53.76 2+500 Q1S1 1.80 90 49.50 56.93 3+300 Q2S1 1.10 35 19.25 22.14 3+900 Q3S1 1.30 40 22.00 25.30 4+450 Q4S1 2.20 75 41.25 47.44 5+000 Q5S1 2.20 65 35.75 41.11 5+500 Q6S1 2.20 100 55.00 63.25 6+750 T2S1 3.00 190 104.50 120.18 2+300* Q1T2S1 0.50 20 11.00 12.65 2+600* Q2T2S1 25 13.75 15.81 2+800* Q2T2S1 1.00 .30 16.50 18.98 7+200 Q7S1 3.50 135 74.25 85.39 7+700 T3S1 0.70 130 71.50 82.23 0+700* Q1T3S1 1.90 . 95 W 52:25 60.09 8+200 T4S1 0.70 130 71.50 82.23 0+700* Q1T4S1 1 90 95 52.25' 60.09 sub total 1245 684.75 787.46 35 Annex E : Irrigation & Drainage Design /Final Detail' Design Report /2009Erer Dam & Irrigation Project /CECE & CES * quaternary canal length started from Tertiary canal Table 8.4 Culturable Command Area and Design Discharges for Quaternary and Tertiary Canals Taking off from Secondary Canal Two Chainage (km + m) Canal Name Canal Length (km) Area Covered (ha) Discharge (l/sec) Design Discharge (l/sec) 0+350 Q1S2 0.80 30 16.50 18.98 1+500 Q2S2 1.20 40 22.00 25.30 3+200 Q3S2 1.80 80 44.00 50.60 4+000 T1S2 0.10 105 57.75 66.41 4+000 Q1T1S2 1.70 . 60 33.00 37.95 4+000 : Q1T1S2 1.20 45 24.75 28.46 5+650 Q4S2 3.10 60 33.00 37.95 6+500 Q5S2 3.00 110 60.50 69.58 7+000 Q6S2 2.00 105 57.75 66.41 7+500 Q7S2 2.20 110 60.50 69.58 8+600 Q8S2 1.30 60 33.00 37.95 9+100 Q9S2 1.50 50 27.50 31.63 9+775 Q10S2 1.60 65 35.75 41.11 10+350 Q11S2 1.50 70 38.50 44.28 11+550 Q12S2 1.10 40 22.00 25.30 11+900 Q13S2 0.90 40 22.00 25.30 12+400 Q14S2 1.00 50 27.50 31.63 sub total 26.00 1015 558.25 641.99 total length of secondary canal two is 12+400 km 8.5 Calculations of Design Capacities 8.5.1 Quaternary Canals (off- taking from any Tertiary canal or directly from Primary or Secondary Canal) Discharge required at the head of Quaternary Canal = CCA of quaternary Canal *0.498/0.9 The section of Quaternary canal shall remain the same in its entire reach from head to tail and connected to the nearby natural drain to dispose off surplus discharge. 36 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES The flexibility of 15% is kept in entire canal system to account for the poor maintenance conditions. If the canal is not maintained in good condition and there is deposition of silt and growth of weeds, the rugosity coefficient is changed and discharging capacity is reduced It is desirable to make sufficient allowance for this purpose. In Erer project this allowance is kept as 15%. 8.5.2 Tertiary Canals (off-taking from Secondary Canal or directly from Primary canal) Discharge at the head of any tertiary canal = Discharge required at head of all off-taking Quaternary Canals+ absorption loss in Tertiary canal. The absorption loss in Tertiary canal is taken@7.5 1/s/km length of tertiary canal Design Discharge at Head of any Tertiary canal is multiplied by 1.15 to account for flexibility The Design section of Tertiary canal shall reduce from head to tail depending on the discharge of off-taking Quaternary canals. 8.5.3 Secondary Canals ( Off-taking from Primary Canals) Discharge required at Design section of Tertiary canal shall reduce from head to tail depending on the discharge of off-taking Quaternary canals. The discharge at head of Secondary Canal is equal to total required discharge of the off-taking canals i.e. tertiary canals and quaternary canals directly off-taking from secondary canal plus losses in Secondary canal taken @ 7.5 lt/s per km length of secondary canal Design discharge at the head of secondary canal is found out by multiplying the discharge arrived as above by 1.15 to take in to account the flexibility. The design section of secondary canal shall reduce from head to tail depending on the discharge of off-taking canals. 37 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES 8.5.4 Primary Canal Similarly the discharge of the Primary canal at Head is equal to total required discharge of all off- taking canals i.e. secondary canals, tertiary and quaternary canals directly off taking from primary Canal plus losses in Primary Canal head to tail taken as @ 15 lit/s per km length of primary canal. Design discharge at head of Primary canal is equal to the discharge worked out above multiplied by 1.15 factor. Like secondary canal the design section shall reduce from head to tail depending upon the discharge of the off-taking canals. Capacity of Secondary canal-I (CCA=1345 ha) Net irrigable area = 1345 ha Peak irrigation requirement of plant = 0.349 1/s/ha Field application efficiency = 0 7 Peak irrigation requirement at field=0.349/.7 = 0.49857 1/s/ha Peak irrigation requirement at the head of quaternary canals = 0.49857/0.9 = 0.553961/s/h Loss in secondary canal (8.366 km) and tertiary canal (5.3 km) = 13.666*7.5 = 102.45 1/s Water required at the head of secondary canal-I = 1345*0.55396+102.45 = 847.52 1/s 38 ^Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES Increase this capacity by 15% for flexibility The design capacity of secondary canal-I at head =847.52*1.15 =974.65 I/s =0.974 m3/s On the same basis the design capacities of primary canal and secondary canal-H at their heads have been worked out which come to 2.709 m /s and 0.773 m /s respectively. 8.5.5 Capacity Statements for Different Reaches Before designing the canals, the capacity statements have been prepared giving the reach of canal under consideration, discharge at head of reach, conveyance losses in this reach, name of off- taking channel, its CCA and its required discharge. After deducing this discharge the discharge of the next reach has been worked out. This statement is also known as cut-off statement. Table 8.5 Statement showing Total discharge utilized in different Canal systems 3 3 S.No Name of Canal CCA (ha) Water diverted in Quaternary and Tertiary’ canals (1/s) Length of Canals (km) Absorplio n loss in canal (Vs) Length of Tertiary canal (km) Absorption loss in tertiary canal 1/s Total water utilized (Vs) 1 Primary Canal 1022 562.1 13.392 200.88 1.30 9.75 772.73 2 Secondary Canal-I 1345 739.75 8.366 62.74 5.30 39.75 84224 3 Secondary' Canal-Il 1042 573.1 13.10 98.25 0.1 0.75 672.05 Total 3409 1874.95 34.858 361.87 6.7 50.25 2287.02 Design Capacity of primary canal = 2.356 xl.15 = 2.709 m /s 3 Design Capacity of SI Design Capacity of S2 = 0.842 x 1.15 = 0.96S m3/s = 0.672 x 1.15 = 0.773 m3/s 39 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES Table 8.6 Capacity Statement of Primary Canal S.N 0 Reach (m) Discharge at the head of reach (m /s) Lengt h of reach (km) Seepage less in reach (m /s) Name of off-taking channels 3 3 Discharge diverted in off-taking channels (m /s) Discharge at the tail of reach (m /s) Design discharge of the reach (m /s) 3 3 3 1 2 3 4 5 6 7 8 = Col 3-5-7 9= 1.15 x Col 3 1 0+0 to 2+200 2.356 2.2 0.033 QiP.QzP 0.071 2.252 2.709 2 2+200 to 3+600 2.252 1.4 0.021 QjP. Q4P 0.061 2.170 2.590 3 3+600 to 5+400 2.170 1.8 0.027 Q5P, Q6P 0.074 2069 2.49 4 5+400 to 6+250 2.069 0.85 0.013 Q7P, QgP 0.052 2.004 2.38 5 6+250 to 7+500 2.004 1.25 0.019 Q»P,QioP 0.063 1.922 2.30 6 7+500 to 8+700 1.922 1.2 0.018 Qll+Ql2 0.055 1.849 2.21 7 8+700 io 9+900 1.849 1.2 0.018 Ql3+Ql« 0.096 1.735 2.12 8 9+900 to 13+394 1.735 3.49 0.052 Qis+TiP 0.131 1.552 2.00 Table 8.7 Capacity Statement of Secondary Canal - I S.N 0 Reach (m) Disch ar ge at the head of reach (m’/s) Lengt hof reach (km) Seepage loss in m’/s @ 7.5lt/s/ km Lengt hof Tertiar y Canal in reach (km) Secpag e loss in Tertiar y Canal (m’/s) Name of OCT-taking channel Discharge diverted in off taking channels (m’/s) Dischar ge of die tail of reach (tn’/s) Design Discha rge (“7 s) 1 2 3 4 5 6 7 8 9 10 11 1 0+0 to 1+500 0.842 1.5 0.011 1.6 0.012 T1S1 0.154 0.665 0.968 2 1+500 to 3+000 0.665 1.5 0.011 - - Q1S1 and Q2St 0.082 0.572 0.765 3 3+000 to 4 +400 0.572 1.4 0.01 - - Q3S1 and Q«Si 0.077 0.485 0.660 4 4+400 to 5+500 0.485 1.1 0.008 - - Q5S1 and Q6Si 0.104 0.373 0.557 5 5+500 to 7+050' 0.373 1.55 0.012 2.30 0.017 T 2Si and Q7S1 0179 0.165 0.429 6 7+050 to 7+550 0.165 0.5 0.004 0.7 0.005 TaS, 0.0715 0.084 0.189 7 7+550 to 8+366 0.084 0.82 0.006 0.7 0.005 T.Sl 0.0715 0.001 0.116 40 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES * Table 8.8 Capacity Statement of Secondary Canal - II S.N 0 Reach (m) Discharge al the head of reach (m’/a) Length of reach (km) Seepage loss in m’/s @ 7.51t/s/km Length of Tertiary Canal in reach 0“"). Seepag e loss in Tertiar y Canal (m’/s) Name of off-taking channel Discharge diverted in off- taking channels (m’/s) Discharge oflhetail ofreach m’/sec Design Discharge m’/sec 1 2 3 4 5 6 7 8 9 10 11 1 0+0 to 1+500 0.672 1.5 0.012 - - Qi S?and QzS; 0.0467 0.613 0.773 2 1+500 to 3+500 0.613 2.0 0.015 1.3 0.01 Q S and TiS 32 2 0.115 0.483 0.705 3 3+500 to 5 +600 0.483 2.10 0.016 - - Q4S2 and Q S 52 0.103 0.364 0.555 4 5+600 to 6+600 0.364 1.0 0.007 - - Q S and Q7S2 62 0.096 0.261 0.418 5 6+600 to 8+200 0.261 1.6 0.012 - - Qs S2 and Q9 S2 0.057 0.192 0.300 6 8+200 to 9+600 0.192 1.4 0.010 - - Q10 S2 and Qu S? 0.082 0.100 0.221 7 9+600 to 10+700 0.100 1.1 0.007 - - Qi 2 S2 and Qi 3 S2 0.046 0.047 0.115 8 10+700 to 13+100 0.047 2.4 0.018 - - Qi 4 S2 0.024 0.005 0.054 Table 8.9 Hydraulic Parameters-Primary Canal Reach (km) Discharge (m’/s) n Slope (m/m) Depth (m) B.W. (m) W.P. (m) V(m/s) Vo=0.55Dum CVR F.B (m) 0.0-2.2 2.709 0.025 00035 1.10 2.50 6.47 0.59 0.58 1.01 0.40 2.2-3.60 2.59 0.025 00035 1.07 2.50 6.37 059 0.57 1.01 0.40 3.60-5.40 2.49 0.025 0.0035 1.05 2 50 6.30 0 58 0.566 1.02 0.40 5.40-6.25 2.38 0.025 00035 1.04 240 6.17 0.57 0.563 1.01 0.40 6.25 -7.50 2.30 0.025 0.0035 1.03 2.40 6.10 0.57 0.56 1.01 0.40 7.50-8.70 2.21 0.025 0.0035 1.01 2.40 6.02 0.56 0.553 1.01 0.40 8.70-9.90 2.12 0.025 0.0035 1.0 2.30 5.91 0.56 0.55 1.01 0.40 9.90-13.394 (tail 2.00 0.025 0.0035 1.0 2.13 5.73 0.55 0.55 1.00 0.40 Annex E : Irrigation &Drainage Design /Final Detail Design Report /2009 • >Erer Dam & Irrigation Project ZCECE & CES Table 8.10 Hydraulic Parameters-Secondary Canal I Reach (Km) Discharge 3 Q m /sec n Slope (m/m) Depth (m) B.W. (m) W.P.