**‘
,„d l-M^’/yr respectively- A moderately conservative eoeffioent of volumc
viluc of 2 Om’/yr an be assumed for outline design purposes,
Ct»
The organic matter content ranges from 0.5% to 3.9% with the mean of 13 tests being 1 6%
The results show a reduction in organic matter content with depth (Figure A14). Ihese results
^dicate the stratum ts quite high in organic matter and may soil undergo decomposition with
nme Eleven samples were tested for mass loss on ignition which gave a range of 6.5% to
12.44 • with a mean of 10 4%.
Twenty samples were tested for the sulphate content. Ihese gave values ranging from 0 0001%
to 0.274% with a mean of 0.07%. The pH of five samples was taken giving a range from 5.3 to
5,9 with a mean of 5.6. This gives a Design Sulphate Class for the stratum of DS-1 and an Aggressive Chemical Environment for Concrete (ACEQ classification of AC-ls (ref 16).
YeUow/Grcy Chy/SUt
The Yellow/Grey Silt/Clay is generally dcscnbed as % a^atberrd basalt nconnd as a stiffytllovssh m/bnm slightfy jiruwlfy clayey silt".
The plasticity chart (Figure A2) indicates the material classifies as intermediate to high plasticity
silt/clay, with a liquid limn range between 50 and 56% and plasticity index between 28 and
34% Average, maximum and minimum values are presented in 'fable 10-2. Only three samples
were tested, so maximum, minimum and mean values should be created cautiously.
At the time of sampling (December 2009 to January 2010) the natural moisture content was
between 21% and 43° o, at about the plastic limn The moisrure content appears to increase with drpth (Figure Al) for the tests earned out However, may have been affected due to the time
typically 1 day) between excavating and sampling and then berwecn sampling and testing Aho
moisture content is likely to change seasonally.
Based on correlation between and the plasticity index. PI (ref 9). the plasticity’ indices test
results indicate a range of crincal effective angle of shearing resistance, y’em, from 25° to 2K
with a mean and median value of 27° and 2B° respectively. A moderately conservative value of
r cm - 25° and effective cohesion (c*) of 0 IcN/m can be adopted for outline design.
Pirtjclc size distribution (Figures A4 and A5). shows this unit to be highly variable, and with no measurement of gravel content recorded
N ° impaction tests or bulk density tests were undertaken on the Yellow/Grey Clay/Silt 'tratum froln ,hc dcscnprion of stlff sbghtly ph.tic to plastic day. it is likely to have a bulk dcnsit>’ » the range 1 8 Mg/m to 2.2 Mg/m’ (ref 10). A bulk density of 2.0 Mg/tn' can be
2
5
^fjpted for outline design.
° ne ' ane test, composing the average of a set of three results, was undertaken giving a ' hc« length of94kN/m» (stiff) (Figure A10). However caution should be taken as there is
’ F'
kN/m may be adopted for outline dcsjgn
J
Dr «ervam c \ alue of -28 and <
Compaction tests should be undertaken on tjus materia! poor ,o using ii as fill
I P4 SR0*C GeoK-eh Pm t 4)
1H
14-.•
H H'afrr &
J
J
From the description of a cobbly silty gravel, the material ts likely to have a bulk density in the range 1.8Mg/m •«> 2.0Mg/m> (ref 10). A bulk denstty of 1.9Mg/m may be adopted for outline design
The permeability of vtryjinf sands. jilts and clay silt laminate generally is generally of the order 10 4m/s to 10 ’m/s and the permeability of ckan jandi and sandgnvrl mtxtxns is generally of the order lOAn/s to 10 *m/s (ref 11). For design purposes a moderately conservative value of 1x10
^n/ may be assumed for this material
5
jFrj/A cred Bnsah
The highlv to completely weathered basalt is generally described as being recovered as
completely weathered basalt, recovered as a grey clayey silty sandy subrounded to angular
GRAVEL of basalt often with cobbles and occasionally with boulders
No tests were undertaken on this material therefore the following parameters have been taken from literature based on the description
The •/ of a gTanular soil is generally related to its density*. As there are no tests for this material it will be conservatively assumed the material is loose'. A conservative value of'0 «/ c> Etng)
r
l) 'a ”^f P’^nr
dam site area geotechnical parameters
11
J.J
II1
testing of selected and representative soil and rock samples from the dam site area *becn conducted by Addis Geosystems Co. Ltd (AGCL) using the WWDSE laboratory. In h >! the following in situ tests have been conducted in the drilled boreholes at the dam site:
1 . Standard Penetration Test (SPT);
• Falling head and constant head permeability tests in soil materials; and
• Single packer Lugeon tests in sound bed rock units
The sampling and methods of testing are desenbed tn Section 3.6. The tests results are provided
in Annex E and Annex H of this report
Based on the test results, pubhshed literature and prev.ous experience, interpretation of the tock .nd sod geotechnical parameters has been determmed for feasibly stage design purposes
1
At detailed destgn stage further testmg and confirmatton of these parameters wdl be required '
Summary Laboratory Test Results
A summary of the laboraton' test sample locations is provided in 'fable 11-1 and Tabic 11-2. In addition to rock core from boreholes, bulk samples of basalt and tuff from proposed quarry sites were collected for comparison and determination of suitability for rockfill. Three potential basalt quarry locations arc shown on Drawing UB/FS/GEO/10/02 (see Figure 3-5).
Summan laboraton test results for soil samples from boreholes and trial pits are provided in fable 11-3 and Table 11-4 respectively. Summary laboratory test results for rock core samples are shown in ‘fable 11-5, and for quarry’ samples in Table 11-6Wnl Drmmto R/piba.- rEfaafu, Mimitq o/V j' fr CEwy
Etbi^ian Siit Imi^on j«J Dfrinqt Pw.r
Table 11-1: Soil Sampling Details from Upper Beles Boreholes
Sample
L’BD 02
Sample Depth
0.600-80
2 50-2-80
4.00445
100 1.20
1.70-2.00
4.50 5.00
8.00-9.00
1.00 1 20
140185
2.80 3.45
4.60 4.80
1.20 1.45 6.31.00
L0O-4OO
6.30-700
9.00 9.50
1100-14 00
iyojlfi.25
21.30-22.30
2620-26 60
29 40-30.00
KH-l 45
10 00-1045
5.40-6.00
6 60 7.00
R00 10.00
ioo-ijL 2 90 -335
Sample Type
(D=disturbed,
U~Uodbturbcd)
S’mpleDc.criptio,,
_ SandvCUy-
_S»ndi CLAY~
SihvSwd^Gni^
Sandy CLAY~^
Elaycv SKF~
Srnd
Silty SandyGnwT
Glavey SILT
CobHv GRAVE! Cohbiy GRAVE!.
Clave-. Silt Sandy GRAVE].
Sih CLAY
Silry CL\Y
Silrx SAND
Cobbh GRAVEL
Sandy GRAVEL
Silrv CLAY
Silty CLAY |
Sandy (TRAVEL___ I
Sdr.- S-AXD
_
Cobble GRWEL I Sdry GRAVEL SitnGRAVEL
Table 11-2: Rock Sampling Detail, from Upper Beles Boreholes and Proposed Quarry
Site
Location
Sample ID
Sample Depth
Sam ok Description_______
1 65 2.25
Tuff __
Tuff ___
BH I HD 01
1305 1538
23.7? 24 03
26.10 26.30
33.00-33.20
Tuff _ ____
Basalt —
Basalt
lath Bank
BHUBD02
6.51-6.’5
_______ 13351141
Tuff . I
_
fuff -
Tuff ■—-—i
2245-22%
8.65494
BH UBD0”
Tuff ___
________ 13-10-13.34
Tuff
17.44 17.65
Tuff
Right Bank
BH UBD 05
r~i214 "7
Basalt
14.4 15.00
Proposed
tjuarrv sue
VPSQ 1
l’PSQ-2
Basalt
_
Surface expusurr
Basak 1
Tuff ___J
: Growth 1 (0
I iR F4 SR'M<
12H11-3: Soil iAbortiory tear results from borehole sample*
Grain size
B ore/io Jr Depth
Attctburg Limit
Classification
Dispersibility by
double
hydrometer
Method / pinhole
Sulphate content
extract (tom •oil (mcg/1)
Moiiture content
linear Shrinkage
Unit '
Weight
(gm/cc)
BH UBD 02 0.5 0.6
10 12
36.84 21.00
F.27 21 05
25-2.8 3547 1951
4.0 4 45
BHUBD04 1679
1.0-4.0
5 4 6.0
63-7.0
9.0-95
ND i (Pinhole)
NDtCPinholc)
38.67
37 64
20.85
Silts .Sandy Gravel
Clayey Silty Cobbly'
GRAVEL
Clayey Silty Cobbly
GRAVEL
Silty Cobbly
GRAVEL
Clayey Silty Sandy
GRAVEL
Gravelly Silty
CLAY
Dt (Pinhole)
ND i (Pinhole)
11.9-
1235
Clayey Silty Sandy
GRAVE
13 0 14.0
523)1
Gravelly Silty
CLAY
NDi (Pinhole)
17.8-
18.25
21 3-22 3
Cobbly GRAVEL
ND4(Pinhole]
& Gravelly SAND
Gravelly Silty
SAND
UH P4 SR04C Gcotcch Part 1 ;i)
121
14-May -11f rdrni/ DtwMvwirr Rp-Mr Afau/r, •fVttrr t* E^
Eibttf^n N7A Jrni^M Jltd 1)^^ f^.t
1 26 2-26 6 1
55
1266
45 23
16 61
Cobblv GRAVEL
—
NDi(Pinholc)
•
-
29 4-30.0
15.0 1
36 86
48 14
ND«(Pmhole)
-
-
-
♦
________________
BHUBD05
_
! 1.0 145
Clayey Silty Sandy
GRAVEL
, 4.0 L
11.32
818
1
76 5
Clayey* Silty
gravel
NT)j(Pinholc'l
-
•
20.66
-
| 29 3 35
1 ----------
95
16 11
103*’
6402
Cobbly Clayey Silty
Sandy GRAVEL
ND.(Pinhole)
633.3
3201
31 32
32.97
26.9
32.97
■
1
1
1 6.60-7.0
0 44
7.52
I 35.07
56 97
Cobbly GRAVEL
28.72
18.87
9.85
-
| 8 0-10.0
Fine Gravct=0 Ofi
-
Medium Gravel -3.13%
-
-
Coar*c Gravel—96.79%
GRAVEL
-
-
-
B!< I BDD6
i-----------
1.0-1.2
-
-
ND
56.05
36 38
•
23 38
-
-
1.7 2.0
-
-
•
ND
59.52
36 11
-
15 61
3.4 3.85
-
-
ND
34 38
27 84
-
35.7
4 5 50
8.0
15.93
76 07
-
Sand
-
-
-
-
-
8 0-9.0
00
242
3.27
94 31
Silty Sandy Gravel
-
-
-
-
•
-
-
-
-
-
-
-
-
IIIKTBD07
1.2 1.45
— "------ -
-
-
-
ND
107.95
44.12
-
-
35.7
r
2 8-3 45
-
•
-
•
ND
94 14
4432
49 82
-
-
17.64
|
46-4 8
-
-
l—l
-
ND
8330
30 41
----- —_ __
5289
•
-
14.20'Table 11-4: Soil iaburattiey test results from Lriisl pit
Fi
Iff
’
--U---B---D---P---t--- ""-------------------------------
UBDP2
UBDP2
liBDPJ
UBDPJ ~T UBDP4
UBDP4
(O-J.OO)
(0 40-0 40)
(0.40 2 00)
(o-o.as)
(0.05-2.00) I
(0-1 ao)
(t.ao-2.00)
(Cohesive AU)
(Colluvium)
(Colluvium )
(Colluvium)
(Residual Sail) I
(Tetrace Ge.)
(Terrace Ge.)
I Grain star analysis
1 Chy ?/.)
| Silt (%)
Sand (%)
27 50
4842
2408
32.00
31 37
3665
58 5
25.75
15.75
48.00
42 47
9.53
Gravel (%)_____________
Afterburg Limit
Ijquid limit (%)
Plastic limit (%)
7388
27.56
87.17
45.29
6220
4079
102.55
44.21
62.75
31.59
59 07
33.91
49 90
27.89
Plasticity Index (%)
Dispersion by Double
46.42
43.88
21.41
58.34
31 16
25 16
HOI
Hydrometer____________
ND
ND
Linear shrinkage (%)
".52
1697
NMC__________________ Compaction
12 11
.37.28
675
2426
22 73
MDD - 1.635
()MC = 22.50%
r Permeability (cm/»cc)
1.47 IQ 6
x
Parameter
UBDP5
UBDP5
(Colluvium)
(Colluvium)
Grain size analysis
CUyf.)
Silt (%)
Sand (%)
Gravel (%)
Atterbuxg Limit
(0-1.50)
4550
43.16
13.34
(1.50-250)
46 00
53.56
20.44
Liquid limit (%)
Plastic limit (%)
Plasticity Index f° •,
65.94
54 45
29.49
ND
53.60
2933
24.37
Dispersion by
Double
Hydrometer
Linear shrinkage
(%)
14 54
12 04
NMCf -j________________
2683
22.69
LB 1*4 SRQtC Gcotrch Part I J)
123
14 May-11Fei~±
ofE/hfta,
of 11 jfrr <* Emiq
Ettwpwi Silt Jfftp&M and DrxtJft l'w.1
Tabi le 11-'5: Rock laboratory teat remits from borehole aatnplea
Strata
iuic u .
Sample
ID
Depth of
sampling (m)
Water
absorpl
ion
o*y
density
(jj/cTn3)
Moianire
Content
(%)
Porosity
(%)
ucs
(MPa)
T
T
T
B
K
T
T
T
T
T
T
UBD1
UBD1
UBD1
UBD1
UBD1
UBD2
UBD2
UBD2
CBD7
UBI)7
UBD7
1.65 2.25 13.05 13 38
23.77-24 03
26.10-26 30
33.00-33.20
6.51-6.75
B.15-1341
22.65 2190
8.65 8.94
13 10 1334 1*44-17.65
128
1138
40.77
•
11.52
948
844
9.03
8.43
5.71
1532
1200
1296
1020
1307
1.972
1194
2.250
1159
2.378
1291
0.98
5.74
22.33
-
1.23
6.28
3.93
7.75
4.80 |
3.87
1 6
124
116
-
-
0.84
138
2.1
3.65
189
1.58
29.8
3.5
45.3
46.0
25 4
205
205
170
20.5
KNtal
25405^
156rji
-
•
-
-
-
___________
Xo/ft: T = Trf, B = Baja//
Table 11-6: Rock laboratory test results from qimrv samples
Sample ID
Dry Density Water Absorption
IJPSyiJBasak^ 71_______ 22)62
UPSy2 ffuff] *
2,155
’ olu-
9.00
Porosity (%)
0.63
17.90
Slake Durability
____ ---------------------
9W
99.34
Teat type
Sample ID ———-
UPSQ1 (Basalt)
UPSQ2(Tun)
Soundness loss In Sodium Sulphate \SH1O T-104
1%
__ ______ —
K^rcgate Crushing Value [BS 812 part 11(1)
17%
_----------
Ten percent fine valor tn wet ccodiaon (RS812p*rt 11'
230KN
H0KN__-J
1LJ Top Soil
Topsoil in the dam site lira is thin, typically 0.1 to 0.40m thick and occasionally absent II i« stiff dark brown to greyish dark sdtv CLAY to slightly sandy claycv SILT It is assumed that material will be stopped and removed poor to construction and therefore is not assessed further. No geotechfuc.il tests have been completed on this matrnal
11.4 Cohesive Alluvium
Cohesive alluvium is found along the Bdes
. ...
it ,
° floodplain and in topographic lows OI
. ..