(m) V(m/sc c) Vo = 0.55D 0.64 CVR F.B (m) 0-1.50 0.968 0.025 0.0004 0.82 1.20 4.14 0.49 0.488 1.0 0.30 1.5-3.0 0.765 0.025 0.0004 0.74 1.16 3.81 0.46 0.459 1.0 0.30 3.0-4.4 0.650 0.025 0.0004 0.69 1.15 3.63 0.44 0.44 1.0 0.30 4.4-5.5 0.557 0.025 0.0004 0.64 1.10 3.39 042 0.4207 0.998 0.30 5.5-7.05 0.429 0.025 0 0004 0.58 1.00 3.08 0.40 0.3966 1.00 0.20 7.05-7.55 0.189 0.025 0.0004 0.41 0 80 2.29 0.32 0.322 0.99 0.20 7.55-8.366 0.116 0.030 0.00045 0.33 0.75 1.94 0.28 0.2827 0.99 0.20 Table 8.11 Hydraulic Parameters-Secondary Canal II Reach (km) Discharge (m /s) n 3 Slope (in/m) Depth (m) B.W. (m) W.P. (m) V(m/ sec) Vo = 0.55D 0.64 CVR F.B (m) 0-1.50 0.773 0025 0.0004 0.74 1.15 3.82 046 0.4590 1.0 0.30 1.5-3.50 0.705 0.025 0.0004 0.72 1.08 3.68 0.45 0.4516 0.996 0.30 3.50-5.60 0.555 0.025 0.0004 0.64 1.08 3.39 0.42 0.420 1.0 0.30 4.60-6.60 0.418 0.025 0.0004 0.57 1.0 3.06 0.39 0.3925 0.99 0.20 6.60-8.20 0.300 0.025 0.0004 0.50 0.90 2.71 0.36 0.3628 0.99 0.20 8.20-9.60 0.221 0.025 0.0004 0.43 0 88 2.44 0.33 0.3314 0.99 0.20 9.60-10.70 0.110 0.025 0.0004 0.33 0.60 1.79 0.28 0.2828 0.99 0.20 10.70-13.10 0.054 0.030 0.00045 0.25 0.42 1.31 0.24 0.239 1.00 0.20 42 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES Table 8.12 HYDRAULIC PARAMETER -T4S1 Reach (km) Q (m /s) N 3 Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) W.P (m) V M/sec V0 = 0.55D CVR FB (m) 0.64 0-0.700 0.088 0.025 0.00045 1.5:1 0.32 0.45 1.62 0.28 0.312 1.01 0.20 Table 8.13 HYDRAULIC PARAMETER -T1S2 Reach (m) Q (m3/s) N Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) W.P. (m) V (m/s) Vo = 0.55D CVR =V/Vo F.B. (m) 0.64 0-0.10 0.069 0.025 0.00045 1.5:1 0.29 0.45 1.51 0.26 0.2616 0.99 0.20 Table 8.14 HYDRAULIC PARAMETER -TiP Reach (m) Q (m3/sec) N Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) V (m/s) Vo = 0.55D <>•<* CVR F.B. (m’ 0-1.30 0.154 0.025 0.00045 1.5:1 0.41 0.53 0.32 0.3221 0.993 0.20 Table 8.15 HYDRAULIC PARAMETER -TiSi Reach (m) Q (m3/sec) N Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) V (m/s) vo = 0.55D o CVR F.B. (m) 0-1.60 0.126 0.0 25 0.00045 1.5:1 0.39 0.48 0.31 0.3126 0.992 0.20 43 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES Table 8.16 HYDRAULIC PARAMETER -T Si 2 Reach (m) Q (m3/s) N Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) V (m/s) Vo = 0.55D CVR F.B. (m) 0-2.30 0.072 0.025 0.00045 1.5:1 0.30 0.46 0.27 0.2671 1.01 0.20 Table 8.17 HYDRAULIC PARAMETER -T3S1 Reach (m) Q (m3/s) N Slope (m/m) Side slope (h/v) Depth (m) B.W. (m) V (m/s) Vo = 0.55D 0 M CVR F.B. (m) 0-0.70 0.072 0.025 0.00045 1.5:1 0.30 0.46 0.27 0.2671 1.01 0.20 S= 0.0003 l^Q ' 8.6 Procedure Adopted for Design Following procedure has been adopted for design of earthen canals: (1) Lacey’s regime slope has been found by using following formula, 1 6 ) for primary canal Q=2.709 n?/s and f=1.0 The slope is worked out to 0.00036. The slope of primary canal has been considered as O.OOO35 in calculations (2) Appropriate values of B and D assumed. (3) Velocity calculated by Manning’s Formula using appropriate value of rugosity coefficient (0.025 in this case ) (4) Critical velocity Vo calculated by using Formula Vo^.SSD0 64 (5) Calculations were continued till the selected value of D and computed value of V satisfy the critical velocity ratio (CVR) ______________________________________________________________________ 44 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 9.0 Irrigation Structures The detailed design of irrigation and drainage structures are earned out in two phases. In first phase hydraulic designs are carried out which are intended to determine the optimal location, configuration of components of hydraulic structures, waterway requirement, protection against sour, seepage and uplift pressures, energy dissipation arrangements etc. In second phase Structural designs are carried out which aims at evaluating the forces/ stresses on each component of structures on account of dead loads, dynamic loads, seismic loads and earth pressures and each component is designed to resist the forces and bending moments caused by all these loads. The canal structures are hydraulically designed as per aforesaid design criteria set out for Erer project. The detailed structural designs are carried out as per detailed procedures in vogue internationally 9.1 ESCAPE Structures These are the structures meant for escaping surplus or excess water for the purpose of safety of canal and its structures and depleting the canals for repair and maintenance purposes There are two types of escapes, Weir Escapes and Sluice Escapes 9.1.1 Choice of Types of Escape Weir Escapes are constructed in masonry or cement concrete with or without crest shutters capable of escaping surplus water from canal. Sluice Escapes however comprise of a head regulator of sluice escape, cross regulator on canal located just downstream of location of escape (if entire discharge of the canal is required to be escaped) and escape channel. Sluice escape besides removing surplus water act as scouring sluice and helps to remove silt from the canal. Sluice 45 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES escapes are therefore preferred over weir escapes generally unless site conditions limit the use of weir escapes. Surface escapes may be used in case of an escape opposite an inlet when an inlet does not bring considerable amount of silt Surface escapes also become useful at the tail end of canal where there are fluctuations in withdrawals from canal and excess quantity of water can be suitably disposed off Sluice escapes are necessary where the canal is required to be emptied quickly. Sluice escapes become essential when the inlet can bring considerable amount of silt. After considering all the above said points in Erer project, it is proposed to go with for sluice type of escape with out any crest so that the canal may be emptied fully to facilitate repair works The escape is proposed to be designed as a simple flat regulator. 9.1.2 Criteria for Location Following criteria are adopted: • The location of escape is decided by availability of suitable drain, depression or river with bed level at or below canal bed level for disposing off surplus water through escape directly or through escape channel. • Provision of escapes at every 15 to 20 km is desirable on main canals and 10 to 15 km on secondary canals. • Escapes may be located at up-stream of major structures such as aqueducts, railway crossings, major diversion structures etc. • Escapes may be provided in combination with aqueducts or siphons for affecting the economy. • Escapes are necessary at important points where branches lake off from main canal or several distributaries take off from branch canal. In case of lift channels escapes are essential up-stream of pumping station. • When canal is very close to the edge of river bank, its bed level near the head works being considerably lower than the flood plain of the river, there is a risk of flood flow entering in to canal by way of breaches If there is no escape provided the canal system may be 46 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES severely damaged by excessive flow. The escape may be located at a point downstream of the reach where canal bank is vulnerable to the flood damage to restrict the damage to the reach upstream only. • When the canal runs along the steep side of the hill or along a steep bank of a comparatively soft material, an escape may be located at the upstream end of the canal section where it first approaches a steep bank. In case of a land slide occurring in the hill slope the entire canal may be blocked resulting in abrupt rise of water level in the upstream for a considerable distance. This intern can cause extensive damage to canal section. An escape provided at a suitable place on the upstream of such reach would act as a safety plug to arrest the rise of water level and avoid consequential effects. • When canal is confined by bank on one side and the unbanked side allows surface inflow, escapes need to be provided at appropriate location in the vicinity to dispose of the water so received. • Escapes opposite the inlets or at a nearest suitable location may be needed whose drainage water is let into the canal without reserve capacity to receive such water over and above the authorized full supply discharge of the canal. • Certain quantity of heavy bed silt may find its way through the regulator into head reach of canal and thereby reduce the water way. In such cases sluice escape within 5 km of canal head reach may be provided. After having considered above points the location of the proposed escape is decided at about 4+150 chainage point of primary canal where it crosses a sizeable drain designated as CD5P ( Estimated Q 5=15.8 m /s ) which outfalls in River Erer. 2 3 9.1.3 Criteria for Escapes Capacity The flow requirement to be diverted through escape may vary from small quantities to total discharge of canal. No general rules are laid for deciding the discharge capacity of escape. The criteria are location and requirement specific. Following guidelines are adopted: 47 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project /CECE & CES • If the canal passes near important town or important installations where breach of canal can affect costly properties or human lives the capacity of escape should be equal to maximum flow which can pass in the canal. In other cases it should seldom be greater than the half of discharge of canal or not less than the difference between maximum discharge of canal at the proposed escape site and maximum flow at next escape • When the escape is used mainly to empty the canal for maintenance, the capacity should be fixed taking into account the number of days in which the canal is to be emptied. • In general the design capacity of escape is normally taken to be 50 to 60% of canal discharge at the point of escape. After considering above issues the capacity of proposed escape of Erer Project is proposed to 60 % of the capacity of canal at the site of escape 9.1.4 Design Considerations The structural as well as hydraulic design criteria adopted in this case are the same as that of other simple flat regulators. • The safety of escape structure has been checked for exit gradient. The maximum exit gradient has been worked out on the basis of difference in maximum water level in canal and minimum water level in escape channel. • The escape structure has been checked for safely against uplift pressure and sliding. • The required water way has been computed by using broad crested weir formula with appropriate discharge coefficient considering the conditions of flow. • In this escapes the sill is kept at the bed level of primary canal. This will enable quick emptying of canal and silt removal besides providing economical waterway. • The safety arrangements have been made adequately to cater for all flow conditions and operation • Adequate protection works have been provided on down stream side of structure same as in case of other regulatory structures 4S Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES 9.2 Canal Head and Cross Regulators A head regulator is provided at the head of channel, which controls the supplies entering into channel. A cross regulator on the other hand is located at the down stream side of an off taking point on main channel to head up water level to enable the off-taking channel to draw the required supplies. Head regulators also control the entry of silt into distributaries besides serving as meter for measuring discharges. There are two head regulators provided in the system. These are head regulators of both the secondary canals off-taking from the tail of primary canal. One acts as cross regulator to the other regulator and vice versa. These have been designed as per design criteria Since the sizes of parent channel and off-taking channels are very small, only one bay of regulators are considered adequate and no piers are provided. The structure has been checked for exit gradient and adequate length of floor and downstream cut off wall have been provided for safe value of exit gradient. Bligh’s coefficient has been assumed as 7 and accordingly length of floor is worked out. The thickness of floor provided is sufficient to resist uplift pressure. The uplift pressure is to be calculated in following two conditions: (a) When upstream water level is headed up to full supply and off-taking channel is dry (b) When the upstream water level is headed up to full supply and varying discharge pass down stream. The upstream cut-offs have been provided up to Lacey’s scour depth below the upstream bed level or ground level, which ever is low. Channel Capacity (m /sec) 3 Minimum Depth of Cut off (m) Up to 3.0 1.0 3.1 to 30 1.20 49 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009Erer Dam & Irrigation Project ZCECE & CES_________________________________ * . • The downstream cut-offs have been provided from safe exit gradient considerations Channel Capacity (m /sec) J Minimum Depth of Cut off (m) Up to 3.0 1.0 3.1 to 30.0 1.20 When the available working head in off taking canal is more than half of the full supply depth in parent channel, cross regulator may not be provided in conjunction with head regulator. 9.3 Outlet Structures: It is a device through which water is released from a distributing channel to quaternary canal. Out let must full fill following requirements o It shall be structurally strong and shall have no moving parts so that ■ It does not require periodic attention ■ It is not tampered by farmers or unauthorized persons o It shall draw its fair share of silt carried out by parent channel o It shall work efficiently with small working head. o It shall be economical. Various types of canal out lets have been evolved from time to time to obtain suitable performance. No one has come out to be suitable universally. In fact it is very difficult to achieve good design with respect to flexibility and sensitivity because of various indeterminate conditions both in distribution channels and the water courses, namely, discharge levels, silt charge, capacity factor, rotation of channels, regime condition of distributing channels etc affect their functioning. Even a particular outlet considered suitable upstream of control structure in a channel may not remain suitable at a considerable distance on the same channel. In Erer irrigation scheme pipe outlets are proposed to be used. The pipes are placed horizontally and at right angle to the centre line of the distributing canal. Discharge through the pipe outlet is given by formula; 50 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009 Erer Dam & Irrigation Project ZCECE & CES Q=CAy[2gH Where C = Coefficient of discharge which depends on friction factor, length and size of pipe outlet. I* A r 15d } P L ' 40^ f= coefficient of fluid friction for pipes, its value would be 0.005 for clean iron pipe and 0.01 for slightly encrusted pipe L= Length of pipe in meters D= diameters of pipe in cm H= Head of water measurement form central line of pipe to the FSL In Erer irrigation project steel pipes are proposed to be used for outlets assuming slightly encrusted (f=0.01) for design purposes. It is proposed to place the pipes at bed of the distributing channel to enable the outlet to draw its fair amount of silt The inlet and exit ends of pipe are proposed to be fixed in stone masonry to prevent its tempering Table given below gives discharges for different heads and different diameter of steel pipes. The sizes of outlet pipes are selected from the table given below. Table 9.1 Discharges of pipe outlets for different Heads Coefficient of Friction f= 0.01 Length of the pipe m Diameter of< pipes cm Discharge Q in Cumecs 0.20m 0.30m 0.40m 0.50m 0.75m 1.0m 3 10 15 20 ’ ' 25 0.009 5 0.023 1 0 043 0 0.069 0 0.011 6 0.028.3 0.052 5 0.084 4 0.013 4 0.032 7 0.060 7 0.097 7 0.015 0 0.036 5 0.067 9 0.109 2 0.018 4 0.044 8 0.083 0 0.134 0 0.021 2 0.051 6 0.096 0 0.154 4 51 Annex E : Irrigation & Drainage Design /Final Detail Design Report /2009
/-K2 2> _ Q 2 TO,899-0.336^ V 2x9 81 J = 0.0057 Level of total energy line at the end of contraction = 1363.567-0.0057 = 1363.56 Since the length of canal from end of contraction to start of expansion is kept only 25.30m. Hence three will be negligible loss is rectangular portion of canal Therefore level of total energy line at the beginning will be 1363.56m Loss head in expansion = 0.3 I J = 0.3 0.94852 -0.582' 2<7 = 0.0085 The level of total energy line at the downstream end of expansion will be = 1363.56 - 0.0085 = 1363.555 FSL = 1363.555 - Velocity headI I I I = 1363.536m Bed level = 1363.536- 1.05 = 1362.486 I I I Clear opening for gate = 2.5m Gate of size 2.7m width and 1.15m height may be provided. Provide 200mm support to the slab of gate operating platform the total width of scale = 2x0.2+2.50 = 2.90m I Provide gate operating platform of 2.9m x 2.5m I I I I I I I I I I I I I Level of operating plate form = 1362.5 + 2x 1.15 +^-^= 1365.375 2 Case I: Primary Canal is Closed Floor length Water level in primary canal = 1363.55 Bed level of canal in downstream side = 1362.486 Head = 1363.55-1363.486 = 1.065m Taking Blight’s coefficient = 7 Total floor length = 7x1.065 = 7.455m Provide 10.0m long floor, 5.0m upstream of gate and 5.0m downstream of gate Vertical cut off The minimum depth of upstream and downstream cutoff for this range of discharge = 10m, hence provide 1.1m deep vertical cutoff on upstream i.e. upto R.L 1362.50 -1 1 = 1361.4m 30Provide 1.1 m deep vertical cutoff an downstream side, The level of cutoff 1362.486 1.1 = 1361.386m Floor Thickness Draw hydraulic gradient line at 1:7 for the maximum static head (1363.55 — 1362.486) 1.064m i.e. when the water is headed up to FSL on up stream side and these is no water on the downstream side. The (ordinate between H.G line and floor level would give the unbalanced head. The upstream hydrostatic pressure will be balanced by the weight of water. Provide minimum thickness of 0.3m on up stream side of the gate Maximum unbalanced head = 1363.55-1362.486 2 1.064 = 0.532m 2 Floor thickness required = os321.25 1.25 Provide 0.5m thick floor upto 2.5m length and 0.3m in remaining 2.5m upto the downstream end. Downstream Protection Q= discharge per unit width 2 49 3 Q= —— = 