...
plain land where vertisols have develuDrd h •« <4\
r krh
l I »i i t <*i
described as finn tn very stiff dark grey to dark
..
rr
sbghrh -sandy ^dyg«vdy, ,yCL.
a W(lt
d.^ j
S LTofblghplijocih.
The foundation beanng Qjndtjr of this materuj u bkd,....
unsurtable for .uppomng rockfil] dara
.Ihrvrum ha. been found to be non drspa,^ ind |
° ** lnd « “
UB F4SR(MCGer
arch 1 w
124
14-May11F^f* M"c"rf **
g.-n^*'’
10 U' rjj]ev
rt ^ ^um 7 RiVCr Te,nce D"PO"i,!l
bottom it is difficult to distinguish granular alluvium and nvcr terrace deposits and l ^C osc* of this investigation they arc grouped together. Terrace deposit has been
tOf * j « significant thickness along the slope of the nght abutment, encounter^
The material comprises variable sands and gravels and arc pencrall 1
*" **
Cfi.ll EL
w/
ww
J.'lAU, ptunbh clam
Filb.g / constant head permeability tests were condoned in thts unit summansed in Table I1-7. Results may be unreliable as thev do
k,
n. .
be
groundwater table and therefore in unsaturated soils.
Table tl-7: Falling and Constant Head Permeability Teat Results
°
* VaKles
“
n c the
Borehole
Depth (mbgl)
Strata
Falling bead permeability
K, m/sec
0.00 200
Cohesive alluvium
3.3x10'to 8.3x10'
0HUBDO2
200-4.45
Granular alluvium
1.1 x HP to 2.4 x 10'
0.00 2.00
River Terrace / Colluvium
1.5 x IO5
BHUBD04
5.50-7.50
River Terrace Deposit
7.9 x IO4 to 4.5 x 10'
18.80-21.50
River Terrace Deposit
3.6 x 10* to 3.6 x 10 J
0.00 3.35
River Terrace Deposit
4.1 x 10 *
BH IUD 05
6 50 8.00
River Terrace Deposit
33 x 10* to 3.1 x 10’
8.00 10.00
River Terrace Deposit
9.8x10’to 4.5 x 10*
BH UBD 06
0.00-200
Cohesive alluvium
7 9 x 1(P to 2.6 x 1CH
BHUBD07
4.00 5.85
Cohesive alluvium
5.6x10* to 1.7x105
The dam design will need to include an impermeable cut off through this material to prevent
excess leakage and flow, f urther investigation of the material is required to asses composition in more detail for dam shoulder slabiliry and seismic liquefaction p< conservative assumption for feasibility stage design is to assume that the material unsuitable foundation strata requiring removal and replacement with rockfill improve compaction
Colluvium/Residual Soil
*
Hie dim abutment slopes and reservoir slopes weathering and leaching products of the underlying processes The colluvium is described as yellowish grey stains slightly boulderv cobbly vcr) h Hfctenal thickness is considered likely to be
covered by the combined i’owckit,th’ 5
gmcntS
°Pe
^(
h p^sh ’*’"
br< 40
dense ,oclAY
to
&W SlLT
serial
but
^thappn^^
Pinicle sue analyses indicate the variable cotnpO!>^v to bc non d»pe»‘ve »nd geflewU' equal proportions of silt and clay, 1 he material
* SXUC Gentedi Pin 1 (I)
14 May 11
125DrfflCOTXrf
L’/fvjjtai n N74f AW*/
Minty rfV '*tr cF Eanji Fnyr.r
pcrmcabilnv, but dur to the variable nature of gravel content, the cut off beneath the da
should extend through this material
TufTRrdrock
Tuff is found at the Dam Site left abutment and in rhe Reservoir Area, it is moderate^
!tlQ
or strong greyish pink to grey slight to moderately weathered massive to ven' closely |oinr d
c
Ethic possibly agglomerate (basalt and tuff fragments) TUFF. 1 here arc occasional zones of
highly weathered weaker and more fracturrd tuff, and possibly also some layered differCncc? matrix and lithic composition resulting in weaker paler hiff
Table 11-8: Lugron Test Results
Borehole
Teat Depth
(mbgl)
Strata
Water prcBBure ten;
Luge on Vahic
2,20 ro 7 JO
Slightly weathered tuff
H
7.20 to 12.20
Slightly weathered ruff
3
Bll UBDOI
(lx ft AhutmrnTj
1120 to 17.21)
Highly wciuhcrcd tuff
60
1720 Io 2220
Highly wen tiered tuff
1
22.20 to 2’ 2>
Fresh ruff / basalt
40
27.20 to 32_2
Basalt
30
10.00 to 15.00
Highly weathered tuff
I
15.00 to 20.00
Fresh tuff
1 __ _______ _
20 00 to 25.0(1
Fresh tuff
1.
BH UBD 02
fDam Axis Center)
25.on to MOO
Frcih tuff
6
50,00 to 35.00
Fresh tuff
s
35.00 to 40.00
Fresh tuff
1
40-00 to 45.00
Fresh tuff
20 _______
45.00 m 50.00
Fresh ruff
4_____________-
1000 to 15.00
Mod. weathered tuff
15-00 to 20.00
BHUBD07
(Saddle)
Slightly weathered tuff
<1 J
20.00 to 25.00
25 00 tn 30 00
Basalt
<1 -
Basalt
<1 —
JCUXHo 3 MX)
Basalt
<1 -
Fourteen Lugeon tests have been completed in rhe tuff bedrock (Table 11 8), with value* ranging from zero to about 60 Lugeotu. Values do not correlate well with weathering grade although the highest value occurs in highly weathered tuff There is no apparent decrease in
l.ugeon value with depth The tuff therefore has generally Enw. occasionally moderate permeability properties with Utile leakage anoapaTrd through this strata
11jc Unconfmrd Compressive Strength (UCS) conducted core samples from boreholes t
02 and 07 w as found m range between about 17 and 46 MPa, classifying the material a* nuiiub moderately strong
VH F* SRtMC Grnrech Part I J ■
126
i4-M*y 11111
tuff is censored to be a suitable foundation matenal for an embankment rockfill dam for b«nng capacity and sliding resistance, but fitnher tnvesnganons are required to assess areas of h^hly hercd dW'ly ’O,nted mff m grC’ICr d',al1 Groun
12
1
geotechnical design issues
Th>< section identifies the key geotechnical issues affecting outluir
feasibility of’ * project
An outline dam design is presented in the Supplementary Report SR (MB Engmeenng • Storage P,m This includes some detailed geotechnical assessments, including dam shoulder slope ability analysis Therefore in the sections below this work is referred to but not repealed, and onh ., summan of these issues is presided below.
T
^2 ype
\ detailed discussion of the rationale for dam type is presided in the SR04B report. A rockfill embankment dam with an asphaluc clay core and cementitious grout cut-off has been selected f of the following reasons:
• The valley* profile is nor suited to a concrete arch dam.
• ’I’here is no nearby source of cement for a concrete arch, concrete gravin' dam or concrete face rock fill dam;
• Rapid drawdown of the reservoir could occur, which could destabilise the upstream shoulder of an earthfill dam or upstream clay seal;
• Rockfill may be more consistent and more plentiful than suitable carthfill matenals in the area;
• There is interpreted to be a plentiful supply of basalt nearby that would be the most suitable rockfill material in the area;
• Foundation strata (assuming superficial materials are stripped off) is predominandy incomprcssiblc tuff or basalt which will be suitable for a rockfill embankment dam;
• There may be an absence of a plentiful supply of suitable clay material in the area with which to form a clay core seal, and therefore an asphaltic core is proposed instead;
• An asphaltic core also has properties of self-healing and absorbing deformations, which could be advantageous if there are faults or rapid changes in geology beneath the dam thar could result in differential settlement; and
• Seismicity in the project area is low, but never-the-less, a (rockfill) embankment dam with an asphaltic core is one of the more robust designs against seismic deformanon.
Foundations
I ’unabtHti
found investigation work carried out as part of this feasibility study has identified a more
a ^Plcx and more variable underlying geology* at the dam site than was originally interpreted SurflCc capping alone, with the following features affecting the dam foundation design.
The left abutment predominantly comprises moderately strong ruff, but this is variable Wh occasional zones of weak tuff that is also often more closely jointed, due to cither: ft differential weathering (at vanable depth); (ii) differing composinon / layering within lhc tuff; or (iu) potential proximity to faults / zones of deformation.
Underlying the tuff at the left abutment is basalt; it is currently unclear if this is inclined P^alkl to the topography or sub horizontal as one or more layers, in uhich case it
14 May-11
129Ft4 M«y-i1• A#**"**
l.^
d
60 l up™. B»d
.lild, «, be ptrtneMr
jnd
”* =p«. ™,t of the b^
Lugoon .-doe,
,„ b.
„„ Ac
dunng (he prelimman- investigations testing was not possible.
Jhcrefore a series of pre-grouting water pressure fests should be earned out to confirm
foundation permeability values for injection grouting design. Consideration of foundation
sealing is likely to extend to a depth of about "5% of the dam height above foundation level
through exploratory holes
At detailed design stage an assessment is required comparing the nerd to prevent leakage with the cost of grouting, taking into account the location of underlying more permeable basalt and possible fault zones.
/J 7 Spillway Excavation and Design
The large dam options (A to C) require a spillway in a saddle to the left of the main hankment. whilst the lower Option D requires a spillway cut into the abutment slope on the
kftt.de of the crest
V.7;
SptfhHy (Optwuyl f0 Q
bedrock was found at approximately* 8m depth at the centre of the
dir faU 1X*S 31 ^°rC
lc 7
^ °^ ^bDO Above this depth there is about 6m of stiff high plasticity silty
P fofiie 1Uln CO^unum) overlying about 2m of stiff gravelly day (weathered bedrock). This rwbt^_ lo be consistent down slope on the downstream side of the saddle, or with
saddle
** VCrt1SO’s* but bedrock appears to be shallower on the upstream sk>pc of the
the^ j/ 0** flDm 8fn to about 19.5m is moderately strong to strong ruff From 19.5 to 28 5m
b lJltCrla'Cred and strong basalt, and below 28.5 to the base of rhe borehole at 35m is L bedrock rises to surface to the west (to form the hill separating the spiDway
14-Mav 11
135FrAra/ Dt.-eo.ran. s'W"® "■' U ar,r c" Evt&
lVr> JiTTjVfidi
PflJ/ft-*
from the dsun) bur geophysics suggest? that is it deeper to the cast, requiring additional
investigation in this area at detailed design stage
Excavation for the spillway will be easy in superficial deposits, but shallow side slopcs
IV: 3H maximum) will be required in the alluvial / vertisol clay materials. The clay marcrid^
will also be unsuitable founding or retaining strata with low shear strength> low bearingca
and high swelling and shrinkage potential and will be required to lx- removed from beneath
spillway channel or retaining walls
Excavation in ruff and basalt may be difficult, requiring explosives and steep channel sides cid be a turned of 2V:1 H or greater.
Groundwaler was encountered *t shallow depth in this area (between 2 6 to 12m, some readings possibly spurious), so provision for groundwater drainage should be included in thr outline design
12.7.2 Abrfiwti Stef* Sfufhtorj fOptww D)
To accommodate the Option D spillway into thr left abutment slope requires an approximarrly 30m high cutting that will be cut into tuft bedrock Eight meter high stage*- of 6V;1 II are assume with 4m wide berms. Detailed design requires further assessment of the rock mass and joint orientations
L2.fi Reservoir Water-tightness
Bedrock in the reservoir am comprises mostly Tuff (of gcoerallv low prrmeahilin') but also basalt and dderirc. with some palcosodl horimni observed. The basalt appears io he wrll- loinced and is likely to have higher permcabihtv thin the ruff In addition, faults through the area could represent high permeability flow paths. This would be significant if lhe topograph}' Eurrounding the proposed reservoir area could promote leakage of reservoir water into neighbouring nver banns. However, inspection of rhe topography indicates that nsk of leakage from ihe reservoir area should be very small, irrespective of the nature and distribution of [hr
basalt.
f ? 9 Oom Site and Reservoir Sfopr Stabffity
12.9. f P-ww Jrk Jiy*/
llir sitq^csi slopes at the dam site occur
• Al the upper section of the left ibunntm where there are detached blocks of lb*‘ appear to be susceptible to sliding and tb«r a evid „„ of searj creep
c
• At the Belts River jutt upmeam of the dam JUs where [hf m e flow, through a 11^""'
.
gorge. pamc.daTlv ds and p
a[ n. and
condition* for nun-fed crop cultivation (e_g better drainage, les* flooding and easier tdja
|
*
Be},
Costs for construction of amah (and drains and road /flood embankments) arc minimi^ adjacent material, including excavated channel material is used to the form the embankment bunds.
Most of the main and secondary canals will be located on vertisols. Vertisols arr dark coloured
mature sods, rich in swelling days strongly bonded to humic compounds Typically they show
deep mixing by vertical movement due to clay volume change and possess large contraction
cracks ind slickensides, they arc also called "black cotton soils” (ref 14). Vertisols tend to
develop from rocks such as basalts and are typically found in the lower parts of the landscape
as a result of the concentration of base carinns in such areas which promotes (he formation md stability of smectites clay minerals (ref 15).
The engineering behaviour is dominated by the volume change exhibited by the smectite clay
minerals when subjected to changes in moisture content. When lying above thr water table,
these days show a high degrer of shrinkage on drying. When wetted they swell and heave,
exerting high pressures. When dry, vertisols are extremely hard and when wet thev become
extremely sticky Vertisols display low to moderate permcabdity, moderate to high
compressibility and low io high strength, depending on the moisture condition and soil stress
histon They may also be dispersive fref 14).
Large heave movements result when desiccated soils rich in smectites arr wetted due to rainfall and / or irrigation. A change in surface evaporation, such as results from creating a sealed road surface, would be sufficient tu cause such movements
Mos! heave problems occur within the upper zone of about 1 to 1.5 m below the surface I lowever, the depth in which shanking and iwrlling can occur may extend to over 6 mm semi and regions. Typically swelling pressures up to 240 kPa may be generated (ref 14).
It is difficult to predict the heave ur settlement of these materials as it is strongly influenced by the stress history and stmt level at which the change in effective stress occurs (ref 13). 1° addition, large fissures are present tn the clay in situ that are not present in the laboratory sample, and so the amount of heave and the expansion pressures measured in the hboratoP irt liable to be overestimated. To accurately determine the behaviour of these marcnals, near full scale mils at the appropriate stress levels are re^uned. for example by the construction of embankment* (ref 13). This should be accompanied by careful settlement momtonng during and after construciion.
Iughr Structures supported in the zone of seasonal changes tn moisture content are thus susceptible io damage Heave can also cause seven: damage to mad pavements and damage to lined irrigation canab (ref 13).