1 0m3/sec 1.0 m /sec 2.5 31I I I I I I I I I I I I I I I I = 1.34 (f= 1.0 assumed) Depth of scour for straight reach - 1.25R = 1.25 x 1.34 = 1.675 m Depth below bed = 1.675 - 1.05 = 0.625m Provide 1.1m deep cutoff Downstream of the impervious floor, suitable protection is to be provided in a length 2xD = 2x 1.1 =2.2m Provide four rows of cement concrete blocks of 600x 600x250 mm size over 250mm thick well graded blanket. Beyond protection work launching apron shall be provided. The cubical content of launching apron will be 2.25 x D m3/per meter length. Cubical content = 2.25 xl.l = 2.475 m3/m Keeping 0.6m as thickness of launching apron, the length will work out to 2 475/0.5= 4.95m Provide 5.00m length of apron Provide 250mm thick and 600mm deep sline masonry wall between block protection and launching apron. Upstream Protection I The upstream protection work shall be provided to cater for the scour depth of D= 1.1m I below the floor. Depth of block protection on upstream side= 1.0 x D i.e 1.1m so provide 2 raws of 600*600x250 stone masonry blocks over 250mm well graded ballest. I I I 32Launching apron Cuibic content of launching apron = 2.25D Volume /m = 2.25 xl. 1 = 2.475 m3/m If the thickness is 600m T , 2.475 „ Length = -------- = 4 95m 0.5 Provide 5.0m length of 600mm thick launching apron provide 250mm thick 600mm deep wall between launching apron and block protection, Case II - When Escape is closed FSL of Primary Canal = 1363.55m Bed Level of Escape Channel = 1362.50 Water Head = 1363 - 1362.50 = 1.05m Taking Blights’ coefficient Total length of floor = 7.0 7 x 1.05 = 7 35m Provide 5.0 m floor upstream side of gate and 5.0m on downstream side Vertical cut off The minimum depth of up stream and downstream cut off for this range of discharge = 1.0m Provide 1.1m deep vertical cut off on the upstream side and 1.1m deep vertical cutoff on the downstream end of cutoff. R.L of upstream cut off = 1362.50- 1.1 = 1361.40m R.L of down stream cut off = 1362.5 - 1.1Floor Thickness Provide 0.3m floor thickness on the upstream side of gate Maximum unbalance head in the just downstream point of gate = = 1.05/2 = 0.525 Floor thickness required = 0.525 = 0.42m 1.25 Provide 0.45m thickness up to 2.5m downstream of the gate and 0.30m thickness up to the end of the floor Downstream Protection q = Q/6= 1.50/0.92 = 1.63 R = 1.34 ( q2 ) 1/3 assume f = 1.0 f R = 1.34 (1.38) R=1 855 For straight reach depth of scour = 1.25 x R = 1.25 x 1.855 = 2.32m Depth below bed =2.32-1.05 D = 1.27m Provide 1.30m deep cut off.Protection is to the provided in 2 2 D length ( i.e 2 x 1.30 = 2.60 say 3.00) by cement concert blocks in five rows of 600 x 600 x 250 mm size laid over 250mm graded ballast. Beyond protection work launching apron shall be provided The cubic content of materia s launching apron will be 2.25D cubice meter / meter length Cubic Content = 2.25D = 2.25 x 1.30 = 2.925m3 / m Keeping the thickness of launching apron as 0.5m Length of apron = 2.925 = 5.85 say 6.0m 0.5 Provide 250mm 600mm deep stone masonry wall between block protection and launching apron. Upstream Protection: upstream protection is required as Cement concert flour of primary canal exists in the upstream said No damage is expected in the upstream side. Fig 8. Escape structureLOOTUONAL SECTION B-B I I 36 C roadway3 VI. BRIDGE Hydro lice Design of Harer / Babile Road Bridge Over Primary Canal (a) Canal parameters Location = change 5 + 900 primary canal Discharge = 2.49m /m Bed width = 2.40m Depth = 1.04m Side slope = 1.5: 1 Longitudinal slops = 0.0035F FSL at off take point = 1365.0 FSL at Read crossing = 1365.0 - 5.9 x 0.00035 = 1362.935m Bed level of canal = 1361.89.5m The canal section is given transition from trapezoidal and rectangle on up stream side of bridge and from rectangle to trapezoidal in the downstream side Clear span of bridge = 1.04m Provide overall depth of SLas = 300m Free board provide in canal = 400mm Provided extra free board of 400mm } Total Free board = 800mmLevel ofbottom slab = 1362.935 + 0.80 = 1363.735 Level of the top of bridge = 1363.735 + 0.30 = 1364.035m (b) Design of Abutment Scour depth below cannel bed = Depth / 3 = 1.04/3 = 0.35m say 0.4 m Level of scoured bed = 1361 89 - 0.4 = 1361.49 Depth of scoured bed below Road Level = 1364.35- 1361.49 = 2.545 - say 3.0m Width of abutment at scour level = 0.7 depth of scour bed level or road level = 07x3.0 = 2 10m (c)Upstream Protection Upstream cut off Minimum depth of cut off below upstream bed level of canal for 2.45m3 /sec discharge =1.0 Provide 1.1m deep cut off Level ofbottom of cutoff = 1361.895 - 1.1 = 1360.795 Upstream Block Protection Two rows of 600 x 600 x 250mm C.C blocks over 250mm graded ballast may be provided. 383 Upstream Launching Apron Quantity of apron / m = 2.25Dm / m = 2 25 x 1 1 = 2.475m3 / m Provided 600mm thick apron Length of apron = 2.47510.6 = 4.125m say 4.50m Provide 600mm thick apron for 4.50m length Provide 300mm thick and 0.5m deep wall in between block protection and launching apron. (d) Downstream Protection Cutoff Minimum depth of cut off below d/s canal bed for 2.49m3 I sec Discharge = 1 0m Provide 1.1m deep cut off. Level of batton cut off = 1361.895 -1.1 = 1360.795 Block Protection Provide 4 rows of 600 x 600 x250 cc blocks laid over 250 thick graded blankets. Lunching Apron Quantity of apron per meter = 2.25D m3 = 2.25 x 1.1 m3 = 2.475 m 3 Provide 600mm thick apron Apron length = 2.475 I 0.6 = 4.125m say 4.5m 39 1Provide 600 mm thick launching Apron of 4.5m length Provide 300mm thick and 0z5m ■' deep wall between block Protection and launching apron. This bridge is structurally design for heaviest type of loading as it is main road. It is to be designed with RCC decking and masonry substructure. As per span consideration it is very small bridge therefore the foundation shall consist of cement concrete floor with curtain walls 1 errtoarfcrrert 5 made of unoompacted random (iU 2 Earth of ocrwbxcton be lemared from r*w sale 3 The dstance of borrow area shaft not be less than 25.0m from heei/toe cf embawteri Fig 9 Flood Protection Embankment 40I I I I I I I I I I I I I I I Fig 10 RCC Pipe Culvert PLAN I Section A-A I I Fig 11. Slab Culvert I 41 Section B-BI I I I I ! I S4C»>n A-A I Fig 12. Slab Culvert Across Primary canal I I I I I I I I I I I w I Fig 13. Pipe turn out 42 .>Details of Tertiary canal Head Regulators Name of Tertiary canal Off taking Point Name of parent channel Hydro lice Parameters at off taking points Q m /s 3 b(m) d(m) bl (m) dl (m) P (cm) T,P 13.300km of primary c. Primary C 2.0 2.13 1.0 0.154 ___ 0.53 0.4] 30 T, S2 3.500km of S-ff Secondary C -II 0.705 1.08 0.72 0.069 0.45 0.29 20 Ti S| 1.500km ofS-I Secondary C-I 0.968 1.20 0.82 0.126 0.48 0.39 25 T 2 S| 5.500km ofS-I Secondary C-I 0.552 1.10 0.64 0.072 0.46 0.30 120“ T,„ 7.550km ofS-I Secondary C-I 0.189 0.80 0.41 0.072 0.46 0.30 25 B- -.. * ♦■ —L Section A-A Fig 14. Distribution box in quaternary canal 43vn. DROP STRUCTURES To Erer project vertical drop/ falls which have no glacis or sloping floor downstream of the crest are recommended. The dissipation of energy is achieved by impact of falling water on the cushion of water specially created for the purpose. The energy is dissipated by means of impact and deflection of velocity , suddenly from horizontal to vertical direction. The cushion is formed by depressing the floor below the downstream head of channel. The following dimensions are formed suitable and therefore recommended in computation of drop strictures. Cistem Length (L) = 5 (Hl xD) 0 5 Cistern depth (x) = 1_ (Hl xD) 2/3 4 Where HL = drop in meter D = depth of west below upstream T.E.L. in m L = the length of cistern in m x = is the depression below down stream bed of channel. On the basis of this formula cistern dimension i.e. length and depression depth are worked out for drop depth of 1.0m. These have been worked out for earthen canals having bed slope 0.00045, Manning’s n = 0.025 and side slope 1; 1. The same may be provided at appropriate places in Quaternary canals, drains where ever the discharge matches with the one indicated in the table given on the drawing of drop structure. 