I rp P4 SRlMt: f ■ch Pjit I (1)
B0
jj-Mav-H^tcd shrink and swell behaviour of these days, has the effect of re orientating and
‘ the pbt}’ clay minerals, which results in the development of polished shear surfaces
th Io* residual shear strength. The peak shear strength (•/) of smectites is typically 15° to 2(T
Xl the rcs,dual *hCar 5UCngth (? f> tyPICaUv 5° to H° (rcf B)
fhe design of mam and secondary canals, drains, flood and road embankments and associated ffuctures therefore need to consider the following'
• For slopes above about 2 m height, sufficiently shallow sides slopes to cuttings and embankment? to achieve an adequate factor of safety against deep seated slips through the low strength underlying vertisols.
• Where possible, designs need to be tolerant to differential heave and settlement
• Foundations need to be taken deep enough to limit the effects of heave Placement of of a suitably compacted non-swelling fill material beneath and behind foundations, avoiding placing foundations directly onto vertisols, is recommended
• 7o ensure all-weather serviceability, plastic clays (liquid limit greater than 70%) should be avoided immediately below the road surface, and earthen roads need to be improved bv the use of a well graded gravelly soil sub base usually at least 150 mm thick.
■ If considered necessary, such sods may be treated with lime or cement to reduce plasticity or can be replaced with better quality soils.
£* 12 Canal Embankment Earth fill Materials
The ground investigation has identified that the reddish brown sdt/day soils have a more favourable strength and swell characteristics than the vertisols. It is therefore recommend that where possible the reddish brown silt/cliy materials ire used as fill materials in preference to the vertisol unit for the main and secondary canals, and also for the major drain and flood embankments and for roads
It should be noted chat when swelling residual soils are placed as fill, their original structure is Largely destroyed and then* behave in a more conventional manner. However, their original characteristics may still have an effect (ref 14). In some expansive clay soils, the amount of heave can be significantly reduced if the soil is compacted at high moisture contents, higher than optimum moisture content Shear planes can develop at the interfaces between compacted “ytrs, particularly those with a liquid limit greater than 50%. To prevent this occurring, the two lasers need to be compacted with machinery that allows them to key into each other.
'U’thcr ground investigation and laboratory testing is required at detailed design stage to entify suitable borrow areas and to ensure optimum fill characteristics In particular, the
VlnOus Ponies of the compacted fill (including strength, compressibility and permeability) nCCd lo ** determined for detailed design, earthworks specification and compaction control
L^G
14 May-H
139fl/ >W &Ewrgy Fjh$pi4’t Njfr jmgjfj’eri Prar«^r Ppjjft*
J2U Command Arra KocWitf Maierafc
In the Command Irrigation Area, rockfill of various sizes is likely to be required fOr (lle
fallowing uses
• As structural fill below structures where footings arc founded on clays or behi
retaining walls To reduce pore water pressures;
• As sub-base and road base material; and
• As aggregate m concrete
’Hie most extensive area of rock outcrop is basalt exposures located along the alignment af i|
right bank main canal between the right bank off take weir and the town of Jawi The basalt provide suitable rockfill matcnal I iowever. the Belts Command Area is very* large and
therefore alternative sources of rodcfiD quarries will nerd to be located along the route uf the main canals based on more detailed mapping and investigation.
Both basalt and dolente should provide suitable rockfill materials, Rock outcrops have been identified throughout the command area, often in stream beds and valleys, and there will be additional localities where rock is at a generally shallow depth beneath superficial deposits In addition, die basalt escarpment to the cast will provide suitable rock fill materials Tuffs that art found interlay cred with the basalts may nor be suitable for rockfill due to the potential vanjtion tn strength of matrix and lithic fragment*, and in this case basalt is the preferred rockfill material
At the southern end ot the ennunand area arr metamorphic rocks. Some, such as quartzite should be suitable for rockfill, but ntheri, such as schist may nor br mil able due to the cleaved and foliated nature of the roclc
12.14 Cifijtl LcikAgr xorf Lining*
There is potential for relatively high secondary permeability where the canal is located on cop Dt bedrock, and canal lining along these urea* should be assumed al nutlinr design stage, to be confirmed at detailed design stage
Estimated permeability ui the sod units vary from approximately |0 * ta 10" m/s G able 10 3) The higher permeability wjiIs. colluvium, arc located al die nnnh eastern end of the project at the start of the Right Bank Main Canal and akrag the first section of die Left Bank Mafr* Canal, and * Inunjt may be required for long sections of both Mam Canal should culTusiu®1 encountered.
The clay straw have a low matcnal permeability. but where deep clacking has occurred in the vertisols unit, a high secondary permeabihn may result. Water loss through such cracks is dependent on the following:
. The mterconnecmnty of cracks, if cracks arc separated and not connected uaiet lo” will be reduced
. The aperture of the cracks, whether they are mfilled with material, and their *UiUry to heal (seal) up« in wrning.
R F4 SK04C Gccu-th Pi*t » C )
1
Hfl
]^xuy-llv* ■
. Whether the canal is maintained sufficiently wet that ,
L
develop to begin with.
M helled «*<> not
« Whether cracks arc of sufficient permeability water vel^« «-
5
otl sufficiently dispersive that p ftjhw'^
lpiag
For the purposes of outline destgn, it b recommended that the main and se
condary canals a
n ot constructed from the Verttsoi unit, but from the redefrsh brown day / s
Jt "ned
i malcnal
from borrow areas.
*
To limit any crack development (unlined) canals should be kept “wet’’, ic with some water i the canal prism, and that filling of rhe canals at the onset of the main irrigation (dry) seJon" should be done slowly and with care to avoid leakage and embankment breaching.
Canal maintenance where cracking does develop should be by reworking the clays to fill m cracks, preferably with muing with more granular soils to limit fiiture shrinkage and crack development.
Hard surface (le concrete) lining of vertisols will crack and fail and is not recommended Flexible lining with geomembranes will be subject to stgnific.nt stress but will accommodate some movement of the subsoil without failure, dependmg on the quality and properties of the geomembranc. However unprotected gcomembranes will not last many years being vulnerable to sunlight, livestock and persons entenng rhe pnsrn, theft and coarse bed sediment.
14-May II
141p,vta
CONCLUSIONS AND RECOMMENDATIONS
13 c^dggioas ' G<°'Ogy *nd Geo,echnicg
& Hrt5>biliry level ge..technical investigations combmed wuh a renew of prevrous wnrk amj reconnaissance geological mapping has been completed There are no previous site
.nvestig.no'” found for these localities. The following geolog,- i, .denufied m the project area
. The dam site and reservoir area bedrock generally comprises Tertiary age interlayered moderately strong lithic and agglomerauc tuff and strong aphanatic basalt, with some dolcritc intrusions;
. There is some unresolved variability in these units along the dam iris with potential for the presence of faulting through the dam site. The left abutment predominantly comprises tuff overlying basalt, tn the centre of the dam site valley tuff is found to a depth of 50m and hasalt is absent, whilst on the right abutment the bedrock appears to compose basalt, and luff has not yet hern found;
• The tuff generally has low permeability but both the strength and permeability is vanablc dur to: (i) differential weathering (that is not related to depth); (ii) differing composition / layering within the tuff; and fin) closely jointed zones;
• No faults have been positively identified but geophysical data combined with photo hneimcnt assessment indicate potential for feature orientated SW- NE. along the nver valley and perpendicular to the dam axis;
• Superficial deposits comprise cohesive and granular alluvium in the nver valley, and colluvium and nver terrace deposits on the abutments Superficial units are thin on the left abutment but very thick on the right abutment (10m at the top of slope, more than 30m on the lower half of the slope;
• In the Irrigation Command Area bedrock composed Ternary basalt and dolentc under most of the area with Precambrian basement metamorphic rocks (schist and quartzite at the southern end of the Command Area; and
• The Command Area is predominantly covered tn high plasticity swelling vertisols with reddish brown silty clay forming slightly higher ground; there is also often a well developed wrathenng profile of highly and completely weathered basalt residual sods recovered as vanable gravelly clays.
An estimation of the geotechnical parameters and characteristics of each soil and rock unit has ^cn made to support die feasibility stage designs. The key findings are.
* A rockfill dam with an asphaltic core is appropriate, using basalt rocknll taken from hilltop quarry' sites located about 2 to 3km from the dam site,
The basalt is a much more suitable rockfill material than the tufi,
• Reliable sources of suitable days, sand and gravel are not available in the dam site area lnd wdl need to be imported from outside of the area or produced from crushed
basalt;
Alluvial and colluvial clays beneath the dam footprint will need to be removed;
’ For higher dam Options A to C. it is assumed that the thkk deposit of granular terrace ^d and gravel beneath the nght abutment will also need to be removed due to the Potential for liquefaction;
Pin l i)
14 May 11
(
143JvifrnA1
Afrarity a^lFdrn’ £uEw^
Efhofu-ir A'r/f /nqpMfl antiDrwup Pnwtf
Tuff and basalt bedrock beneath the dam, together with any fault zones Dr
dolcrite
dykes intersected is likely to require grout injection treatment to reduce the permeability and leakage potential
Buried features idendbed by the boreholes and geophysical survey beneath Mam axis require investigating at detailed design stage and may require addition,|
and replacement,
Where the Main canals cross rock canal lining should be provided to
leakage;
The Main canals cross colluvial soils and vertisols On vertisols, if these are not
“ Clv»Hon
prevent ex
f°r 20 m drauxlown, but are very variable
groundwater quality as determined from analysis of water samples from three utils in the ( Ormand Area is generally within the allowable limits set by the WHO and Ethiopian
primes for po!.bku*atcr
gised on existing and projected rural and urban populations the demand for water based on 15 I yj per capita for the rural population and 25 1 /d per capita for the urban population is 2.78
1
Mm’ (2010) and expected to increase to 4 16 Mm (2030). This is equivalent to a 24/7 flow of 0.W rn’/s and o 13 m’/s respectively.
Groundwater flow from the protect area is likely to approximate at least the baseflow (i.e. April monthly low flow) of 1.4 m’/s measured in the Main (Enat) Beks river at the bridge near the southern boundary of the project area, lhe total groundwater resource may however be significantly more than this The projected potable water supply demand of O.Bm’/s is about
y»of the baseflow.
In theory the protected potable water supply (and sugar factory) demand could lx- met by sinking productive tubrwells though out rhe projeer area However this faces rhe following uncertainties / problems:
• The extent of productive aquifer (ie, presence of w-eathcred and fractured basaltic rocks and unconsolidated sediments / river and stream deposits ). which would
support yielding boreholes remains uncertain and can only be determined by additional survey including test well drilling in the project command area;
• Demand by the rural population ls scattered in small settlements and isolated homesteads, and
• Demand by the urban population is concentrated in the main Worcda settlements, including \X’erk Mcda, Fendika and Pawi
l<> meet future potable water supply demand, including water requirements of the sugar factor, 2 lnu potable water supply solutions is required to replace the current widespread use of
streams and unprotected spnngs and shallow* wells. The mix is likely to include:
Reasonably sized potable water supply systems for the major urban areas as well as for ihc sugar factory’, wbcrebv water is diverted from streams / rivers flows, treated and P’pcd to the point of use with intermediate storage as required As a proportion of the flow required for irrigation any surface water diverted for factory / potable water lu Pply use will be negligible (<1%) Specifically it is envisaged chat the sugar factory
divert and treat waler from the Main (Enat) Beks river upstream of the proposed factory location;
Boreholes 20-60 m deep of various sizes with (hand) pumps serving single homesteads ° r dua* «eS5
’ On
14M
14-AUv HREFERENCES
14
-jgjfcnInstitute of Geological Surveys (RIGS), 1996. Geological Map of EthiopuTz^EditK^
I
, n 000 00° 5Clle’______ -—------------------------------------------------------ ------------------------------ ------ 1998, Hydrogeological Map of Ethiopia, 1:2,000,000 scale,
ElG5« ’ '__ —_----------------------------------------------------- -- ---------- - ---------------- --- ElGS 1999 R’tPbnilt,on of GeoloPcil1 MaP of Ethiopia, 2nd Edition
glGS |9RS Explanation of the Hydrogeological Map of Ethiopi
>ia
J
Tb( F0M, 1997 / 1998 / 1999. Abbav River Basin Integrated Development MasteTpian Protect Phase 1 Reconnaissance, Section II - Sectoral Studies, \ olumc II - Water Resources. Part ’,
And Reservoirs, Geology. Geotechnics, Field Investigations.
[JlfD- •**
b) Phase 1 Reconnaissance, Section III Vol. I Natural Resources Part 1, Geology & mineral Sources. VoL II Water Resources Parr 3 I lydrogeology
[ (j phase 2 Data Collection and Site Investigation Survey and Analysis: Section 1 - Main Report, Summary Development Strategics and Scenarios. Section II Sectoral Studies, Volume I - Natural Resources. Pan I: Geology, Morpho-lithoiogic and Morpho-structural 1:250,000 maps VoL VI Uircr Resources Development Part 3 Hydrogeology.
6 SMEC International Pty Ltd. 2008. Hydrological Study of the Tana Bdes Sub Basins. Main Report
?
BSI3~ 1975. Methods of test for soils for civil engineering purposes. British Standards Institute Note, has been superseded by 1990 edition).
3
t BS593O 1999 Code of practice for site investigations British Standards Institute.
BS8HO2: 1994 Code of practice for earth retaining structures. British Standards Institute. HO Tomlinion, MJ. 1987. Pile Design and Construction Practice, 3rd Ed. Palladun Publications Ltd.
Craig, R.F., 199", Soil Mechanics, 6th Ed. E & FN Spon
• Tomlinson. M.J., 1995, Foundation Design and Construction, 6* Edition, I.ongtnan
0 Neill, MW' & Poormoaycd, N., 1980. Methodology for Foundations on Expansive Clays, Proc. ^CE, Journal ofGcotcduiical Engineering, 106. GT 12, pp. 1345-1367.
14
F°ok« P. G (ed.), 1997. Tropical Residual Soils. Geological Society Professional Handbooks
G 5f2P?lSoacty London^
r
____ __________ ______________________________________
Rfev” G M e» >1 (ed.) 2006, Clay Ma tends Used in Construction Geological Society, Undon, S P£“1 Publication 21.
-„ *' ~ ^P00*! Digest 1 Concrete in Aggressive Ground, 3* Edition.
y—. ^
n
on R. 1988. Field Hydrogeology. Geol Soc of I-ondon Handbook Series. OL press.
115
^Qnental consults. Ethiopian Guideline Specification for drinking water quality, Addis Ababa,
! ° K«-A^taT“~-------------------------------- -- ------------------------------ 7----- 7-----------------------
I
tri8gahKoo, Wat Ju, \X aterc pr powowere an r and Wat d Watere Rr Rese. Es. Enngiginneeereirning, 2002 g, 2002
tT1
at
S p f ' ~ ~——■
j( -T”?GrOu,ld water andWa tu(cbre an wedl tlsu, tbhe wirde cllsd, tioon hir, 199’ d edition, 199”
~~ "- H}B59/9g/j Ground water flow geohydrology IME Delft the Netherlands
1,1 Hr,,
* r
Part 1
14 May-II
(])
149Fftfa; lifaf&nfrr
Mimity •■''ETjflrr
fr/Aw/fcW jVZ‘> Jn^pfiwr murf /)i'3jragr‘ iP^TW^K'**** -^'0
\ii /’’’?*”
ANNEXES
XS\/WlTH MAIN REPORT)
pARTJytJ^
| ANNg^
,aNNEX?