44However incase of Secondary canal -I which is required to descend about 48m in about 1.0km length a server of drop structure ( about 32 in no) of 1.5m drop are recommend. The cistern dimensions are calculated below Secondary Canal -I parameters Discharge = 0.968 m3 / sec Velocity = 0.49 m/s Depth of flow = 0.82m Bed width = 1.20m Side slope = 1.5:1 Slope = 0.0004 Manning’s = n = 0.025 Free board = 0.3 m Cistern Length (L) = 5 (H X D ) L 2 05 D = depth + Velocity head (V )/2g ’ ’ 2 = 0 82+ (0.49) / (2x9.81) = 0.82+01 = 0 83m HL= 1.5m L = 5 (0.83 X 1.5)O3 L = 5.58 m provide L = 5.60” Depression depth below downstream, bed level of canal X = !4 (HlXD)^ X= % ( 1.5X0.83) 2/3 X = !4 (1.158) X = 0.289m Provide 0.30m deep cistem. Provide 2.5m length of pitching on the bed and side of canal in the upstream side of drop stricture and 2.0m in the down stream side. 45 iI OQL Oil FIL Of CBL *00. S e ctio n A -A TIL ••L Section B-B Fig 15 Typical Drop Structure 46No 3 Q m /se Bed with (m) Depth (m) • Cistern size Length (m) Depth (m) Pitching Length L| Upstream Pitching length d Lj down stream 1 0.03 0.35 0.23 2.39 0.09 2.0 1.5 2 0.05 0.45 0.27 2.59 0.10 2.0 1.5 3 0.075 0.50 0.33 2.87 0.11 2.0 1.5 4 0.10 0.58 0.36 To~ 0.12 2.0 1.5 5 0.25 0.82 0.41 3.1 0.14 2.5 2.0 6 0.50 0.86 0.43 3.28 0.15 2.5 2 0 7 1.0 1.22 0.61 3.63 0.16 2.5 2.0 8 2.0 1.56 0.78 3.90 0.17 3.0 2.5 • bed width and depth of channel are for trapezoidal earthen channel ,side slope 1:1, bed slope 0.0045, manning n=O.O25 VOL AQUEDUCT FOR SECONDARY CANAL - H ON DENCITO RIVER Design data (a) Canal: Trapezoidal earthen canal Discharge = 0.773m /sec Bed with = 1.15m Velocity = 0.46m/sec Side slope = 1.5:1 Slope = 0.0004 Manning’s Coefficient (n) =0 025 Depth = 0.74 (b) River Flood Discharge ( Tr= 100yr) = 267.5m 3/sec 3 High flood level = 1.2M above Bed Level River bed level = 1354.5 (as informed) 47(c) Type of Structure Proposed The earthen banks are discontinued and the cannel is taken in a rectangular trough supported on piers. This is adopted to affect overall economy. (d) Drainage Waterway Lacy’s Regime Perimeter P =4.83 P = 4.83 V267.5 P = 79.0m Let clear span between piers is 6.0m and there are 11 spans and ten piers. Clear water way =11x6 =66m Provide lOpiers of 1.0m with. Total water way between abutments = 66+ 10 x 1.0 =76m (e) Canal Waterway For reason of economy the trapezoidal section of earthen canal is rectangular section The clear width of trough = 1.15m, same as width of canal Flow Area of trapezoidal Section = 1.15 x 0.74 + 1.11 x 0.74 = 0.85 + 0.82 = 1.67m2 Dimensions of rectangular section = 1.15 x 0.74 = 0.8436m2 Provide 1:2 splay in contraction and 1:3 in expansion, because the canal is very small in size. 48Note: All dimensions are in meters (f) Head loss and bed levels at different sections Velocity at section 1-1 = 0.46m/sec Velocity at section 2 - 2 = 0.773 2/0.8436 = 0.91m /sec Head Loss in Contraction = J --------------- 2g z2 (r2 -n ) L = (o.91 -0.42 )r0.2 zz 2x9.81 =0.006m (K3 -r4 ) 22 Head Loss in expansion = 0.3 ' 2g = 0.009m Head Loss in rectangle section: Use managing equation V= l/nRMSw R= A/P = 1,15x07 1.15 + 2x0.74 = 0,85 = 0.32m 2.63 n = for concrete surface = 0.015 490.91 = (0.32)2/351/2 0.015 S =0,91 x 0.015 = 0.029 0.466 S = 0.008 Head loss in strength of Length of 76m = 0.0008 X 76 = 0.06 Secondary Canal crosses river Decho at Chainage 3+000 FSL in Secondary Canal at its head = 1360.16 FSL in Secondary Canal at 3 km d/s = 136016 - 1.12 (Slope = 0.004) =1359.04m 2 Elevation Total Energy line = FSL + Velocity head =1359.04 + (0.46) / (2x9.81) = 1359.04+0.01 = 1359.05m Bed level of canal at 1-1 1358.30 Head loss in contraction between 1-1 and 2-2 = .006 Head Loss in trough = 0.06 Head Loss in Expansion = 0.009 Elevation on of total energy line at section 4-4 = 1359.05 - (.006 + 06+.009) = 1359.05 -0.075 =1358.975 Bed Level at section 4-4 = 1358.975—depth of flow = 1356.975 - 0.7= 1358.235 50The loss of head in expansion, contraction and trough is negligible. Therefore the bed level of channel before and after trough remains partially same. Through: The size of trough will be 1.15 x 1.05m assuming 30cm free board The walls of trough are propose as 0.30m thick to be constructed in Reinforced comment concrete (RCC), For small Channels of this size 0.30m free board is quite sufficient. - H------------- Joints should he provide across and along the trough length. The maximum spacing of joints in this direction should be limited to 20m. A gap of 15mm with water stops at all the joints across and along the length should be to accommodate movements. PIERS and ABUTMENTS Piers and abutments are proposed of stone masonry using 1:4 cement mortar. The recommended thickness of piers for span 5 to 6m is 0.85m Hence 1.0 thickness is recommended. Provide 1,0m thick pier from top to 1.0m below river bed level. The pier width shall be increased to 1.6m in two steps. Foundation concert of 1.0m is provided below the piers. A concrete base of 2.2m wide and 1 0m thick shall be provided at the foundation level. On the top, a cement concrete bed block of 0.2m thickness shall be provided, which will be projecting to 0.15m outside on all directions. The piers shall have semi circular nose and cut water radius of 0.5m I I I I 51R=0.5 <--------------------------------- ► 2.0 Note: All dimensions are In meter The width of abutment at scour level should be approximately 0.6 times the scour depth below FSL. The abutment shall stand the earth pressure of dry soil above the pressure gradient line and submerged soil below the line The width of abutment shall increase in step starting from 570 mm from the top and increasing to 1100mm at the top level of foundation concert of 600mm thickness Foundation concrete of 1800m wide and 600m deep shall be provided below abutment level. Depth of Foundation Norma depth of scour according to Lacy’s equation is R = 0.47 er ( f- 15 for river bed material) R= 0.47 (267.3') M'3 R = 2.59 Anticipated depth of soccer around pier = 2R = 2X2.59 = 5.18m The minimum depth of foundation below anticipated scour level should not be less than 1.0m or 1/3 of scour depth, which ever maximum 52Hence Depth of foundation below HFL -5.18 + 1.0 = 6.18m Level of foundation concrete will be HFL River -6.18m HFL of river is 1.2m above the bed level as observed at the site. Depth of foundation = 6.18—1.2— 4.98 Say 5.0m below bed level Wing wall The width of wing wall at scour level is taken as 0.4 times the scour depth below HFL. The top shall be provided with 0.20m thick coping width c.c (1:2:4) Provide 50mm diameter holes at of interval of 3.0m approximately. 53JI Fig 16. Aqueducts on Secondary canal 1 I I I I 54IX Inverted Siphon Out of the total cross drainage works, when the high flood level of the natural darin is higher than the bed level of the crossing channel 14 siphons are proposed. The structures mainly consist of inlet transition, circular barrel and outlet transition. a. Design Consideration i. The velocity of water in the siphon is kept greater than 1 m/s to prevent silting in the barrel. ii. Water surface at the enterance is kept about - (where V2 is the velocity in the barrel) or a minimum of 0.30m about the top of siphon barrel to prevent air entering in to the barrel. iii A minimum earth cover of 0.60m below drain bed level is provided iv. A trash screen is proposed to be instoled at the inlet to prevent the barrel from clogging b. Hydraulic Design 1. Cross Sectional area sizing The discharge formula controlled by orifice inlet is given by:- Q=cA7eiA Where Q= Discharge (m3/S) A= Sectional area of the pipe (m2) h= Driving head (m) C= Coefficient = 0.81 2. Head Loss i. Friction loss Friction loss in the inlet transition, barril and outlet transition can be determined by the average friction slope, using Manning’s equation and the total loss may be attained by multiplying the respective horizontal length.Where: - n - manning’s roughness coefficient V= Flow velocity (m/s) R= Hydraulic radius (m2/m) L= Horizontal length (m) Sf= Friction slope (m/m) Hf= Friction loss (m) ii) Minor loss • Convergence at inlet transition -m • Divergence at outlet transition • Barrel bend loss 2g Where : VI = Velocity at inlet V2 = Velocity at barrel V3 = Velocity at outlet g= acceleration due to gravity The Hydraulic parameter of all Siphons is calculated and the result is summarized as shown in the table below.Table IX-1 Hydraulic Parameter No Name of Siphon Discharge (m3/S) Pipe Diameter (m) Flow velocity in the pipe (m/S) Head loss (m) Number of pipe 1. CD5-P 2.49 1.05 1.4 0.25 Double 2. CD6-P 2.49 1.05 1.44 0.24 Double 3. CD7-P 2.38 1.05 1.30 0.22 Double 4. CD11-P 2.21 1.05 1.29 0.18 Double 5. CD16-P 2.00 1.05 1.15 0.15 Double 6. CD2-S1 0.765 0.90 1.21 0.18 Single 7. CD3-S1 0.65 0.90 1.10 0.12 Single 8. CD4-S1 0.65 0.75 1.47 0.29 Single 9. CD1-S2 0.773 0.90 1.22 0.18 Single 10. CD4-S2 0.555 0.75 1.26 0.22 Single 11. CD6-S2 0.418 0.60 1.48 0.33 Single 12. CD7-S2 0.30 0.60 1.10 0.17 Single 13. CD8-S2 0.221 0.45 1.40 - 0.36 Single 14. CD9-S2 0.221 0.45 1.40 0.36 Single> -Qoo< ^40 ) bj4o it i 81 1 i * - vtMtNILU___________ STONE PITCHING PRY STQME PITCHING C-20 CONCRETE NOTES: Section 1. ALL DIMENSIONS ARE IN MM . LEVELS ARE IN METER UNLESS OTHERWISE SPECIFIED 2. FOR PIPE DETAIL SEE -DWG No009 FEDERAL DEMOCRATIC REPUBLIC OF ETHIOPIA MINISTRY OF WATER RESOURCES COMrrftT ENGINEERING and consulting enterprise !$>, IN ASSOCIATION WITH CONSULTING ENGINEERING SERVICE ( INDIA ) PVT. LTD L— PROJECT- ERER IRRIGATION PROJECT DETAIL DESIGN TITLE: - INVERTED SIPHON STRUCTURE (TYPE 2) SURVEYED ] BY. DATE May 2009 DRAWN BY TOMASG SCALE DESIGN BY: S YADA.WN6H LEVEL DETAIL APPROVED BY; A.MEU0«STE DRAWING ERARR/CST-10Table: Original ground level 300.63 300.23 299.57 298.86 298.16 297.5 296.83 300.45 299,64 299.16 301.1 300.48 299.69 298.9 298.24 297.43 297 296.52 295.68 295.31 294.68 294,2 293.63 300.12 299 298.33 297.75 297.22 296.68 296.14 297.9 297.35 299,85 299.22 298.64 298 297.36 296.71 296.16 295.6 299.44 298.82 298.21 297.64 297.01 296.5 295.93 295.38 298.49 297.8 297.29 296.74 297.3 296.73 296.32 295.79 295.17 294.58 293.95 293.39 295.01 294.5 293.88 293 21 294,62 295.63 295.06 294.63 296.24 295.75 295.28 294.75 296.17 295.62 295.1 294.65 294.21 293.8 293 292 58 292.23 292.58 291.97 294.35 293.81 293.29 292.62 291.86 291.9 1 5032.77 25 125819 25 291.34 291.02 2 5028.09 75 377106.75 292 59 291.8 290.96 290.4 "3 5024.34 125 628042 5 291.1 290.29 4 5021.19 175 878708,3 294,17 293.73 293.26 292.71 292 291.19 290.4 5 5017.56 225 292.68 292.05 291.27 290.5 6____ 5012.94 275 298.54 297.95 297.38 296.8 296.23 295.73 295.29 294.87 294.4 293.94 293.64 293.39 293 292.38 291.74 291.1 290.46 7 296.81 296.22 295.69 295.21 294.76 294.36 294.3 293.93 293.6 293.11 293.98 293.59 293.3 293.05 292.57 292 291.34 290.76 290.12 8 1128951 1378558.5 5006.84 4999.01 325 375 1627223 1874628.8 293.41 293.08 292.82 292.53 292.13 291.55 290.94 290.33 289.73 9 4990.1 425 2120793Determination of the plane of the best fit Where, O=distance from reference line H=grid level n=total number of grids 48353914 £(W 64451916 (£d,)(2»= 48145360 94084375 70624375 (Eo.xxhJ /„ = 65137840 I c>: t MW'" I I IDetrmlnation of cut & fill Detrmlnation of cut & fill Q 0.911 0.781 P 0.511 0.301 0 0.081 -0.119 N -0.299 -0.529 M -0.739 -0.899 3 4 6th unit 8th unit M 298 297.64 M 297.64 297.22 L 297.36 297.01 L 297.01 296.68 K 296.71 296.5 K 296.5 296 14 J 296.14 295.91 J 295.91 295.48 3 4 4 5 Determina Determinati Centroid level= Centroid point is K&L. 3&4 595.64 594.37 593.21 59205 2375.27 296 90875 Centroid level= Centroid point is K&L. 4&5 594 86 593.69 59264 591.39 2372.58 296.5725 M 297.30875 297 10875 M 296 9725 296.7725 L 297.10875 296.90875 L 296.7725 296.5725 K 296.90875 296.70875 K 296.5725 296.3725 J 296.70875 296.50875 J 296.3725 296.1725 3 4 4 5 Detrmination of cut & fill Detrmination of cut & till M 0.69125 0.53125 M 0.6675 0.4475 L 0.25125 0.10125 L 0.2375 0.1075 K -0.19875 -0.20875 K -0.0725 -0.2325 J -0.56875 -0.59875 J -0.4625 -0.6925 3 4 4 5 9th unit 11lh unit Q 299.64 299.16 O 299.16 298.49 298.54 P 299 P 298.49 O 298.33 297.8 297.95 O 297.8 N 297.75 297.29 297.38 N M 297 22 296.74 297.29 296 8 M 296.74 5 6 598 8 597 49 596 13 595 04 593 96 2981 42 296.23 6 7 597 7 596 44 595 18 594 09 592 97 2976 38I I I I Determination of Formation level Centroid level= Centroid point is O, 5&6 298.142 Determination of Formation level Centroid level= Centroid point is O, 6&7 297.638 Q 298.642 298.442 Q 298.138 297.938 P 298.442 298.242 P 297.938 297.738 O 298.242 298.042 O 297.738 297.538 N 298.042 297.842 N 297.538 297.338 M 297.842 297.642 M 297.338 297.138 5 6 6 7 Detrminat Dctrmlnati Q 1.022 0.602 P 0.552 0.212 O 0.062 -0.158 N -0.248 -0.538 M -0.598 -0.908 6 7 12th unit M I I I I I I I I I I I I 593.96 592.92 591.89 590 74 2369 51 296 18875 296.74 296.23 L 296.24 295.73 K 295.75 295.29 J 295.26 294.86 6 7 Determination of Formation level Centroid lcvel= Centroid point is K&L. 5&6 Determination of Formation level Centroid level= Centroid point is K&L. 6&Z 592.97 591.97 591.04 590 12 2366 1 295.7625 M 296.58875 296.38875 M 296.1625 295.9625 L 296.38875 296.18875 L 295.9625 295 7625 K 296.18875 295.98875 K 295.7625 J 295.98875 295.78875 295.5625 J 295.5625 295.3625 5 6 6 7 Dctrmination of cut & fill Dctrmination of cut & fill M 0.63125 0.35125 L 0.29125 0.05125 K -0.04875 -0.23875 J -0.50875 -0.52875 5 6For the first two blocks 1st unit Table: Original ground level 3rd unit Q 301.1 300.83 P 30048 300.23 O 299.69 299.57 N 298.9 298.86 M 296.24 298.16 1 Determination of Formation level Centroid level= Centroid point is O, 1&2 J 601.93 600.71 599.26 597.76 596.4 2996.06 299.606 Determination of.Formation level Centroid level= Centroid point is O, 2&3 601.28 600.08 598.79 597.5 596 16 2993.81 299.381 Q 300.106 299.906 P 299.906 299.706 O 299.706 299.506 N 299.506 299.306 M 299.306 299.106 1 2 Detrmination of cut & fill Detrminati Q 0.994 0.924 P 0.574 0.524 O -0.016 0.064 N -0.606 -0.446 M -1.066 -0.946 1 2 2nd unit 4th unit M 298.24 298.16 L 297.43 297.5 K 297 296.83 J 296.53 296.32 1 2 596.4 594.93 593.83 592.85 2378.01 M 298.16 298 L 297.5 297.36 K 296.83 296.71 J 296.32 296.14 2 3 596.16 594.86 593.54 592 46 2377.02Determination of Formation level Centroid level= 297.25125 Centroid point is between K&L, 1 &2 Determination of Formation level Centroid level = Centroid point is K&L, 2&3 297.1275 M 297.5275 297.3275 L 297.3275 297.1275 K 297.1275 296.9275 J 296.9275 296.7275 2 3 Detrminatlon of cut & fill Dctrmination of cut & fill M 0.6325 0.6725 L 0.1725 0 2325 K -0 2975 -0.2175 J -0.6075 -0.5875 2 3 Sth unit 7th unit Q 300.45 300.12 Q 300.12 299.64 P 299.85 299.44 P 299.44 299 O 299.22 298.82 O 298.82 298.33 N 298.64 298.21 M 298 297.64 3 4 600.57 599.29 598.04 596.85 595.64 2990.39 N 298.21 297.75 M 297.64 297.22 4 5 599.76 598.44 597.15 595.96 594 86 2986.17 Determination of Formation level Determination of Formation level Centroid level= 299.039 Centroid point is O. 3&4 Centroid level= 298.617 Centroid point is F2, 4&5 Q 299.539 299.339 Q 299.339 299.139 299.117 P 298.917 P 0 299.139 298.939 298.917 298.717 O N 298.939 298.739 298.717 298.517 N M 298.739 298.539 298.517 298.317 3 4 M 298.317 298.117 4 5 »J 3th 15th unit Q 297.9 297.3 Q 298.54 297.9 P 297.95 297.35 O 297.38 296.81 N 298.8 296.22 M 296.23 295.69 7 8 Determination of Formation level Centroid level= Centroid point is O, 7&8 596 44 595.3 594.19 595.02 591.92 2972 87 297.287 P 297.35 296.73 O 296.81 296.17 N 296.22 295.62 M 295.69 295.1 89 Determination of Formation level Centroid level= Centroid point is O, 8&9 595.2 594.08 592.98 591.84 590.79 2964 89 296.489 Q 296.989 296.789 Q 297.787 297.587 P 296.789 296.589 P 297.587 297.387 O 296.589 296.389 O 297.387 297.187 N 296.389 296.189 N 297.187 296.987 M 296.189 295.989 M 296.987 296.787 8 9 7 8 Detrmination of cut & fill Dctrmlnation of cut & fill Q 0.911 0.511 Q 0.753 0.313 P 0.561 0.141 P 0.363 -0.037 O 0.221 -0.219 O -0.007 -0.377 N -0.169 -0.569 N 1.613 -0.767 M -0.499 -0.889 M -0.757 -1.097 8 9 7 8 16th unit 14th unit M 296.23 295.69 L 295.73 295.21 K 295.29 294.76 J 294.86 294.35 7 8 Determina Centroid level= Centroid point is K&L, 788 591.92 590.94 590 05 589 21 2362.12 295 265 M 295.69 295.1 L 295.21 294.65 K 294.76 294.21 J 294.35 293 75 8 9 Determinati Centroid level= Centroid point is K&L, 8&9 590 79 589.86 588.97 588 1 2357.72 294.715 M 295.665 295.465 M 295.115 L 295.465 295.265 294.915 L 294.915 K 295.265 295.065 294.715 K J 295.065 294 865 294 715 294.515 J 294.515 7 8 294.315 8 9Dctrmination of cut & fill Dctrmination of cut & fill M 0.565 0.225 M 0.575 0.185 L 0.265 -0.055 L 0.295 -0.065 K 0.025 -0.305 K 0.045 -0.305 J -0.205 -0.515 J -0.165 -0.565 6 7 8 9 17th unit 19th unit Q 296.72 296 Q 297.3 296.72 P 296.12 295.4 P 296.73 296.12 O 295.56 294.84 O 296.17 295.56 N 295 294.25 N 295.62 295 M 294.53 293.78 M 295.1 294.53 10 11 9 10 Determination of Formation level Centroid level= Centroid point is O, 9&10 594.02 592.85 591.73 590.62 589.63 2958.85 295.885 Determination of Formation level Centroid level= Centroid point is O, 10&11 592.72 591.52 590.4 589.25 588.31 2952.2 295.22 Dctrmination of cut & fill Dctrmination of cut & fill Q 1 0.48 Q 0.915 0.535 P 0.6 0.08 P 0 545 0.135 O 0.24 -0.28 0 0.185 -0.225 N -0.12 -0.165 -0.585 -0.67 N M -0.39 M -0.485 -0.855 -0.94 9 10 9 10 • i.-i J ’ ■ '27th unit 25th unit Q 293 292 Q 294.02 293 P P 293.43 292.42 0 292.84 291.84 N 292.32 291.33 M 291.82 290.82 587.02 585.85 584.68 58365 582 64 2923.84 292.384 292.42 291.43 O 291.84 290.87 N 291.33 290.38 M 290.82 289.87 14 15 I I I I I I 1 I I I I I I I I I 13 14 Determination of Formation level Centroid level= Centroid point is O, 13&14 Determination of Formation level Centroid level= Centroid point is O. 14&15 585 583.85 582.71 581.71 580 69 2913 96 291 396 Q 292.884 290.884 P 292.684 290.684 O 292.484 290.484 N 292.284 290 284 M 292 084 290.084 13 14 Dctrmination of cut & Fill Dctrmination of cut & fill Q 1.136 2.116 P 0.746 1.735 O 0.356 1.356 N 0.036 1.046 M -0.264 0 736 13 14 28th unit M ,290.82 289.87 L 290.36 289.33 K M 291.82 290.82 289.5 288.82 J 289.39 288 36 L 291.3 290.36 K 290.84 289.5 14 15 J 290.5 289 39 13 14 582 64 581.66 580.34 579 89 2324 53 Determination of Formation level Centroid level= 580.69 579.69 578 32 577.75 2316 45 289 55625 Centroid point is K&L. 14& 15Determination of Formation level Centroid level= Centroid point is K&L, 13&14 290.56625 Detrmlnation of cut & fill Detrmlnation of cut & fill 31 st unit 27th unit Q 291 290 P 290.45 289.4 Q 292 291 583 561.88 580 76 579 77 578 74 2904 15 290.415 O 289.89 288.9 P 291.43 290.45 N 289.39 288.37 O 290.87 289.89 M 288.87 287.86 N 290.38 289.39 16 17 M 28987 288.87 15 16 Determination of Formation level Centroid level= Centroid point is O, 15&16 Determination of Formation level Centroid level= Centroid point is O. 16&17 581 579.85 578.79 577.76 576.73 2894.13 289 413 Q 290915 290.715 P 290.715 290.515 O 290.515 290.315 N 290.315 290.115 M 290 115 289.915 15 16 Dctrmination of cut & fillDctrmination of cut & fill Q 1.087 0.287 P 0.737 -0.113 Q 1.085 0.285 O 0.377 -0.413 P 0.715 -0.065 N 0.077 -0.743 0 0.355 -0.425 M -0.243 -1.053 N 0.065 -0.725 16 17 M -0.245 -1.045 15 16 32nd unit 30th unit M 288.87 287 86 M 289.87 288.87 L 288.33 287.33 L 289.33 288.33 K 287.82 286.82 K 288 82 287.82 J 287.32 286.29 J 288.36 287.32 578.74 577.66 576.64 575.68 2308.72 288 59 16 17 15 16 Determination of Formation level Centroid level= Centroid point is K&L, 15&16 Determination of Formation level Centroid level= Centroid point is K&L, 16&17 576 73 575.66 574 64 573.61 2300.64 287.58 Dctrmination of cut & fill M 0.88 0.08 L 0.54 -0.26 K 0.23 -0.57 J -0.03 -0.87 15 1633rd unit 35th unit Q 290 288.73 Q 288.73 286.73 P 289.4 288.21 578.73 577 61 576.59 575.54 574 58 2883.05 288.305 P 288.21 286.3 0 288 9 287.69 O 287.69 286 N 288.37 287.17 N 287.17 285.58 M 287.86 286.72 M 286.72 285.23 17 18 18 19 Determination of Formation level Centroid levcl= Centroid point is O, 17&18 Determination of Formation level Centroid level= Centroid point is O, 18&19 