ANNEX C=
prOIECTAREA PHOTOGRAPHS
C_
COMMAND AREA GEOTECHNICAL PARAMETER PLOTS
da m site GEOLOGICAL MAPPING OLTCROP AND JOINT
OBSERVATION POINTS
asM-xD -
PRELIMINARY SEISMIC HAZARD ASSESSMENT
part 2 OF 3
annexe
dam site drilling investigation final factual REPORT, ADDIS geosystems CO LTD J ANGARY 2011
aNNEXF-
\SNEX G:
.
DAM SITE GEOPIIYSICAL SURVEY FINAL REPORT. JANUARY 2011
DAM SITE SLAKE DURABILITY PHOTOGRAPHS
ANNEX H I:
TRIAL PIT LOGS DAM SITE AREA
[ANNEX HI
TRIAL PIT PHOTOGRAPHS DAM SITE AREA
I ANNEX HJ
I AB TEST RESULTS FROM DAM SITE TRIAL PITS
PART 3 OF 3
ANNEX I:
RIGHT BANK MAIN CANAL DRILLING INVESTIGATION FACTUAL REPORT ADDIS GEOSYSTEMS CO. LTD, DECEMBER 2009
ANNEX J;
RIGHT BANK WEIR GEOPHYSICAL SURVEY REPORT
ANNEX KJ:
TRIAL PIT AND HAND AUGER LOGS: COMMAND AREA
.ANNEX K2
TRIAL PIT AND I LAND AUGER PHOTOGRAPHS: COMMAND .AREA
ANNEX LI
IAB TEST RESULTS FROM TRLAL PITS: STAGE 1 COMMAND AREA
.ANNEX I..2-
1 AB TEST RESULTS FROM TRIAL PITS: STAGE 3 COMMAND AREA
ANNEX L.3:
IAB TEST RESULTS FROM TRIAL PITS STAGE 4 & 5 COMMAND ARFA
ANNEXE
SOIL HYDRA UIJC CONDI ACTIVITY MEASUREMENTS
axnexn
GROUNDWATER QUALITY TEST RESULTS
AXN EXO:
PREVIOUS GR( 3UNDWATER WF.IX Cl )MPI.E DON REPORTS
i. I GUIDELINES FOR TESTING AND MONITORING GROUNDWATER WEI.1SFfdtrui Dawnfu fLrfrcpw. Afw/fn ^Fi/rr jw/ E*T EjLwpwi NiJr I axd Dnruqgf Prytrfproject aheaFcdtrd Drjvayu/). Elhupta. Mtwfn of VFafer & Ewjp Errvcpiai \t/t Irritate* a*d Dump PtyrrtPlate 2 Blocks nt tuft at clam site left abutment centering at LTM 2611 81* & 12935'MN
K«c3 Blocks of Tuff at the dam site left iDutmrnr
Plate 4 Massive Tuff at the dam site left abutment at UTM26I226E& I293625N
atf-r-x
site found
Plate 6 CnJoaduig drilling ng
f 264053E^ 1292517NPlate 7: Dismantling drilling ng pari* for
Plarc 8; Transporting drillrng ng parts
irmsp< >rting using labour
Plate 9 Camp setting for drilling at drilling site
Plate 10. Pu raping water from Mam Bek* Riw* *'
I
ilnUing
Plate J I: Drilling il UBDHllefi bank central
PJair 12. Falling head rest LIU >112
river valleyPlate t5i Agglomeratic / lithic ruff forming low rxmded hdls (probable basalt ndgc at higher dm&in m background) View westward from *.am Nte
area, left side of gorge
pt,,. IS: B..JI fc-nwg >«p
* mf!
nonh.
“'“b"'Plate 19; Tuff outcrop above rcscivoit area
Flair 22 Dolentc dru Dam Site
side of gnrjv
Place 21 Ba*ah sill with palcosoil above cuff, reservoir area
Place 25 Smoothed hills likely to indicate residual soils and colluvium overh uig ruff Dam sue left abutment view looking upstream
side above dam sitePlate 26 Channel alluvium (sand and gravel) Reservoir Area, view looking upstream
Plate 28 Reservoir
Area right side
slope: probably
river ten ace
deposits on the
side slope
overlying luff
bedrock
gorge entrance.
Plate 30: Dam Site gorge entrance right sidePlate 31: Dim Site nver channel view looking down^tieam.
Plaie 32 Dim Site right abutment new from kft,
'' f'**" ’W/n »/ ff jrer
-. ,^/uf A'* .’”?( ** ^arju^r Pn/nt
u
annex b
COMMAND AREA
otechnical PARAMETER plotsFtdrr*/ Dmntfr/ RrjwWr of E/hupi*. Mtnutr, ofW^tr <5f Ejmji
iutapu*
oW Di’orMp PreferDopIN (m bolow ground lovol)
Figure A1: Moisture content against depth
v ®nisols ■ RedBrown SillClay A Yeilow/Grey SilVCIay ♦ Weathered Bedrock
S'i fl IC
CF t ►
* “ V> >
w
IGIROI ConsurtarFigure A2: Plasticity chartpoplh (m bolaw ground lavol)
figure
A3; Effective angle of shearing resistance against depth
c oo
1.00
2.00
300
4 00
A
■
5 00
5.00
700
0 00
Ooo
’Doo
10
15
20 25
PM' (dogrees)
30
r, Voffisols ■ RedBrown Sllt/Cla^ * Yellow.G'ey S*®W
---------- 1
Halcrow
GMT
•'•fl™*1Figure A4: Particle size distribution curveDepth (m below ground level)Dnplh (m ook»w ground ksvol)Dry D®nsity (Mg/m3)Dry Density
Figure A8a: Compaction Curves
l
10% Air Voids '• 0% Air Voids
\'\
\ 5% Air Voids \
••
i-----------------------------
20 25 Moisture Content (%)
Vertisols
x MOD OMC
Kalcrow
Gar‘crFigure Al7: Mass loss on ignition against depthEuM R/pMrd Ethitpw. Mwitr. fTgrr u*i Earrp Elhtifw Ni/e Imgariofi wd Droit off PnfetTlznrr^,
ANNEX C
PAM SITE geological mapping outcrop and joint observation pointsFrier* Dwrtf. Rrprii. FatofM, Nniary oflf'^tr & Effg l-fagw Xri airi Dnai^ge ProfitUpper Bdes Oam Station
Site Geological Mapping: Outcrop Observation Points
Specific location (IJTM)
Formation
Easting
Northing
261304
1293787
Dolcrilc
261191
1293577
Tuff
261923
1295694
Tuff
261923
1295694
Tuff
264931
1299615
Aphanatic Basalt
261994
129579!
Aphanatic Basalt
I---T
--------- 9
10
261672
1294463
1294206
Tuff
261773
1294707
Tuff
261725
1294449
Tuff
261724
1294387
Tuff
261677
1294207
Tuff
261555
1294071
Tuff
261290
1293619
Tuff
261251
1293645
Tuff
261168
1293612
Tuff
261168
1293612
Tuff
260641
1294240
Aphanatic Basalt
19
20
260306
260332
1294213
1294279
Aphanatic Basalt
Aphanatic Basalt
260186
260131
260035
259938
259914
259899
1294441
1294453
1294531
1294628
729474?
1294741
1295528
1293974
1292166
1292477
1293455
1293438
1293436
1293426
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Tuff"
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic Basalt
Aphanatic BasaltSpecific location (I'TM)
Station _
Easting
Northing
formation
1
35
262356
1293604
Tuff ——
-
36
262200
1293686
Tuff —"—
37
261901
1293864
Tuff ’ ------
38
261612
1293746
~Tuff ------ -------- —_
39
261549
1293778
Tuff —-- -------
40
261292
1293632
Tuff “ —.
41
—
261228
1293581
Tuff *--------1
42
261245
1293637
Tuff —'|
43
264053
1292517
Aphanatic Basalt
44
261013
1292957
f’Tuff
1
45
261118
1292805
Tuff
'
46
261128
1292802
Tuff
47
261083
1293094
Tuff
]
48
261226
1293625
Tuff
49
261215
1293623
Tuff
50
261185
1293597
r Tuff
51
261178
1293571
Tuff
52
261177
1293534
Tuff
53
261144
1293526
Tuff
-
54
261102
1293443
Tuff
—*
55
261105
1293361
Tuff
56
261075
1293277
Tuff
57
261086
1293492
Tuff
58
260687
1292187
Aphanatic Basalt
59
260730
1292161
Aphanatic Basalt
60
260745
1292133
Aphanatic Basalt
61
261151
1293544
Tuff
62
261189
1293599
Tuff
63
261196
1293605
Tuff
64
261203
1293602
Tuff
-------- '65
261229
1293606~~
Tuff
J
66
261216
______
1293606
Tuff
261209
1293625
Tuff
H’!>.«. SHe
«<■ Orientation .f WnB
Dip (
deg)
Dir.
Persistencv
(m)
APP
(cm)
Infill
Roughness
Spacing
(m)
220
320
0.5
6
3
8
0.45
0.6
Set I
60
85
0.8
2
Clay
Rough und
Set 2
0.4_______
[Tight
Rough und
0.3
0.21
T^IllS I 129
3623
i
Set I
90
Set 2
60
150 220
90
110
c|av
0.45
0.50
1293574
Set 1
90
130
146
Clay
clay
Rough und
Set 2
Rough und
1293534
Set I
Clay
Clay
Clay
clay
Rough plr
Set 2
Rough und
Set I
Rough und
Set 2
Rough und
1
3
0.32
2
261144
1293526
Set 1
Rough plr
Set 2
Clay
clay
Rough und
1293443
0.32
2
Set 1
110
Set 2
Rough und
75
85
85
220 >10
Set 1
Rough und
280 >10
Set 2
Rough und
1293361
Rough und
Set I
Set 2
' Rough plr
Set 1
J Set 2
270
330
270
270
Clay
Clay
Clay
day
Clay
Clay
Clay
clay
Rough und
Rough und
Rough und
0.10
1.5
1
0.4
0.14
0.85
0.85
0.21
Set 1
Set 2^
290
75
85
Clay
clay
Clay
clay
Rough plr
1293492
Rough und
Setl
Set2
150
220
Rough plr
>293544
Rough plr
Set |
190
300
Clay
I Rough plr
Rough und
320
Clay
clay
Rough und
Rough undID
location
_ UTM
E
Dip (deg)
Persistency^ App.
Infill
((mnt))
(cm)
R °ughne
N
Amt Dir.
13 261196 1293605
Set 1
Set 2
85
85
180
210
1.10
1.00
8
8
Clay
cla\
R °ugh und
14 261229 1293606 Set 1 Set 2 Sei 1
80
80
80
210
322
30
Set2_ 70 100 15 261216 1293606
Undulating
Undulating
Undulating
Rough und
Set I Sei 2
16 261209 ’ 1293625 Set 1
85 ^85,
200
200
clay Clay ' clav
T
Rough und Rough und
I 70 300
- Sct2 j 87 J 178_________________
Deg. = Degree, App. = Aperture: Und.t Undulating; Plr = Pla,mr
Rough plr
^Roughplr 0.5. /a*** y
ANNEX D
PRELIMINARY SEISMIC HAZARD ASSESSMENTFwimi/ fapMt of Eihupta, Mnutrjr of Wattr d” Ewj; ExMpuv jXiir /rnguM and Ontm^t PnptrfUpper Beles and Negeso Dam Sites
preliminary Seismic Hazard Assessment Report
February 2011
The report is intended to be a preliminary study to provide backurnim^ r Detailed seismic hazard assessment in accordance with ICONi! T. 'nf°rmat,on
required should dam design advance to detailed deZnsLe X*,, on .he dan, height. volume and
^7 7" **
population and it is therefore not appropriate to undertake this analysis at r. stage, when options for dam requirements are still to be finalised Y f b y
The report identifies that both the Upper Beles and n c-
™ disimce away .be eptcen^
fXsX'X^
seismic activity. The dam site areas arc termed asekm.r 4 formulae have been used to determine the seismicity at the daZZ.
h rcuorded
The report recommends adopting a peak ground acceleration (PGA) of 0.10g for dam design, although the methods adopted are not in accordance with ICOLD guidance
and should be reviewed for detailed design.
A separate check has therefore been made using published seismic hazard assessments (Midzi cl al. 1999 and Band et al. 2007) and the conclusions for likely peak ground accelerations (PGA) found to be broadly similar. Using these alternative sources of information, the PGA values arc similar for both sites, and are below 0.04g for the
475 years return period, and about 0.05g for the 1.000-year return period. PGA values extrapolated at the 3,000-year and 10.000-year return periods are 0 08g and 0.1 lg res pcctively. however, it is important to recognise that this is an approximation only.
References
Banel et al (2007): Hom of Africa Natural Hazard Probability and Risk Analysis. Humanitarian Information Unit. US Dept of Stale. June 2007.
Annri^n rf Seismic Hazard Assessment in Easiem and Soulhem Africa. "*''("6.2 and/ or Intensities I > VU1
The Earthquake Tremors of |2
Region
February 1845 in the Lake Tana
The Seismic Crisis of 1906 in the Shoa Province The Seismic Crisis in WoUo 1961SununaO <>f Resu,ts
u.h<.aim<’fasscssingthc: *’jK^d Upper Beles (N
and adjacent parts of the
regimes.
seismic hazard ar the dam sites of Negcso ( N 8 858° E 11.694°. E 36.807°) the seismic activity of the project region is accumulated and fit into the existing tectonic
though the dam sites arc geographically separated by 315 km (straight N-S
EvCn on) we find that any seismic hazard at the two sites can be regarded the same.
dirCC' due to the fact that both sites are part of a vast iotra-plate area of a semi-solid
™ lSwherc seismic energy release is practically non-existent at a radius of about 200
distances less than 200 km from the dam sites.
h
Since insf *n °^er catalogues, wc find the event of 12lh of December 1845. r s h TnCnla^ data *s not available from that time, all information about this
and repo-
a Scd On m
. *cro seismic observations. On the basis of observed intensities
destructions the magnitude of this event was estimated to 6 % to 6 W.
7The adopted epicenter is 12.25° N and 39 E. which places the tremor to the wCsie
plateau, just outside or peripheral to the well established western escarpment of,?
rift (see Figs. I to 3). A summary of known macro seismic observations is g,vCn
Appendix 3.
We note that the epicentral distances to the dam sites of Ncgcso and Upper Belts arc 810 km and 445 km. respectively.
In comparison and in contrast to the well adopted epicentral solution (12.25° N and 39° E), Siebcrg denote the area of maximum intensity to just south of Lake Tana, at about 11.3° N and 37.3° E. This location provides distances of about 500 km and 145 km to Negeso and Upper Bcles respectively.
4. Seismicity
The regions of central-western Ethiopia and southeastern Sudan include the project dam sites al Negeso and Upper Beles. Seismic energy release in this wider grid is considered in the seismic hazard assessment at the dam sites. The search for data includes mainly:
1. A complete catalogue of instrumentally recorded earthquakes, given by the National Earthquake Information Centre of the Geological Survey ot the US This data covers a period from 1973 - 2005 and is to be regarded as complete and homogeneous with regard to earthquake magnitudes.
2. An earthquake catalogue given by Goum (1979): Earthquake History of Ethiopia and the Hom of Africa, Due to the absence of seismograph stations in earlier times, this catalogue is not complete for medium and lower magnitudes.
In all. the data considered in this work is well representative of the ongoing seismic activity within the areas prone to seismicity, which may have an influence on the construction sites at Negeso and Upper Beles. The lime period used here covers all historical data and all instrumental data to 2005 and thus it may be justified to extrapolate this data set into the forthcoming decades, anticipating a continuity of tectonic and geologic evolution in the region.
The ^nd within the coordinates of latitudes 4.0°- 16.0 north and longitudes 32.0°-
u
42.0 cast covers the region involved.
Instrumentally recorded data by (he National Earthquake Information Center of the USCGS. 1973 - 2005 is given in Appendix 1. a total of 240 events. This catalogue is rather complete down to a threshold magnitude of about M = 4.5.
Gouin s (1979) data go back to earlier centuries, starting tn the 16*’’ century, and ends ] 977. Thus, the two data sets arc overlapping for the time period 1973-1977.
The geographical distribution of epicenters from Appendix I is revealed in Figs. I t° 3. From these figures the tectonic activities in the three different regions involved, i-^* Southern Sudan (section 3.1), Central Ethiopia (section 3.2) and the vast intra-plate
8deluding lhe project sites of Negcso and Upper Beles (section 3.3) become obvious.
scenting Negcso only onc5^°?l^bc foundat an epicentral distance of less
f non km- J991, magnitude M =4.4, distance 188 km. than iu"’
, ne Upper Beles the closest seismic event that could be found
was a very
( ^C event
7
in I" - magnitude M = 3.8, distance 265 km
rth( U
] akes with magnitudes larger than 6.2 or with extreme intensities larger than VW are displayed in Fig.3. Considering the NEIC data (1973- 2007) we find 4 events
th M larger than 6.2. The outstanding largest event in this time window occurred in M = 7.2 (Southeastern Sudan).
Even though the project areas at Negcso and Upper Beles are considered as parts of a semi- solid mtra-plate region, thus practically aseismic, we have to consider the impact of the larger events (see Appendix 2), even though at large epicentral distances, in the seismic hazard analysis.
An interesting feature of regional seismic energy release is displayed in Fig.4. where we have plotted the annual activity for some selected years, i.e. for 1987 (green circles), 1989 (blue circles), 1993 (red circles) and 2005 (yellow circles). We sec immediately that seismic energy release is migrating within the region.
5. Frequency of Occurrence-Magnitude Relation
Generally speaking, the number of earthquakes is related to magnitude through the relation
Log N (M) = c-bM
where N is the number of events for a given magnitude M. The constant b may be considered as a tcctono-physical constant, reflecting the rheology of the area. This constant differs generally from one seismic area to another and may vary from 0.4 to IJ The other constant, c in (1). depends on the time period involved and the size of
•** area considered.
Jl* geographical grid employed here includes different tectonic settings (see 3.1, 3.2 o' h 2nd We WOLdd expect some differences in the values of b and c in equation I haz d r ,*'Cr hand we cons>dcr the data in Appendices I and 2 to have the same
for lhc construction sites at Negcso and Upper Beles and therefore we analyse 3s one set with regard to the evaluation of the constants b and c.
1 nstn^UmCr’Cal valuation of (1) we considered the homogeneous data set of 33 Vermally rccordcd events in the time window 1965- 2007. i.e. a time window of activi"'; *hlch be regarded to properly represent the currently ongoing seismic
y,n the region.
(1)
9We deployed a threshold magnitude of M - 4.5. arguing that the earthquake coUnu bHow M - 4 4 are not complete. This consideration is simply related to the configuration of the monitoring network, which provides complete magnitude dala only above a certain magnitude threshold, m this particular case to he chosen ,0 M = 43 The total number of events used for the evaluation of (1) is therefore rcduccd |0
155.
Table 1 Earthquake counts, N, per 0.4 units of magnitudes, M, for the d
Appendix 1
’
In
Magnitude range
M
Mean
M
No observed
N
No calculated
N
4.1-4.4
4.25
55
not used
J
4.5- 4.8
4.65
89
89
4.9- 5.2
5.05
41
41
5.3 -5.6
5.45
16
19
5.7- 6.0
5.85
5
9
6.1- 6.4
6.25
4
4
The optimal least-squares regression for these data points reads
Log N(M)= 1.95-0.84 (M-4.65)
The graphical distribution and the regression arc displayed in Fig. 5. The
interpretation of (2) may be exemplified as follows:
Example 1:
(2)
How many earthquakes in the magnitude interval 6.1 - 6.4 may we expect in the region (Southwestern Ethiopia- southeastern Sudani in the next 33 years?
Log N (M = 6.25) = 0.606
N = 4 earthquakes in 33 years
Example 2:
How many earthquakes within the magnitude interval M = 6.1 - 6.4 may we expect in the region within the next 50 years?
N (50 years. M s 6.1- 6.4) = 50/ 33 x 4. i.e. abou, 6 e hqu3k„ „
In this case the numerical value of the constant .. n <_ a ported of 33 rears For a pood „f 5,. ye^ "
*” <2’C W. “. dcn"'d 1
(hivalpe of log (50/33) = 0 18. The
value
,
Recurrence periods estimated from (2):
c ,orc 150
years) would thus he 1.88 + 0 l« '
for tn w" ‘ Cl""SC
10. interval M * 5.7’ 6.0. about 9 events per 33 years, equivalent to about one
i interval M = 6.1 -6.4: 4 events per 33 years, equivalent to about one event
Magniiu^ in,c
t event recorded was that of May 20. 1990. in southeastern Sudan.
Thelarg^ M = 7 2. This was the largest event ever recorded in the region, probably yfagnitu * continent. We may argue that the size of this earthquake. M = 7.2, refers
threshold of stresses which may possibly be accumulated before
iXX oftectonic/ gColOg'C structures
r 2 ) to obtain a rough estimate of a recurrence period of these major
^Tuakes and following the extrapolated regression line in Fig.5, we would look at of log N ( M = 7.3) of about - 0.6. This would refer to. say, a recurrence
1 od of these type of major event, magnitude interval 7- 7 !6. in the order of one
^ t every one hundred years. The region where these events occur should probably
n
be classified as tectonic asperities.
6 Concept to Estimate Maximum Ground Accelerations
Ground accelerations may be estimated by a probabilistic or deterministic approach. Initially, we follow below the deterministic concept of Bath (1975). which was developed for East Africa (Tanzania) and may thus be applicable for Ethiopia / Sudan. From these calculations is easy to estimate the ground acceleration, due to radiated earthquake waves, at any site of interest, i.e. civil construction site.
Following Bath (1975) the acceleration, a, experienced al a point on the earth surface at an epicentral distance, r, for a magnitude. M, and at a focal depth, h, becomes a function of three variables
a = a (h. r, M)
Considering the effects of geometrical spreading and assuming spherically symmetric ation of seismic waves from a point source at depth h in a homogeneous half
s Pa«, we gel
(3)
a = 1.03 h° 6 10° 54 M / (r2
+h)
2 JM
(4)
Equation (4 *S
d*s,ancc (epicentral distance r and focal depth h) and a given to ca,culatc estimate for the acceleration expected,
curves
rcy * ls Ethically illustrated in Fig.6. From this figure it is obvious that the
local max *
max ma
’ Derivation of (4) with respect to h or r. show that these
Nation fn?13 °
C CUT at r
. = 1 22 h. Substituting h = r/ 1.22 into (4) we obtain the
max>mum acceleration
a = 0.62 ]00MMr 0’
(5)
Elation is
displayed in Fig.7 for magnitudes 4, 5, 6 and 7.
IIIf we also substitute magnitude M into (5), we get even simpler relaf maximum ground acceleration as a function of epicentral distance for magnitudes)
various
a rail = 25r'°’
a fn„=87r0’
«mu = 31lrA’ a™ = 1077 f*’ a m„ = 3737f°’
for M = 3
M = 4
M = 5
M=6
M=7
(6)
Once a construction site has been decided upon, and considering the known seismicity in the vicinity of the site, it will be straight forward to get estimates of probable
ground accelerations for any specific site in the basin
7. Macro-seismic Observations and Intensities
Macro seismic hazard describes surface deformations in the vicinity of the epicenter of an earthquake. Data is hereby received from individuals, who describe their observations, which arc then graded into the international Mercalli scale.
Ground accelerations and intensities arc interrelated. Qualitatively speaking; the larger the ground acceleration, the larger the intensity. The Mercalli Intensity Scale is graded from I = I io 1 - 12, whereby intensity I = I refers to only instrumentally observable intensities (not observable by human beings) and the extreme intensity oi I = 12 refers to situations of total destructions.
The 12 degree Mercalli Intensity Scale must not be confused with the magnitude scale, which is on open logarithmic scale. Intensity is therefore a measure of the locally observed ground accelerations, which is large in the epicentral area and which decays rapidly with increasing epicentral distance (cf equation 6). The magnitude, on the other hand, is a measure of the total amount of energy released in the focus (hypocenter) and is therefore a constent value for each individual earthquake.
The descriptions of the higher degree intensities on the Mercalli Scale read: I = S Damage slighl in specially feigned 51nrai,res. c >ns|detabfc „ subslanlia|
,
buildings. »Kh partial collapse; greal in poorly bu,|d slruclures.
1 = 9 Damage considerable in specially designed buildings, with partial collapse; ground is cracked
structures; great in substantial conspicuously.
IQ. j^ost masonry structures destroyed as well as some well-built wooden strictures; ground badly cracked, rails bent; landslides and rockslides
121*'
- jf any. masonry structures remain standing; bridges destroyed; broad 1 -around; earth subsidence and landslide in soft ground
fl0 unreress*
|s|2: Damage mw/
already seen that the dam site areas of Negeso and Upper Beles are located * f ^^smic intra-plate region, which is free of earthquakes within radii of at least
m an
ascl
other hand, major earthquakes outside the immediate vicinity of the project
1 C wc|| have impact on the dam structures. In Appendix 2 major earthquakes,
5,leS’™(0 the tectonic active regimes of the Main Ethiopian Rift- Afar- Southern Red ^Mid the Western Branch of the African Rift (southeastern Sudan) are listed.
ddition macro-seismic observations for some selected destructive major events are "sen in Appendix 3 (Western Plateau- Lake Tana region. 1845). Appendix 4 (Shoa
Evince- Lake Ziway region. 1906) and Appendix 5 (Wollo, 1961).
Having intensity data available, ground accelerations can even be estimated through the approximate relation
2
L = 3 log ao + 1.5 (ao expressed in cm / s )
where Io is the maximum intensity in the epicentral area and ao refers to the corresponding ground acceleration.
Foran intensity of I« = VIII we would then get a maximum ground acceleration of ao = 147 cm/sec . valid for the immediate vicinity of the epicenter of the earthquake. As
(7)
2
we know, however, the maximum acceleration in the epicentral areas decreases with increasing distance from the epicenter, due to attenuation and geometrical spreading (s« section 6).
Asfaw (1982) provides an attenuation formula based on data from the Afar depression, probably extendable to tectonically active regions in the Sudan
I = 2.15 -2.43 log R + 1.55 M
a ? We *S hypoccn,ral distance. It is obvious from this relation that the nuation of the intensity decays slowly with distance.
Engineering Implications
(8)
and Upnc’' if
°f expected ground accelerations at the dam sites of Negeso
P^vided l'CS Can °btained from estimates of ground accelerations (Bath. 1975)
° bservaU ? *** earl'er
of this report or, if available, from macro seismic
ns . deploying also the intensity attenuation relation ( 8 ) of Asfaw (1982).
138.1 Conservative estimates of ground accelerations from instrumentally recorded earthquakes
According to the earthquake data given in Appendix 1 and in Appendix 2, wc Ca find events of significance for earthquake hazard in (he aseismic vicinity of N Z'
c
no ‘
and Upper Belcs. Wc therefore estimate probable ground accelerations of some cv° along the tectonically active regimes at some larger distance.
Table 2. Estimates or Ground Accelerations following the Deterministic
Approach under Section 6.
eiMs
location
Epicentral Distance
km
Ground Acceleration
cm/s2
Western Plateau- Lake Tana Region 1845, M = 6.3, N 12.2*, E 39.6*
Negcso
510
5.7
Upper Belcs
310
8.9
Shoa Province- Lake Ziway Region 1906, M = 6.8 N 9 , E 39°
f
Negcso
290
17.8
Upper Bcles
370
14.2
J
Kara Kore- Western Plateau Margin 1961, M = 6.7 N 10.6°, E 39.3°
Negcso
380
12.2
Upper Belcs
360
12.9 j
Southeastern Sudan, 1990, M = 7.2
Negcso
620
14.7
Upper Belcs
880
10.7
2
According to equation (7), a ground acceleration of a = 10 cm/s would correspond to
2
an intensity of I = 4 MAn acceleration of 20 cm/s would yield an intensity of
I=5h
8.2 Estimates of ground accelerations from macro-seismic observations
Whenever intensity data and epiceniral distances arc available, we may follow equations (7) and / or (8) to gel an estimate of ground acceleration
For comparison between the attenuation concepts of Bath (1975; and Asfaw (1982) we attempt to get estimates of ground acceleration for the upper threshold event of southeastern Sudan. 1990. magnitude M = 7.2.
|42
1
„ Asfa* (1982. equation 8) we first calculate the intensities at Negeso and
, eS which would yield I = 6.5 at Negeso and 1 = 6.1 at Upper Bcles. Using
L'pF*, , (7) we then get acceleration values of 47 cm/s and 32 cm/s at Negeso and
fi les respectively. These values are to be compared to about 15 cm/s’ for
L 'pper nd 11 cm/s2 for Upper Bcles. The difference is apparently bv a factor of 3 ScgCS° aooroach by Asfaw (1982) suggests the higher estimates’
u hereby
Estima«e of conservative ground acceleration at Negeso and Upper Beles
8J
daffl Sit**
the discussions under 8.1 and 8.2. we would then expect ground accelerations to ^considerable lower than l(X) cm/sec’ (= 0.1 g) at both dam sites.
The value of 0.1 g is thus a rather conservative value for the civil works of dams at
* ant] Upper Bcles. This value must be considered low in comparison to ground acceleration values expected and designed for in other regions of the African Rift. We attribute this low value to the location of the dam sites in an intra-plate region of
extreme low seismicity.
Other dam sites in the African Rift System, having intensive seismicity problems and thus higher seismic hazard, adopted much higher design values. MacDonald (1987) used 0.3 g for Kcsem. At Tendaho. Gibb (1975) reached the following conclusion:
• there is nothing to preclude the possibility that an earthquake may occur
within the lifetime of the dam at the dam site or within its immediate vicinity.
• no limit can be placed on the magnitude of such an earthquake nor is it
possible at present to estimate its duration.
Wc conclude that ground displacements and associated accelerations in the vicinity of engineering structures constitute a hazard which is not easily amenable to methods of a seismic design, although choice of materials could mitigate consequences of failure.
84 Maximum Credible Earthquake, MCE
Having estimated a conservative ground acceleration of 100 cm/s2 (O.lg) we calculate ^corresponding Maximum Credible Earthquake, MCE. using (5). Earthquakes in the
and vicinity are crustal events and thus we adopt a typical focal depth of
w. With this assumption we would have a hypocentral distance of h = 10km and
1 Would yield a value of MCE = 5.7.
Th
wonM^'mum intensity at the dam sites of Negeso and Upper Beles. for MCE = 5.7. ^‘dbearound 10=8.5.