575.46 574 51 573.69 572.75 571.95 2868 36 286 836 Q 288.805 288.605 P 288.605 288.405 O 288.405 288.205 N 288.205 288.005 M 288.005 287.805 17 18 Detrmination of cut & fill Detrmination of cut & fill Q 1.394 -0.406 P 1.074 -0.636 O 0.754 -0.736 N 0.434 -0.956 M 0.184 -1.106 18 19 34th unit 36th unit M 287 86 286.72 M L 287.33 286.25 286.72 285.23 K 286.82 285.8 286.29 285.32 17 18 574.58 573.58 572.62 571.61 2292 39 L 286.25 284.83 J K 285.8 284.45 J 285.32 284.04 18 19 571.95 571.08 570 25 569.36 2282.64Determination of Formation level Centroid level= Centroid point is K&L, 17&18 286.54875 Determination of Formation level Centroid level= Centroid point is K&L, 18819 285.33 M 286.94875 286.74875 L 286.74875 286.54875 K 286.54875 286.34875 J 286.34875 286.14875 17 18 Detrmination of cut & fill Detrmination of cut & fill M 0.91125 -0.02875 M 0.99 -0.3 L 0.58125 -0.29875 L 0.72 -0.5 K 0.27125 -0.54875 K 0.47 -0.68 J -0.05875 -0.82875 J 0.19 -0.89 16 17 18 19 37th unit 39th unit Q 284.5 283.02 Q 286.73 284.5 P 284.03 282.79 P 286.3 284.03 O 283.82 282.6 O 286 283 82 571.23 570.33 569.82 569.18 568.58 2849.14 284.914 N 283.6 282.41 N 285.58 283.6 M 283.35 282.29 M 285.23 283.35 20 21 19 20 Determination of Formation level Centroid level= Centroid point is O, 19820 Determination of Formation level Centroid level= Centroid point is O. 20821 567.52 566.82 566.42 566.01 565.64 2832.41 283 241 Q 285.414 285 214 P 285 214 285 014 O 285.014 284.814 N 284.814 284.614 M 284.614 284.414 19 20 IDetrmlnation of cut & fill Dctrmination of cut & mi Q 0.759 -0.521 Q 1.316 -0.714 P 0.489 -0.551 P 1.086 -0.984 O 0.479 -0.541 O 0.986 -0.994 N 0.459 -0.531 N 0.766 -1.014 M 0.409 -0.451 M 0.616 -1.064 20 21 19 20 40th unit 38th unit M 283.35 282.29 M 285.23 283.35 L 284.83 283.17 K 284.45 283 J 284.04 282.88 19 20 Determination of Formation level Centroid leve!= Centroid point is K&L, 19820 568.58 568 567.45 566.92 2270.95 283.86875 L 283.17 282.13 K 283 282 J 282.88 281.87 20 21 Determination of Formation level Centroid level= Centroid point is K&L. 20&21 565.64 565.3 565 564.75 226069 282.58625 M 284.26875 284 06875 L 284.06875 283 86875 K 283.86875 283.66875 J 283.66875 283.46875 19 20 Dctrmination of cut & fill M 0.96125 -0.71875 L 0.76125 -0 69875 K 0.58125 -0.66875 J 0.37125 -0.58875 19 2041st unit 4 3rd unit Q 283.02 282.29 P 282.79 281.9 0 282.6 281.57 N 282.41 281.39 M 282.29 281.25 21 22 Determina Centroid level= Centroid point is O, 21&22 565.31 564.69 564.17 563.8 563.54 2821.51 282.151 Q 282.29 281.63 P 281.9 280.9 O 281.57 280.56 N 281.39 280.35 M 281.25 280.21 22 23 Dcterminati Centroid level= Centroid point is O, 22A23 563 92 562.8 562.13 561.74 561.46 2812.05 281 205 Q 282.651 282.451 Q 281.705 281.505 P 282.451 282.251 P 281.505 281.305 O 282.251 282.051 O 281.305 281.105 N 282.051 281.851 N 281.105 280.905 M 281.851 281.651 M 280.905 280.705 21 22 22 23 Dctrmination of cut & fill Detrmination of cut & fill Q 0.369 -0.161 P 0.339 -0.351 O 0.349 -0.481 N 0.359 -0.461 M 0 439 -0.401 21 22 42nd unit 44th unit M 282.29 281 25 M L 282 13 281.1 281.25 280.21 L 281.1 K 282 281 J 281.87 280.78 21 22 563.54 563.23 563 562.65 2252.42 280 1 K 281 279.96 J 280.78 279.74 22 23 561.46 561.2 560.96 560.52 2244.14Determination of Formation level Centroid level= Centroid point is K&L, 21&22 281.5525 Determination of Formation level Centroid level= Centroid point is K&L, 22823 280.5175 Detrmination of cut & fill M 0.3375 -0.5025 L 0.3775 -0.4525 K 0.4475 -0.3525 J 0.5175 -0.3725 21 22 For the 2nd two blocks 1st unit 3rd unit J 296.32 296 16 I 295.79 295.6 H 295.17 295.01 G 294.58 294.5 F 293.95 293.88 23 Determination of Formation level Centroid level= Centroid point is H, 1&2 592.84 591 67 590.48 589.26 588.15 2952 4 295.24 Determination of Formation level Centroid level= Centroid porn: is H. 1&2 592 48 591.39 590 18 589.08 587.83 2950 96 295.096 J 295 74 295.54 1 295 54 295.34 H 295.34 295.14 G 295 14 294 94 F 294 94 294.74 1 2Detrmination of cut & fill Detrmination of cut & fill J 0.78 0.78 1 0.34 0.45 H •0.03 0.03 G •0.46 -0.36 F •0.74 -0.79 1 2 2nd unit 4th unit 587.02 585.56 5866 584.55 583.57 582.92 585.17 583.77 582.3 2923.64 581.42 2919 26 Determination of Formation level Centroid tevel= Centroid point is C. 1&2 292 364 Determination of Formation level Centroid level= Centroid point is C. 1&2 291 926 Detrmination of cut & fill Detrmination of cut & fill E 0.766 0.726 D 0.336 0.116 E 0.964 C 0.116 -0.294 0.984 D B -0.034 -0.724 0.354 0.564 -0.164 C A •0.844 -0.056 -0.026 B 1 2 -0.456 -0.666 A -0.606 -1.026 2 35th unit 7th unit Determination of Formation level Centroid level= Centroid point is H, 182 592.09 590.98 589.83 588.85 587 69 2949 44 294.944 Determination of Formation level Centroid level= Centroid point is H, 4&5 591.56 590.44 589.45 588.52 587.54 2947.51 294.751 Detrmination of cut & fill Detrmination of cut & fill J 0.716 0.686 I 0.356 0.336 J 0.679 0.579 H -0.034 -0 024 I 0.329 0.209 G -0.344 -0 294 H -0.031 -0.021 F -0.764 -0.634 G -0.301 -0.281 3 4 F -0.641 -0.521 4 5 6th unit 8th unit E 293.21 293.29 D 292 59 292.62 C 291.8 291.86 B 290.96 291.1 A 290.4 290.29 3 4 586 5 585.21 583.66 582.06 580.69 2918 12 Determination of Formation level 565 57 585.33 583 85 582 29 58069 2918 74 r•Centroid level= Centroid point is C. 1&2 291.812 Determination of Formation level Centroid level= Centroid point is C. 4&5 291.874 E 292.312 292.112 D 292.112 291.912 C 291.912 291.712 0 291.712 291.512 A 291 512 291.312 2 3 Dctrmination of cut & fill Detrmination of cut & fill E 0.898 1.178 D 0.478 0.708 E 0.916 1.106 C -0.112 0.148 0 0.446 0.736 B -0.752 -0.412 C -0 114 0.226 A -1.112 -1.022 B -0.674 -0.384 2 3 A -1.284 -0.974 4 5 9th unit 11th unit 590.91 589 81 588 93 588.1 587.33 2945 08 590.15 589.15 588.24 587 57 585.99 2942.1 Determination of Formation level Centroid level= Centroid point is H. 4&5 294.508 Determination of Formation level Centroid level= Centroid point is H, 687 294.21 J 294.71 294.51 I 294.51 294 31 H 294 31 294.11 G 294 11 293.91 F 293 91 293 71 6 7Detrmination of cut & fill Detrmination of cut & fill J 0.622 0.472 1 0.252 0.142 H 0.022 -0.108 G -0.238 -0.278 F -0 478 -0.408 15 6 10th unit 12th unit 586.39 585 39 584.05 582.46 580.9 2919 19 291.919 E 293.11 293 D 292 68 292.38 C 292.05 291.74 B 291.27 291.1 A 290.5 290.46 6 7 Determination of Formation level Centroid level= Centroid point is C, 5&6 Determination of Formation level Centroid level= Centroid point is C. 6A7 585.11 585.06 583.79 582.37 580.96 2918.29 291.829 Detrmination of cut & fill 0 861 0.891 Detrmination of cut & fill E D 0 491 0.661 C -0 019 0.231 B -0629 -0 349 A -1.219 -0 919 5 613th unit 15th unit Determination of Formation level Centroid level= Centroid point is H, 7&6 589.23 588.38 587.53 586.94 586.44 2938.52 293.852 Determination of Formation level Centroid level= Centroid point is H, 889 588.16 587 39 586.67 586 12 585.58 2933.92 293.392 Detrmination of cut & fill Detrmination of cut & fill J 0.518 0.208 I 0.248 0.028 H -0.012 -0.162 G -0.112 -0.252 F -0 162 -0 302 7 8 14th unit 16th unit E 293 292.57 D 292 38 292 C 291.74 291.34 B 291.1 290.76 A 290.46 290 12 7 8 585.57 584.38 583.08 581.86 580.58 2915 47 584 7 563.55 582.28 581.09 579.85 2911 47Determination of Formation level Centroid level= Centroid point is C, 7&8 291.547 Determination of Formation level Centroid level= Centroid point is C, 8&9 291 147 Detrmination of cut & fill Detrmination of cut & fill E 0.953 0.723 D 0.533 0.353 C 0 093 •0.107 B -0.347 -0.487 A -0.787 -0.927 7 8 17th unit 19th unit J 2938 293.24 I 293.41 292.82 H 293.08 292.44 G 292.82 292.24 F 292.53 291.89 9 10 Determination of Formation level Centroid level= Centroid point is H. 9&10 587.04 586.23 585.52 585.06 584.42 2928.27 292.827 586.454 586.054 585.654 585.254 584 854 2928 27 Determination of Formation level Centroid level= Centroid point is H. 10&11 585.74 584 97 584 24 58365 582 89 2921 49 292 149 585.098 584.698 584.293 583 898 583.498 2921.49Dctrmination of cut & fill Dctrmination of cut & fill J 0.473 0.113 I 0.283 -0.107 J 0.591 0.051 H 0.153 -0.287 I 0.371 -0.099 G 0.093 -0.287 H 0.191 -0.249 F 0.003 -0.437 G 0.191 -0.439 9 10 F 0 041 -0.649 10 11 18th unit 20th uni! E 292.13 291.4 D 291 55 290.92 C 29094 290.49 B 290.33 289.89 A 289.73 289.27 9 10 Determination of Formation level Centroid level= Centroid point is C, 9&10 583.53 582.47 581.43 580.22 579 2906.65 290.665 Determination of Formation level Centroid level= Centroid point is C, 9810 581.9 580.92 579 99 578 89 577.7 2899.4 289 94 E 291.165 290 965 0 290.965 290.765 E 290.44 290.24 C 290.765 290 565 D 290.24 290.04 B 290.565 290 365 C 290.04 A 290.365 289.84 .290.165 B 289.84 9 10 289.64 A 289.64 289.44 Detrmination of cut & fill 9 10 Detrmination of cut & fill E 0.96 0.26 D 0.68 -0.04 C 0 45 -0.34 B 0.05 -0.64 A -0 37 -1.01 3 1021th unit 23rd unit J 292.5 291.5 I 292.15 291.15 H 291.8 290.83 G 291.41 290.45 289.75 F 291 290 584 583 3 582 63 581.86 581 2912.79 291.279 J 291.5 290.5 1 291.15 290.05 H 290 83 G 290.45 289.35 11 12 F 290 288.95 12 13 Determination of Formation level Centroid level= Centroid point is H, 11&12 Determination of Formation level Centroid level= Centroid point is H, 12&13 582 581 2 580.58 579 8 578 95 2902.53 290.253 J 291.779 291.579 I 291.579 291.379 H 291.379 291.179 G 291.179 290.979 F 290.979 290.779 11 12 583.358 582.958 582.558 582.158 581.758 2912 79 J 290.753 290.553 I 290.553 