Recurrence periods
adjacent r 5
r
Currencc periods of significant seismic energy release (M > 6) in the
a C(^1?ns dam s’tcs at Negeso and Upper Beles are well within the
ani icip i
and Upper R ^'*mc og a cis'il construction (see under 5). For the dam sites at Negeso n C Cs' ’OCatcd in an intra-plate. rather stable, shield, wc cannot predict any
:c cun> <-
Cntc Period.
159. Ground Vibrations, Resonance and Liquefaction
Seismic energy, generated in the hypocenter of an earthquake during d tectonic blocks, produces ground vibrations with particle motions in fo'S °Ca,'° ’>f
n
compressional and shear waves, which radiate from the source in a 3- d‘
pattern. The frequency content of these waves in the source may vary fr rnCnsiona* several hundreds of Hz (cps). High frequency components arc rapidly
’°
increasing distance front the source, whereby the transmitting medium act" p?**1 *ilh
filter.
Along the surface of the earth the vibrating earth particles shake the overburden geological structures The shaking of the ground weakens soils and causes dramatic changes in fine- grained soils. During an earthquake, water saturated sandy soil or clay becomes liquid like mud. This effect is called liquefaction and once this effect is active, it leads to dislodging of large earth and rock masses, producing also dangerous landslides.
s ,lkc a
The magnitude of ground acceleration, related to the size (magnitude) of an
earthquake, is of course of great importance Acceleration values may be estimated
from any deterministic analysis or can be taken directly from accelerograms, if these are available. An equally important factor to ground acceleration (magnitude) is the frequency involved. A typical dry soil has an Eigen frequency (resonance frequency)
in the range of 2-5 Hz. This, however, is also the frequency range that carries the main
part of the seismic energy, which has not yet been attenuated at the distance involved
It means that any earth material, geological structure or any civil construction along
the surface of the earth, having Eigen- frequencies within this frequency range, may
get into resonance. If the soils are wet the resonance frequency may go down to 1 Hz.
A typical rock soil may have a some what larger resonance frequency in the vicinity
of about 10 Hz. For typical soils, dry or wet, we may therefore argue that their
resonance frequencies are to be found in the range of I • 10 Hz. This is also the range
of resonance frequencies of much civil construction.
Previous spectral analysis of seismic signals has shown that the essential part of the
seismic energy is carried in the frequency band from 0.01-10 Hz. matching the
resonance frequency band of geological materials and civil structures.
Il is very likely that liquefaction and resonance effects wiU support each other towards damage along the surface of (he earth.
10.
for
5p
^,
rc
Generally speaking there are two methods of aehi- engineering structure. The previously deployed
3 dcs,gn for an
seismic waves as a steady ground force corre ,,IOna^ approach represents the percentages of g’ or in ctn/s:. This will lead^o^a^"8 *° acL'eleraflon expressed in over-conservative, because of simplifications " "* W*1’c*1 *s safc< *>ul *s n,osl^
of a regional seismic zonal building code whi'-h
lnstancc deployment
variations at specific sites). Already here signifi Sn,oo,h,ng out laterally local
a region Assuming that the regionally adonis if ?
• P'M building code is a conservative value
3 Variations might be found within 1C region, any local deviation within the region (determined by a rather for tl»c is) Can provide a lower seismic hazard and thus a more favorable
cheap «nal-. wj(h rcspect to construction costs.
tHjilJingc00'
considerable savings in construction costs can be achieved by basing the
|n addition^ of & dynamic analysis. Such analytical approach requires precise
de5 'gn°tn vc data on the physical properties of the foundation soils and rocks.
‘ ,U hiding their response to the seismic energy carried in critical frequency ranges (sec section 9).
ujrtd data will he obtained by a combination of in-situ testing of the ground hvsical field investigations and tests, core drilling) and tests in the laboratory
61 “nd/ ° •—
r
,. .
1 tiitudes 4.0° - 16.0° north
J2 . 42
»
Msl
Y.M.D H. MtS LAT LON Mb
Year. Month. Day Hour. Minute. Second Latitude degree north Longitude degree cast
Magnitude
Y
MD
LAT
LON
M
I
1631
03 25
11.3
41.7
9
1842
12 08
9.5
39.8
9
1845
02 12
12.3
39
6'%
1854
02 15
13
39.4
6.3
8
Comment
Dona’Ali, city destroyed, casualties
Ankober destroyed Western Plateau margin (Appendix 3) Amba Afaji (cracks)
1875
11 02
15.8
38.5
8
Keren, damage
1884
07 20
15.6
39.5
8
Massawa, heavy damage
1906
08 25
8.0
38.5
6.8
9
Ethiopian Rift
(Appendix 5)
1915
09 23
16
38.5
6.8
Nakfa Graben, damage
1921
08 14
15.6
39.5
9
in Asmara
Felt in Massawa
1921
09 21
15.6
38.5
9
Felt in Massawa
1937
11 30
4.9
35.9
6.3
1960
07 14
7.0
38.5
6.3
Chew Bahr Graben Rift floor near Chabbi
1961
06 01
10.6
39.3
6.7
Wollo (see Appendix 4)
1969
03 29
11.9
41.3
6.5
1990
05 20
5.1
32.2
7.2
9
Serdo destroyed. 25
dead)
Southern Sudan, severe
damage
30pgMJlX 3: The E«rth2 February 1845 in the Lake Tana
22*
Ab°uln
12 February 1845. earth tremors were reported throughout western | region north of Lake Tana to the southernmost provinces. In
( 1C
Eth ^Pl3the maximum reported intensity was V\ a sign that the tremors were felt Oo °d>r orth in the provinces of Tigray and Eritrea. In the south, the intensity III furthcr Iocajed between the parallels N 5.5° to N 6°, suggesting an approximate
iS(,line | radius of perceptibility of 650- 700 km and a magnitude of the order of 6 '4 ^plCCTiu
.6 fc-
■Ahhadie (1858). Perrcy (1859). Milne (1911). Marinelli and Dainelli (1912),
^ ,19l5).S
.eberg( 932>.
1
Evaluation of the Sources of Information
The original documents relating the seismic events of February 1845 are d Abbadic's
-
accounts incorporated in his field notes. He and his crew were engaged in a geodetic
suney of Ethiopia and on 12 February 1845 they were stationed in Gondar.
Information from other localities was obtained in the course of the team's field work
Junng the following 2-3 months.
D’Abbadie was a professional earth scientist who also had mastered the language of
the country; we feel confident that he critically evaluated the information received
before recording it. The same degree of accuracy is not found in the "Earthquake Catalogues” of Milne and Siebcrg relating the same events.
Reports on the Earth Tremors and Location of the Sites
From Gondar (N 12.6°. E 37.8°): Tremors were reported from the different sectors of
the city and a few dry- masonry walls collapsed. The maximum reported intensity is eslimated at V*.
District of Lasta, 100 150 km east of Gondar: The tremors were stronger in Lasta than in Gondar and a village was destroyed by land slides.
Southern Sector of Lake Tana: Tremors were reported in Korata (N 11.6°, E 37.5°).
1 surprisingly not in Bahar Dar barely 25 km away.
From Gojjam: In the region of Meca. near Mt. Kami (N 11.5°, E 37°) the church of
Co ^ ala Meheret was destroyed. As no details are available on the type of
Jistruction and condition of the damage building, a conservative estimate of
was accepierf.
Gond r Pans ^°jJarn> travelers reported that they fell tremors, not at noon as in i° nfound 3pm. If their time estimate is valid, they must have been referring
shock hT CauseJ
to increase in the direction of the Plateau margin; a landslide and a
th
reported in the vicinity of thc 39 meridian between N 12.5 and N •
32of the magnitude can only be based on the geographical distribution of esli'08^ nsitics antj we consider a magnitude of M = 6 '/< as a good fit to
^counts. assuming that all the reports refer to a single shock, the main
d Ahbad'c s
c cmen
| t of the report from Gojjam is reliable, then one has to admit
shock- .ecnters moved south from Lasta to Wollo. and that the fissunng of the
^agnnude of each of the two shocks would have (ed Location of the Epicentral Region
that tl* ep’t^
cc | m central Wollo was caused by a mid- afternoon shock. In this case,
to be reduced to about M= 6.
fstimai based on intensity reports and attenuation rates point towards an
lnKrferei C
| rcgion centered about N 12 *4 °. E 39°. a region covered by deep ravines cpicentra scafpS that cou|d easily be suspected of being scismically active. This
StC<^incaied some 50-60 km west of the Guf Guf marginal graben, which is SZ to have been, and still be. scismically active.
tic location (solid dot. Fig.A3.1) for the epicenters of 1945 would be some 60 J ^nthe east of the location suggested by the reported intensities (open dots). For
accLtput ivitay.tional purposes, location N 12.2°. E 39.6* has been adopted for the 1845
334;
TkeS** Cri* of I** *• ShM
, ln r November in 1906. the Province of Shoa was suhjcclefl,
From 25 Aug“ . J ,
s
earthquakes. At‘d
(
SSSiSS--*"*®** EV
CVCnts rated magnitudes of M = 6.8 .The estimated!^,
maps wcrc givcn ,o N
Maximum intensities in the epicentral area are estimated as hi h
Ababa town experienced significant macroseismic observations 1 * ‘ Add,,
89
intensities of I = 7.
■ • with cstimated
Addis Ababa
Reports state that the August tremors were exceptionally violent, referring |0 oscillauon of suspended objects, cracking of roofs, doors and windows. A pc
who was silting in a rocking chair in his garden, compared his impressions i0 th
shocks made by sea waves breaking from time to time on the sides of a vessel aM making it suddenly vibrate. Some church bells started to ring.
The population of Addis Ababa was greatly afraid. Damage, however, was slight because a) the town, being barely 10 years old, had not yet fully developed; and b)the indigenous constructions (the Ethiopian tukuls) could, according to experts, withstud any shock short of a wide rending of the earth directly underneath them. This remark has been made by many observers and was spectacularly confirmed at Kara Kort m 1961.
^^^Zd^X’Xnd Adamitulu
,hC CP,CCn,ral afCa 81 l akC
a ‘,C 8nM,nd mot,on and consequences. At
'
Adamitulu is about I S L
shocks during the afternoon of?5 Ababa. Personal observations recall five A, utu “dancing" on the south-eastern 906_ObM:rvers describe the nearby Mount
R,ver vcn'cal motions in the surf
a.
* ,ceP banL\ of the river Cnli.m
h °n ZOn To the south-east along the Bulbula
u
(he can^ Landslides were triggered along the
SSW. indicating therefore that f ° jSl FOSC ’
na r
’ P °gressing towards
r
or NE component.
Lake Langano Lugano (Rg.4) ju binh
rom Adamitulu. the direction of the epicenter had a N 38.6°) in the northeastern bay of Lake
and the rate of the pulsarinn 0/° 906’ hcighr of the hot water column was 25-30 m 1 c Ua,cr column was ahftiii i m,n A reP°n dated 1926 mentions that the height of
'*Ln°d*r report claims that
P^od of pulsation was about 30 nun
J" onZal 'X J* '"J963 * WK 2-™ I" Augusl 1965 M*rep^ed
ln 10-15 m in diamer/r V Cn 3 diameter circular pool lying within a circular min cycle of fiiJt Mc^ J,s w«er level fluctuated by 5-10 cm in a complete 9-10
° ger noticeable
n
F£C 3nd w,thdrawal. In 1970 the surge periodicity no1ApP^**
Seismic Crisis in Wollo 1961
the end of May until September, over 3500 earthauakes of magnitude
]n ]961. fr<*\ Ccnlral Ethiopia. The village of Majete (N 10.5°, E 39.9°) was Ml > 3’5| ^esiroyed; in lhe nearby town of Kara Kore (N 10.5°, E 39.9°) most : omplete'y sCS eollapsed. Cracks, fissures and subsidence of up (o I m deep
masonO "ou
(hc A(j
s
developed on^
jj Ababa- Asmara highway; many culverts and retaining walls rc built. Rockslides and landslides were observed on steep
along nso^daled materials opened along the escarpment of lhe Borkcnna graben,
so^e
be followed over 12-15 km until it became obscured by rubble. In
the w S ’ l^c VCrbcal differential displacement reached 2 m. lhe depth 5-7 m. and
W at the surface ovcrlm
Outside the Epicentral Zone
In C
*ert 3hd Dessie. wme 60 km north of the actual seismic zone, lhe tremors
On
8 « no damage was reported.
b
35In Asseb (N 13.0°. E 42.7°) on the Red Sea shore, tremors of intensity m
Along highway No I from Kara Kore to Addis Ababa strone
No dumagc was observed except in Robi where a tobacco d J treniOrs were and Debre Berhan (N 9.7°. E 39.5°) where a power transfo™?* P'ani de^ from its supporting poles. At the army camp near Debre Be h* Was brought dn supplies were kept out of their shelters for many weeks man‘ Vehic,es and
* crefelt
Boulders were dislodged and rolled down the slopes of volr-m^. t 39.9°) and Boseti Guda (N 8.5°, E 39.5°).
nOCS Fan,a|c (N 9,0». E
At Addis Ababa, some 200 km south of Kara Kore, the first earth tremors were breakfast time On 29 May. many others were felt off and on for at least 2 weeks occurrence was characterized by an abrupt, obvious, and surprising silence from b d and dogs, followed by a wave of rustling noises generated by the twisting of the * % corrugated iron sheets covering most houses. Some masonry structures cracked partition wails in reinforced concrete frame-buildings were dislocated by shearing motion, especially along the Filohawa fault zone in the southern sector of the city. At Africa Hall, a 7-story building still under construction but whose frame-structure was completed, the steel flagpoles on the roof were seen crisscrossing during the tremors
Some inhabitants in Addis Ababa were really frightened. During the night of June I,
all students boarding the University College Arat Kilo campus rushed out of the residences, and students in other boarding schools behaved similarly. The manager of the Ghion Hotel requested his guests to stay indoors; many schools ordered their students to sleep outdoors for a while. So did many families. The Ministry of Education closed the schools for 4 days.
Location of Epicenters
The location of epicenters was carried out on instrumentally recorded data. Thereby 34 epicenters were located by the USCGS, epicenter locations between Dcssic and Debre Berhan. within a distance of about 150 km. The main shock of June 1 was located to N 10.4°, E 39 9°
Frequency. Magnitude and Intensity
From 25 May to the end September 1961. over 3500 shocks were recorded from the ara Kore area. In the first series of earthquakes, which began 29 May. the frequency
o occurrence reached a maximum of 150 per day; a second series began on June I with a peak frequency of 350 events per day. The shocks prior to June I should be considered as main shocks.