290.353 H 290.353 290.153 G 290.153 | 289.953 F 289 953 289.753 12 13 581.305 580.905 580.506 580.106 579.706 2902 53 Detrmination of cut & fill Detrmination of cut & fill J 0.721 -0.079 I 0.571 -0.229 J 0.747 -0.053 H 0.421 -0.349 I 0.597 -0.303 G 0.231 -0.529 H 0 477 -0.403 F 0.021 -0.779 G 0.297 -0.603 11 12 F 0 047 0.803 12 13 22nd unit 24th unit E 290.5 D 580 579 578.04 577 575.93 2889 97 Determination of Formation level Centroid level= Centroid point is C. 11&12 289 5 290 289 E 269 5 C 289.5 288.54 288.5 D 289 B 289 288 288 C 288.54 A 288.43 287.5 287.57 B 288 11 12 287 A 287.5 286 51 12 13 288 997 Determination of Formation level Centroid level= Centroid point rs C. 12&13 576 577 576.11 575 574 01 2680 12 28S 012E 289.497 289.297 D 289.297 289.097 C 289.097 288.897 B 288.897 288.697 A 288.697 288 497 11 12 Detrmlnation of cut & fill Detrmlnation of cut & fill E 1.003 0.203 D 0.703 -0.097 E 0.988 0.188 C 0.403 -0.357 D 0.688 -0.112 B 0.103 -0.697 C 0.428 -0.342 A -0.267 -0.997 0 0.088 -0.712 11 12 A -0.212 -1.002 12 13 25th unit J 290.5 289.39 27th unit I 290.05 289 J 289.39 288 36 H 289.75 288.67 I 289 288 G 289.35 288.26 H 286.67 287.64 F 288 95 287.89 G 288.26 287.27 13 14 F 287.89 286.86 14 15 Determination of Formation level Centroid level= Centroid point is H. 12813 Determination of Formation level Centroid lcvel= Centroid point is H, 12813 J 289.681 289.481 1 289.481 289.281 J 288.634 288.434 H 289 281 289.081 G 289.081 288.881 F 288 881 288 681 12 13 579 89 579.05 578 42 577 61 576 84 2891.81 289 181 579.162 578 762 578.362 577.962 577 562 2891.81 1 288.434 288.234 H 288.234 288.034 G 288 034 287.834 F 287.834 287.634 12 13 577.75 577 576.31 575.53 574.75 2881.34 288.134 577.068 576.668 576.268 575.868 575.468 2881.34Detrmination of cut & fill Detrmination of cut & fill J 0.819 -0 091 I 0.569 -0.281 H 0.469 -0.411 G 0.269 •0.621 F 0.069 -0.791 12 13 26lh unit 28th unit E 288.5 287.5 O 288 287 C 287.57 286.57 B 287 286.06 A 286.51 285 56 13 14 Determination of Formation level Centroid levcl= Centroid point is C. 13814 576 575 574.14 573.06 572.07 2870.27 287 027 Determination of Formation level Centroid level= 574 573 572.14 571.17 570.19 2660 5 286 05 Centroid point is C. 13814 Detrmination of cut & fill Detrmination of cut & till E 0.973 0.173 D 0.673 -0.127 E 0.95 0 443 0 15 C -0.357 D 0.65 0.073 -0.15 B -0.667 C A -0.217 0.42 •0.967 -0.38 B 0 11 -0.64 12 13 A •0.19 -0.92 12 1329th unit 31 st unit J 288.36 287.32 I 288 286.93 H 287.64 286.59 G 287.27 286.22 F 286.86 285.82 15 16 Determination of Formation level Centroid level= Centroid point is H. 12&13 575.68 574.93 574.23 573.49 572.68 2871.01 287.101 575.002 574.602 574.202 573.802 573.402 2871.01 Determination of Formation level Centroid level= Centroid point is H, 12&13 J 287.601 287.401 I 287.401 287.201 J 286.54 286.34 H 287.201 287.001 I 286.34 286.14 G 287.001 286.801 H 286.14 285.94 F 286.801 286.601 G 285.94 285.74 12 13 F 285.74 285.54 12 13 573.61 572.79 572.09 571.36 570.55 2860.4 286.04 572.88 572.48 572.08 571.68 571.28 2860.4 Dctrmination of cut & fill Dctrmination of cut & fill J 0.759 -0.081 I 0.599 -0.271 J 0.78 -0.05 H 0.439 -0.411 I 0.59 -0.28 G 0.269 -0.581 H 0.45 -0.44 F 0.059 -0781 G 0.28 -0.6 . 12 13 F 0.08 -0.81 12 13 30lh unit 32nd unit E 286.5 285.42 D 286 285 C 285.57 284.67 0 285.11 284.17 A 284.63 283.72 15 16 571 92 571 570 24 569.28 568.35 2850.79 569 74 568 93 568.17 567 29 566 39 2840.52Determination of Formation level Centroid level= Centroid point is C, 13&14 285.079 Determination of Formation level Centroid level= Centroid point is C, 13&14 284.052 E 285.579 285.379 D 285.379 265.179 C 285.179 284.979 B 284.979 284.779 A 284.779 264 579 12 13 Dctrmination of cut & fill Dctrmination of cut & fill E 0921 0.041 D 0.621 -0.179 C 0.391 -0.309 B 0.131 -0 609 A -0.149 -0 859 12 13 33rd uni: 35th unit J 286.29 285.32 1 285.86 284.83 H 285 5 284.44 G 285.14 284 F 284.73 283.64 17 18 Determination of Formation level Centroid level= Centroid point rs H. 12&13 571 61 570 69 569 94 559 14 568 37 2849 75 284 975 570 75 570 35 569 95 569 55 569 15 2849 75 Determination of Formation level Centroid level= Centroid point is H. 12& 13 J 284.413 284 213 I 284.213 r 284 013 H 284.013 283 513 G 283.813 263 613 F 283 613 283 413 12 13 569 35 568 64 567 85 567 565.28 2839.13 283 913 568 526 568 226 567 826 567 426 567 026 2639 13Dctrmination of cut & fill Dctrmination of cut & fill J 0.815 0.045 I 0.585 -0.245 J 0.907 -0.173 H 0.425 •0.435 1 0.617 -0.203 G 0.265 -0.675 H 0 427 -0.403 F 0.055 -0.835 G 0.187 -0.613 12 13 F 0.027 -0.773 12 13 34th unit 36lh unit E 284.32 283.26 D 283.93 282.84 C 2283.5 282.44 B 283.12 282 A 28267 281.64 567.58 566.77 2565.94 565 12 564 31 4829 72 482 972 E 283.26 282 25 D 282.84 281.84 C 282.44 281.41 B 282 281 A 281.64 280.64 17 18 18 19 Determination of Formation level Centroid level= Centroid point is C, 13814 Determination of Formation level Centroid level= Centroid point is C. 13&14 565.51 564.68 563.85 563 562.28 2819.32 281.932 Dctrmination of cut & fill Dctrmination of cut & fill E 0.828 0.018 D 0.608 -0.192 C 0.408 -0.422 B 0.168 -0.632 A 0 008 -0.792 12 1337 th unit 39th unit J 284 04 282.88 I 283.61 282.73 H 283.41 282.14 G 283 282 F 282.64 281.64 19 20 Determination of Formation level Centroid level= Centroid point is H, 12&13 Determination of Formation level Centroid fevel= Centroid point is H, 12&13 J 283.329 283.129 1 283.129 282.929 H 282.929 282.729 G 282.729 282.529 F 282.529 282.329 12 13 566 92 566 54 565.55 565 564.28 2828.29 262.829 566.458 566 058 565.658 565 258 564.858 2828 29 564.75 564.33 563.4 562.84 562.14 2817 46 261 746 564 292 563.892 563.492 563.092 562.692 2817 46 Dctrmination of cut & fill Dctrmination of cut & fill J 0.711 -0.249 I 0.681 -0.199 H 0481 -0.589 G 0.271 -0.529 F 0 111 -0.689 12 13 38th unit 40th unit E 282.25 281.23 D 281.84 280.84 C 281.41 280.41 B 281 280.02 A 280 64 279 79 19 20 563.48 562 68 561 82 561.02 560.43 2809 43 561.34 560 59 559.81 559.15 558 7 2799 59Determinalion of Formation level Centroid level= Centroid point is C, 13814 280.943 Determination of Formation level Centroid level= Centroid point is C. 13814 279.959 E 281.443 281.243 D 281.243 281.043 C 281.043 280.843 B 200.843 280.643 A 280.643 280.443 12 13 Dctrmination of cut & fill Dctrmination of cut & fill E 0.807 -0.013 E 0.771 -0.149 D 0.597 -0.203 D 0.581 -0.309 C 0.367 -0.433 C 0.351 -0.459 B 0.157 -0.623 0 0.161 -0.529 A -0.003 -0.653 A 0.131 -0.549 12 13 12 13 41st unit 4 3rd unit J 281.87 280.78 J 280.78 279.74 I 281.6 280.5 I 280.5 279.5 H 281.26 280.18 H 280.18 279.16 G 280.84 279.81 G 279 81 278.84 F 280.5 279.43 F 279.43 278.54 21 22 22 23 Determination of Formation level Centroid lcvel= Centroid point is H, 12&13 Determination of Formation level Centroid level= Centroid point is H. 12813 J 281.177 280.977 J 280.977 280 148 1 280.777 279.948 1 H 280.777 280.577 279.948 279.748 H 279 748 G 280 577 280.377 F 280 377 280 177 12 13 562 65 562 1 561.44 560.65 559 93 2806 77 280.677 562 154 561.754 561 354 560 954 560 554 2606 77 279.548 G 279.548 279.348 F 279 348 279.148 12 13 560.52 560 559.34 558 65 557.97 2796 48 279.648 560.096 559.696 559.296 558 896 558.495 2796 4 8Detrmination of cut & fill Detrmination of cut & fill J 0.632 -0 208 I 0.552 -0.248 H 0.432 -0.338 G 0.262 -0.508 F 0.082 -0.608 12 13 42nd unit 44 th unit E 280.11 279.1 D 279.75 278.8 C 279 4 278.59 B 279 13 278.45 A 278.91 278.25 21 22 Determination of Formation level Centroid level= Centroid point is C. 13&14 559.21 558.55 557.99 557.56 557.16 2790.49 279.049 Determination of Formation level Centroid level- Centroid point is C. 13&14 557.35 556.88 556.52 556.26 555.91 2782 93 278 293 E 279.549 279.349 E 278.793 278.593 D 279.349 279.149 D 278.593 278.393 C 279.149 278 949 C 278 393 278 193 B 278 949 278.749 B 278.193 277 993 A 278.749 278.549 A 277.993 277.793 12 13 12 13 Detrmination of cut & fill Detrmination of cut & fill E 0.561 -0.249 D 0.401 -0.349 C 0.251 -0.359 B 0.181 -0.299 A 0.161 -0.299 12 13Q P O N M L K J I H G F E D C B A Hy Dx Hy.Dx 296.72 296,12 295.56 295 294,53 294.1 293.61 293.24 292.82 292.44 292.24 291.69 291.4 290.92 290.49 289.89 289.27 10 4980.24 475 2365614 296 295.4 294,84 294,25 293.78 293.25 292,83 292.5 292.15 291.8 291.41 291 290.5 290 289.5 289 288,43 11 4966.64 295.09 294.45 293.82 293.29 292.77 292.28 291.83 291.5 291.15 290.83 290.45 290 289.5 289 288,54 288 287.5 12 4950 294.02 293.43 292.64 292.32 291.82 291.3 290.64 290.5 290.05 289.75 289.35 28B.95 288.5 288 287,57 287 286.51 13 4932.75 293 292.42 291.84 291.33 290.82 290.36 289.5 289.39 289 288,67 288.26 287.69 287.5 287 286.57 286,06 285.56 14 4915.17 525 2607486 575 625 2846250 3082968.8 675 3317740 292 291.43 290.87 290.38 289.87 289.33 288.82 288.36 288 287.64 287.27 286.86 286.5 286 285.57 285.11 284.63 15 4898.64 725 3551514 291 290.45 289.89 289.39 288.87 288.33 287.82 287.32 286.93 286.59 286.22 285.82 285.42 285 284,67 284.17 283.72 16 4881.61 775 3783248 290 289.4 268.9 288.37 267.86 287.33 286,82 286.29 285.86 285.5 285.14 284,73 284.32 283.93 283.5 283.12 282.67 17 4863.74 825 4012586 288.73 288.21 287.69 287.17 286.72 286.25 285.6 285.32 284.83 284.44 284 283.64 283.26 282.84 282.44 282 281.64 18 4844.98 875 4239358 286.3 266 285.58 285.23 284.83 284.45 284,04 283.61 263.41 283 282.64 282.25 281.84 281.41 281 280.64 19 4823.16 925 4461423
🔊 Read Aloud
⏹ Stop
Summery
<
×
Summery