Out of the total of over 3500. two shocks were larger than 6.4 and 7 had a magnitude arger than 5. The area of perceptibility was estimated to about 300 000 km .
lively higher intensities were observed in the southeastern sector of the zf>n^; maximum intensity at the center of the epicentral zone was estimated as V
the modified Mcrcalli scale.Federal Democratic Republic of Ethiopia
Ministry of Water and Energy
World Bank Financed Ethiopian Nile Irrigation and Drainage Project Feasibility Studies of about 80,000 ha net Irrigation and Drainage Schemes
Feasibility Study Final Report
UPPER BELES IRRIGATION & DRAINAGE SCHEME
/SR-D4C: Geology, Hydrogeology and
Geotechnical Report
Part 2 of 3: Annexes E to H
Halcrow
in association with
Generation Integrated Rural Development (GIRD) Consultants
orFederal Democratic Republic of Ethiopia
Ministry of Water and Energy
iVor/d Bank Financed Ethiopian Nile Irrigation and Drainage Project Feasibility Studies of about 80,000 ha net Irrigation and Drainage Schemes Feasibility Study Final Report
UPPER BELES IRRIGATION & DRAINAGE SCHEME
SR-04C: Geology, Hydrogeology and Geotechnical Report
Part 2 of 3: Annexes E to H May 2011
Hxkruw Group Limited and
Geserabcn Integrated Rural Development (GIRD) Qinaultantt
PO Box 102175. Cornel Building (5lh Floor)
GebctMtesse Road Add* Ababa Ethiopia
*215-1 (0)116 63 09 92 Fax *251-1 (0) 116 63 09 91
w **hakrow com
Report has been prepared m accordance with the lrtStnJCllon5 °f
Ummern of Ettaopla. Ministry of Waler and Energy for their sole and
Any other persons who use any Information contained here
nsk
$ Hale
2011 Group Limited and Generation Integrated Rural Development (GIRD) ConsultantsANNEXES
wW iTIH13 M* A****- IN RE-P--O-— RT)
I ^r^CTAREA PHOTOGRAPHS_____________________________
J^^maND AREA GEOTECHNICAL PARAMEIER PLOTS PAMSJTE geological mapping oltcrop and joint
nRSERVATION POINTS
1M1NARY SEISMIC HAZARD ASSESSMENT
1—------------ -
"■"
ASHE* C:
a NF5 D
S1
;
>AKT2°f3
AfjtfEX &
ANNEX Fi_.
. k-i-rV Cl
^SNEX _
^.KKTNVfTcCAY»41, 7. 1
ANNEX jo_
isA'EX H J.
"^XmSITE DRILLING INVESTIGATION FINAL FACTUAL REPORT, ADDIS r.POSYSTEMS CO LTD, JANUARY 2011
HAM site slake durability photographs
“ham SITE GEOPHYSICAL SURVEY FINAL REPORT. J ANU ARY 2011 ~TRI AL PIT LOGS: DAM SITE AREA
'HUAI. PIT PHOTOGRAPHS: DAM SITE AREA LAB TEST RESULTS FROM DAM SITE TRIAL PITS
part 3 OF J
ANNEX I RIGHT BANK MAIN CANAL DRILLING INVESTIGATION FACTUAL REPORT ADDIS GEOSYSTEMS CO. L IT). DECEMBER 2009
ANNEX J
ANNEX K.1:
ANNEX K.2:
ANNEXE 1:
RIGI IT BANK WEIR GEOPHYSICAL SURVEY REPORT
TRIAL PIT AND 11AND AUGER LOGS. COMMAND AREA
TRIAL PIT AND HAND AUGER PHOTOGRAPHS: COMMAND AREA
LAB TEST RESULTS FROM TRIAL PITS: STAGE 1 COMMAND AREA
ANNEX LI
IAB TEST RESULTS FROM TRIAL PITS: STAGE 3 COMMAND AREA
ANNEX L3:
ANNEX M:
LAB TEST RESULTS FROM TRIAL PITS: STAGE 4 A 5 COMMAND AREA SOIL HYDRAULIC CONDUCTIVITY MEASUREMENTS
ANNEX N:
tlt GROUNDWATER QUALITY TEST RESULTS
ANNEX O:
ANNEX P
PREVIOUS GROUNDWATER WEI J. COMPLETION REPORTS GUIDELINES FORTESTING AND MONITORING GROUNDWATER WEI .ISDwwto R/r*Mr tf Ertupa, Mt* fry ef
i-TiffpUf /Nur mJ l>r*9jgf ProfitPn^
r
a/Ua^^n^
Dams t
, edr
ANfNEx E
ILLix
'• TD-'^o
XRy
^«£PoRTtf Ertt+ia. Aba/ty ^ITjfrrc^ Entr^ >iik Z*nM a* Drw^t Phjhttfalcrow Group Ltd- GIRD Consultants
Nile Irrigation and Drainage Schemes:
Upper Beles Dam
Ground Investigation Factual Report
Addis Ababa
January 2011ITABLE OF CONTENTS
Pages
] jNTRODUnON
1
I j project Back ground
1
I 2 Scope and Objective
2
13 Location and Accessibility
3
2. REGIONAL AND ICOAL GEOLOGY
2.1 Regional Geology
5
2.2 Local Geology
6
3. GEOTECHNICAL INVESTIGATION
7
3.1 Genera’
7
3.2 Field Investigation
8
3.2.1 Core Drilling
8
3.2.2 In-Situ Tests
9
3 J.3 Sampling
10
3.2.4 Folling Head Permeability test
11
3.2.5 Water Pressure Test
13
3.2.6 Piezometer Installation
17
3.2.7 Ground Water Level Measurement
19
3.3 Laboratory 1es*s
4.SUMMARY
5. REFERENCES
APPENDICES
Appendix l. Borehole logs
Appendix 2. Core photos
Appendix 3 In-Silu Tests
3.1 Falling Heod Permeability Test
3.2 Water Pressure Test
33 Piezometer Installation
Appendix 4 Laboratory Test Results
Apendix 5: Pbolos showing mobilization ot and drilling activities
21
29
40tirriorton Drainage Schemes Factual Geotechnical Investigation Report
N,lf *
(Lot 4: Upper Beles Dam)
upper
jjNT«00^'0N
lt proleO fekground
for Ground Investigations at Upper Beles Storage Dam for Nile irrigation and A c°n,raCprojects wa$ signed on 8"’ December 2009 between Halcrow Group Ltd - tjfaioage |ntegrate(j Rura| Development Consultants(GIRD) and Addis Geosystems Co. generat'O Qjent j5 the Ministry of Water Resource of the Federal Democratic Ud blic of Ethiopia. Halcrow Group Ltd-GIRD is the consultant for the project.
. dam is found in Amhara region. The project area falls in two zones of the
region- ’ne u
—. i _ft side is found in the western Gojam zone, Liben wereda. The right side is
of the Northern Gonder zone, Shawra wereda. Investigation works at Upper Beles
^mmence on 15 May 2010 and completed on 20 Dec 2010.
The Geotechnical investigation at Upper Beles Dam site included core drilling of six boreholes to a total depth of 178.7 meters (four along dam axis, one at the Saddle and one downstream of dam body), conducting Standard Penetration Test (SPT), water pressure, constant and falling head permeability test and taking disturbed, small disturbed and undisturbed soil samples, ground water level measurement and laboratory tests on soil, rock and water samples. Piezometers were also installed in boreholes drilled at the Dam site. Laboratory tests were performed at Water Works Design and Supervision Enterprise laboratory.
This factual report presents the results of the field investigation and laboratory test results. This report comprises main text and appendices which includes borehole logs, core photos and laboratory test results.
Addis Geosystems Co.Ltd.
I1.2 Scope and Objective
The scopes of the Ground investigation at Upper Beles Dam p
• Core drilling with rotary core drilling at Upper Bel^ m
the right abutment, 10m downstream of dam body and 35m at the^^ lS**
• Conducting In-situ Tests which includes: Saddle o Standard Penetration Tests in soils,
o Falling head permeability tests
o Constant head permeability tests
o Single Packer Test
• Sampling from boreholes for laboratory testing which includes
o Small disturbed samples
o Undisturbed tube samples
o Ground water samples
• Ground water measurement in boreholes at the beginning and end of eachM
• Installation peizometer in borehole drilled at Dam Site and reading of water led during fieldwork period.
• Conduct laboratory test on soil, rock and water samples in accordance with BS1377 or other approved alternatives.
• Preparation of factual ground investigation report in hard and soft copy report shall include: Borehole log. Standpipe records, location of boreholes H laboratory test results.
Addis Geosystems Co.Ltd.xjiif Irritation *nd Drainage Schemes Factual Geotechnical Investigation Report
N,lP
(Lot 4: Upper Beks Dam)
! 3 Location and Accessibility
The proposed Upper Seles dam site is located bn
Mreda town located about 45km from DeurL
toad. Durbete is found at 515km along the mJ
site is accessible through 9km dry weath Ababa'Bahirdar ospha^ coordinates in UTM at the centre of th
^.,o„ ™P P, Uppef 8eles
—
Ms| of Lit*n which •
Durbete /
r °ad Approx^ t
™
3
The
^graphic
3, 270000
,2800°°
1290000
1JOOOOO
Upper Beles Dam Feasibility Study Area
Town
ie Town
YISMALATOWN
Meshenti/fown
Wetet Town
DURIBI2-
.1 ,'K„
regional and local geology
2.1 Hegi°nal Geo,°gy
«“«** CO the regional geological map o, fmj0 _ « Mod, area comprises from old to youngest..
1596) “» ™««»l geology 0,
geological units are present at Upper Beles irrigation project area.
c gure 2 1 shows re8ional 8e0,°8ical maP of uPP« Be*65 dam site and its
r
. Alluvium
surroundings.
, Amba Aiba Basalts
• Ashangi Basalts
. Posttectonic granites
* Termaber Basalts (2)
• Tsaliet & Tambien Group clastics
« Undifferentiated Lower Complex
Addis 6eosystems Co.Ltd,
5Legend
Upper Beles Regional Gology
[
Alluvium
Amba Aiba Basalts
Ashangi Basalts
Posttectonic granites Termaber Basalts (2)
Tsaliet & Tambien Group clast/cs | Undrfferentiated Lower Complex
Upper Beles Dam Feasibility Study
Addif
Co. Ltd
Te/ ////««• /•*•». //*»/
*_ »•—**
1 ie*r?****,*r_-
•*«’'*3 ) Sollf and Rocks
So,I and rock units exposed at Upper Beles dam area ar* mainly:.
• Alluvial and residual soil units
• Litic Tuff
• Tertiary Basalt,
Soil units (Alluvial & Residual soil)
The alluvial soil occurs at the flood plain and river beds of RpIp< The Hood pla. a.ong .he d,m e«is con!B.X1XZ “
(0 gravel in composition. The maximum thickness of the Grotrchnlol lnvrmutH fc_
> G£0
.
nO
^ineer mp'es were collected for laboratory test as instructed by the supervising
**ginnm S,gnec* *be Client. Water level in boreholes was measured every day before 8 and end of each shift.
Addis Geosystems Co.Ltd,
8sW
ScKf-ne* Fa luato^^
|l<* • l*ppe* Rrlrt him)
3.1 Picture showing Core drilling at Upper Beles .
3 2.2 Standard Penetration Test
Standard Penetration Test (SPT) was conducted in accordance with test proc*\ described in test No. 19 of BS 1377. The standard SPT equipment consists automatic trip hammer, weighing 63.5 kg with a freely failing height of 760 m frictionless guide rod and split spoon sampler. Blow counts for a total penet^ Jhe
of 4S0 mm from the bottom of a cleaned borehole were recorded and C0Uf,^tfjbuieWe 3 4.2 Sumnurv ol rort w^pling details In Upper Beles B
or ho|
o es
I*****
CMibakA*
Number
1692 25
1305-1338
BH Core Sample
BH Core Sample
BHUSOOl
BH Core Sample
26 10-26 30
BH Core Sample
33 00-33.20
BH Core Sample
1
BHU8002
6.S1-67S
B.15-B.41
BH Core Sample
BH Core Sample
226S22.9O
BH Core Sample
T
i
8 65-894
BH Core Sample
1
BH 1)80 07
13 10-B 34
BH Core Sample
17.44-17 6S
BH Core Sample
Y
i
12-14
BH Core Sample
fortn Bank BH USD 05
14 4-1SOO
BH Core Sample
1
____
, able 3.U Sumnsn ot«*« lam’hn« dc,ails'" Uppe' Be'K B°,Ch°"!
MdisGeosystemsCo.ltd,l. irrtiMion and DrJlfWfi? Schftnri Factual Qtctechmcal Invitation Report ’ * (Lot 4. tipper fleki Pam/
fifing And coAnd Constant Head Permeability Test
,hiirtv of soils and rocks can be determined by conducting falling head
^situ permeaonny
^rmeabW fpng upper Belos dam axis, at the doWl
and at the w can escape from an uncased section of borehole in a given t * V0,Un,e of *a The pressure rs applied from a mud pump as used for core 2?"^ 9 water is measured by a flow meter.
The test procedure followed In conducting this test was
5930:1981. Below are procedures and equipment used in test at Upper Beles.
Test Procedure
c The test procedure is that followed for single packer test
'* **
'”'n8- The rato
,eo,nowtf
generally as described in $ carrying out water preset
o Test performed after drilling was stopped over the lowest 5m of borehole depth
o Pnorto the test, the drill holes was flushed for at least 15 minutes by a strong flow of
clean water in order to remove all remaining drill cuttings from the borehole walls
and bottom
o Then natural ground level measured 30 minutes later
o The test was carried out by lowering a single packer to the bottom of the borehole (to the required depth), inflating the packer using gas pressure supplied from Nitrogen bottle
Packer and Borehole characteristics
o Single pneumatic packer inflated using gas pressure supplied from Nitrogen bott o Packer length: gland lengh = lm, total length = 1.40m
o Packer diameter: 76mm-116mm
o Bore hole diameter: 86mm (Drilled by T6-86 drill bit)
o The packers are supported on drill roads which are also used to supply pressure to the test section
o Water Pressure: comes from piston flush/mud pump
j(ef
Addis Geosystems Co.Ltd,fok rmpt
and Pritrufr ScMnwi FjcIujI Ocfrchmcal rmrrwgMinn Report
___________________________
(uU P
-
rf
rrangement (toward* upstream from borehole):
-,..op is mounted on the water pipe leading to the packer immediately pressure 5® &
uc
0
T”e p . ore hole collar in a height and position convenient for observation and
o ntopo,thcD°
c
0
rtcordW | upstream, toward the water pump, follows the flow recorder or flow Itnrn^o
rr,etCr i k naw with valve, installed between pump and flow recorder, allows the
* control Dy P
di5
0
0
control and adjustment of the how and pressure
The pump (piston) located so that there is a clear sight to the flow meter.
• nf sufficient volume to provide clear water, free of sediment and suspended A ba$‘n
matter
Test Pressure
test was performed in cycles of increasing and decreasing pressure steps, the pressure level increasing with depth. The test pressure is measured by a pressure gauge mounted on the water pipe leading to the packer. At each pressure stage, the pressure is held constant and the volume measured over a period of 5minutes.
Pressure sequences in the boreholes where packer tests conducted are shown in table 3.S below.
Addis Geosystems Co.Ltd,
16*•» hnnonr •MPr.l’Mje
rxtu*: ,,
H-!« I'fTii Mr H
t ami
j.
Trrt No
Test 5ect*on(m) Pressure (bar) ——
—
1
2 20 lo 7.20
08 10-1610^8 -________________________ |
2
7.2010 12.20
0.8-1.6-2.8-1.60 8 ' ------------------ ------------ -
3
12 20 to 17.20
0 7-1.4-2.0-14-0.7 - -------—.—__
PHliK'Ol
4
17 20 to 22 20
2.54 0 5 5 4 0-2.5 ------------------------- ------------
5
22 20 to 27.20
2 54 0-6 34.0 2.5----------------- ------- -------- _
6
27.20 to 32.2
2-8-5.0-7.B^S.O-ZS — — ■ —.
7
32.2 to 37 5
2.8-6 0-8.8-6.0-2.8~ ----------------------------- __
1
10.00 to 15.00
1-4 2.5 3.5-23-1.4 ~ -..4
2
15 00 to 20.00
1.6 3 043-3.0-1.6 -- -------------- —____
3
20.00 to 25.00
2.5-4.0-5.84.0-23 ------ ---------- —
4
25 00 to 30.00
8MU8D02
2.84.0-6.34.0-2.8 ~------------- -------- ----- -
5
30 00 to 35.00
2.84.5-7 343-2.6 ~------------------ —
6
35 00 to 40 00
2.8-6,0-8 8-6 0-2 8 --------------------------------- -----
7
40.00 to 45 00
2 8-6.5-9.5 6.5-2 8 ——
8
45.00 lo 50 00
2.8-7.0-10.0-7.0-2.8
-
1
10 00 10 15.00
14-2.5-3.5-2.5-1.4
------
2
15 00 to 20 00
l»6-3.0*4.5-3.0-l 6
BH UB0 07
3
20.00 to 25.00
2.54.0-5 84.0 2.5
4
25.00 to 30 00
2 84.5-7.34 5-2.8
_____________
S
30.00 to 35.00
2.8-5 5-8 3-5 5-2 8
Table 3.6. Pressure sequence during packer test in Upper Beles.
Data recording and interpretation
Field data collection during the tests involves recording gauge pressure, time elapsed and
flow rates. The data collected during the test will then be recorded on another fom
similarly to the one attached in appendix 3.b which enable the permeability to
computed.
a Permeability of l lug / exP essed in terms of lugeon units ( a rock is said to
r
•ength of borehole accepts in' Un<^er 3 head above ground water level of 100m, a lm
Permeability of iQ.?
water Per minute) (1 lugeon unit is app. Equal to
efficients of permeability and Lugeon unit are calculated by the following formula Usmg a formula from BS 5930.1981, code of practice for the site investigations Coefficient of permeability
K=((q*10’)/(2 * L • H)) * sinh 1 L And
K=((q*103 )/(2 • L * H* 60r» • In L
for 10 > L > r for 10 > L > r
Addis Geosystems Co.Ltd,X lk lcrtPl,on
r _ and Drainjf* Sch*mri Fxtuul OofjchnJcil InvvffigMton Report
(Lot 4: Up
~ ueui Dam)
r
6
iu* °
en
uniting
• 10 )/d * H)
rt nef« coefficient of permeability (cm/sec)
K
lu = Lugeon unit
q s injection rate (litre/min)
L = Length oftest section (cm)
r - Radius of hole (cm)
K = Water pressure in head (cm)
H- A + B + C-Hf
A = Pumping head (cm)
B = Static water head from the middle part of test section up to the
hole. If ground level is higher than the middle part of test section, this is the head from water level to the top of hole (cm)
C = Height of water pressure gauge from the top of hole (cm)
Hf = Friction loss of energy in the injection pipe (cm)
Twenty Water pressure (Lugeon) Tests were performed in three of the boreholes drilled along Upper Beles dam axis. Location of the boreholes, test section and calculated Lugeon Values are summarized in table 3.7 below. Details of the test including raw data and calculated Lugeon Value are shown in appendix 3.b. Water pressure test report showing lugeon pattern showing type of flow and total pressure-Lugeon value curve is shown in appendix 3.b.
Addis Geosystems Co.Ltd,
18n^r S.hr-r*. I>.!«>!
(U« 4 Vrcrr Orfe* tum)
Orpin
Total (ml
^20 io 7.7iT
7 ’20l° 12 20
12 20 to 17.20
Hit IW01
[U-fl ANstrmrnt)
27.20 to 32.2
BH UBD 02
fDam Ads Center)
BH UBD 07
(Saddle)
> 0 00 to 15.00
1 5.00 to 20.00
20 00 to 25.00
25.00 to 30 00
30.00 to 35.00
35.00 to 40.00
40.00 to 45.00
45.00 to 50.00
10.00 to 15 00
15.00 to 20.00
20.00 to 25.00
25.00 to 30 00
30.00 to 35.00
Table 3.7 Test section and Lugeon value obtained from packer test conducted i boreholes drilled along Upper Beles dam axis and saddle.
Addis Geosystems Co.Ltd,. and Drairur Schnrwj Fxfu.il Oefrtrhruc.il InvrWgjcxn Rrpcri
Nl Wlrrtp'
(Ux 4: Upper Belo Dan)
af e installed in boreholes for groundwater observation purpose. Water
M ^n*tert
. cx S
j ting at a point or over a nominated interval in a saturated material
prt$SU,eC°lred by installing piezometers in boreholes.
ci n b* mea
f piezometer installed at Upper Beles is standpipe type. A rigid, collar jointed 1 ..,»d 3t piezometer. The collar jointed PVC pipe was glued to each
, pyC P‘Pe u
»
dunng I’*
01 . ipvel of the Static Water Level or water bearing zone in the boreholes.
**orn up lnt itvc
* tail of piezometer insallation is shown in Appendix 3.c
nd procedure of piezometer installation is described below.
Detail a
. Borehole is drilled to its final depth
« Drill rods are withdrawn
, Bore hold is backfilled to the required completion depth with alternative layers of gravel and cement.
. About 30cm thick gravel is placed at the completion depth to form a base and for the piezometer to land
• The rigid 1 K 'uPVC pipe is installed, the collar joints glued.
• The uPVC pipe is partly slotted in proportion to the thickness of water bearing zone encountered in the borehole.
• The slotted section of the piezometer is packed with find to medium size river gravel.
• 30 to 60cm thick fine sand is placed above the gravel layer to ensure water tightness above the slotted portion.
• The remaining section of the hole is backfilled with alternating layers of gravel and cement slurry.
installation. The uPVC piezometer was being perforated towards the
Piezometer installation is completed by making a collar to provide protection. Depth of piezometer and borehole number is finally written over the collar.
Addis Geosystems Co.Ltd,
20» nfl W •nW\ * t
IwfrUUm)
™
^.C installed ‘ntwo °’|he boreho,es dr'"pd at the c Sundp-i* plC:Orn*let’utton
BHU80 01
BH UB0 02
&H UB006
BMUBO 07
location
left
Abutment
Darn axis
I Centre _
I downstream
dam body
I saddle
Df'pth
Total (m)
38.70
50.00
1000
35.00
Table 18. Borehole designation
and location of Standpipe piezometers
A.dd»s GeosY'tems CoLtd'M U.
Ofiirwgr Schamet Factual GvoUcfinkil Imrviflipticn Report (Lot 4: Upper Betel Dim •
lev^l measurement in boreholes drilling along Upper Beles Dam Axis was basis using a deep meter. Daily ground water level measurement was
r.^e 127 Aug 2010 the final date the last crew left Upper Beles. u un u grOund water level measurements are shown in tables 3.9.
GW Level. m
GW Level, m
Dare
3-Aug 10
RH No
Mommi
13.8
Evening
13 94
Date
3-Aug 10
Morning
4.2
Evening
28
4-Aug 10
12.63
12.41
4-Aug-10
5.3
2.61
5-Aug 10
14.1
14.15
5-Aug-10
5.72
3.8
6-Aug 10
13.75
13.78
6-Aug 10
12.6
12.55
7-AuglO
13.8
13.93
7-Aug-10
12.6
12.56
8-Aug 10
13.9
12.6
8-Aug-10
12.14
12.23
9-Aug-10
12.94
13.5
10-Aug-10
13.5
13.45
ll-Aug-10
13.4
13.4
12-Aug-10
13.35
13.36
13-Augl0
13.37
13.37
14-Aug-10
13.38
13.38
BHCBD01
15-Aug 10
13.37
13.36
BH UBD 07
16-Aug-10
13.5
12.95
17-Aug 10
12.8
12.7
18-Aug 10
13.5
13.94
19-Aug 10
13.5
13.45
20-Aug-10
13.8
13.85
2l-Aug-10
13.9
13.95
22-Aug-lO
13.97
14.2
23-Aug-lO
13.9
13.55
24-Aug-lO
12.8
12.7
2S-Aug-10
12.94
12.98
26-Aug-lO
12.97
12.9
jJJ-Augio
12.98
12.93
Addis Geosystems Co.Ud.
22K* kngrtR" fr» ->«r khmwi rM1u»)Oc«rl Irrrrctj
* (144 • Uiyrr WHw Dim)
jJ L»bor»W Tr*"
„ ww «•»«" “’"dut'KI °" ”“•rock andMmp'« «"«.«.
« S-ouped l"l° lhe < «ow'n wte o>»*»»«
teeerMpry tesww
PiUBOCl | SMuaooj
5== \
•HUIOM
MUIOQS
■HUIDO*
■h uao or I Contract I iMCUttd 1
\
Ofii^f>va
Moisture contents
L2L
J
1
2
2
1
10
9
Liquid hnut.puitM’ limit and plasticity mdea 1
■
J
6
2
J
2
g
17
‘ MJ
Linear shrinkage
1
S
•
1
1
4
7
F1.4
Particle vie distribution by wet sieving
•
•
1
2
•
8
1
FIS
Sedimentalton by hydrometer
2
16
*
2
4
20
Fl.6
Dispersibility by double hydrometer method
3
•
•
3
3
4
9
F1.7
OlspersMty by pinehole Method
-
10
2
4
12
Fl
Cfrmfal Mid dittnKhtmkii
F24
Organic matter content
•
3
•
F2J
Mass loss on ignition
*
3
F2.3
Sulphate content of acid extract from soil
•
4
•
F2.4
Sulphate content of water extract from soil
•
4
3
F25
Sulphate content of groundwater
-
4
•
FZ6
Waler soluble chloride control
•
3
•
F2.7
Acid soluble chloride content
•
3
•
F23
pH of groundwater
-
3
•
F.9
Water Quality Test (Physico-Chemical)
1
•
1
0
1
F9. Includes F2.5 and PH.
ADOIS GEOSYSTEMS Co.LTD.Nile Irrigation and Drainage Schemes Factual geotechnical Investigation Report (Lot 4: Upper Bclcs DamJ
Table 3.12 Description and number of Laboratory tests Requested and Performed at Upper Beles Dam Site
T»»t Description
p M-
•QFvtWWJ
no
Quarry
Sites
Quantity
Remark
F
Laboratory testln<
5H BH BH ueoot | UB0 01 | UBO07
BH
UBDOS
UMQ1
UPSQ2
Contract
E wasted
F5 ] Natural water content of rock sample 3
JJa-
1------------------------
4
10
FS 2
PoroMy/dmitty using sat ur a non and cahpe* technique*
•
-
4
14
Method not specified
F53
Poroirty/derrMfy using taturailon and buoyancy
1S
J
3
1
1
1
Rate only
0
F5 4
Slake Dur a bit Uy
1
1
4
2
FSS
Soundness by Magnesium sulphate
1
1
2
Sodium sulphate method
F5.6
Aggregate Crushing Value
1
1
4
2
F5.7
Ten Percant Fine
1
1
4
2
FSB [ Aggregate impact Value
-
-
4
0
FS 9 Aggregate Abrasion Value
4
0
F5 10 ' Waler Absorption --------------- r
J
3
3
1
1
4
11
FS 11 I Uniarml compressive strength
a
3
3
1
3
11
F5 12 | —JI
DeformaMRy {elastic modulus! »n Untoral
compression
2
-
1
♦
2
3
F5 13 .
FS14 j
indirect tensile strength by BratHian test Determinates* of point load strer^th of rotk (1 test In the average read«r< From 5
specimen]
-
-
2
0
*
■
6
0
■
FS.15 Petrographic analysis
4
2
FS.16 Petentiat Alcan Wa Reactivity
11
2
| F5.17
1 Dry Density
• BC « t a
•RS 16 6 F5 17 are additional tests
5
3
3
1
11
14 J3 13 Summary of Laixiiatory ClatsificatKyn les( RoiuBj of So«l Samples from Bumholes
/ **
/ **
/c
c zMn Ur.
M
a
DK^>it>>Wty toy OuAM
”—
MITto
IL
■OTtoLtM
Ft
‘..^ruu« COTtlM Ma
.Mract tram wto \ v
(matVD \
/
/
I
J
t mm V tM eivxy. \
«• \ \
’
/ 1 1
1
1
-
---------------- b
WUW0 07 J asof J
1 2 / 1—
——
NO
-\-\
57 65
21 00
-
-
1.0-1 2
NO
583
37 27
21 03
-
JIM
■
•
I 25-2 0 1 -
4.04 45 30
ND
54 76
35 4-
1931
•
•
1
11 78
25 54
59.7
S»y
•
•
■
■
•
BH ueOCM
03-1.0
12
16 79
640
82 73
Clayey SRy CottFy
GRAVEL
ND-Ptoholel
•
•
■
-
3
1.04 0
90
27.22
14 45
49 33
Cleyey SRy Cottey
GRAVEL
ND^Ptthotel
•
•
•
•
-
544.0
35
092
49 01
30.67
S*y Cette/ GRAVEL
•
•
•
-
-
63-70
20
269
5767
3764
Oe» S4ty Seedy
GRAVEL
O(^nMei
20.35
1720
115
30 55
•
•
9 09 5
JOO
37.66
1149
2065
Grwttty SHy ClA V
N(XPrho*e|
67 9/
20.69
39M
•
20.36
11S-1235
7.0
1742
13 67
6V31
Oeyey S4ty Sandy
GRA/E
74 20
37 23
3702
3318
4224
2107
13014 0
445
5201
149
Cxivttey S*y CLAY
NDt(PlnOtte)
726
38 35
3925
•
20 54
■
1701025
7.0
75.91
1709
•
CoCttey GRAVEL &
GrwtteySANO
ND4(Pei hotel
•
•
•
21 3-223
1.84
1146
230
61 1
Sr^ttey Silty SAX)
*
•
•
•
•
26 2-26 6
55
3266
45 23
1661
CoOttey GRA^L
ND-rPrtt>e:
*
•
•
•
•
29 4-30 0
15.0
36.66
48.14
*
Clayey S*y Sandy
GRAVEL
XJtPrhoie)
•
•
•
1.01 45
40
1132
an
765
CKyey $*y GRAVEL
ND.fPInhttei
20 66
*
BHUBDD5
■
4
23135
95
16.11
10.37
64 02
CoOtteyCleyey Sat,
Sandy GRAVEL
NO^Pnhale)
63 33
3201
31.32
3297
269
3297
060-7.0
044
7.52
3507
56.97
Cobttey GRAVEL
28.72
16 67
9.85
■
ADDIS GEOSYSTEMS Co.LTDNile Irrigation and Drainage Schemes Factual geotechnical Investigation Report
(Lot 4: Upper Bclcs Dam)
16-100
•
•
•
-
UtodkumGrnwl-313%
-
•
-
•
Cm* Or•¥•!-% r»%
*
•
111 2
•
-
•
•
■
NO
5505
XM
2334
■
1 mo
•
•
*
•
•
NO
55 52
Mil
UM
5
BH UB0D6
ura
•
•
-
■
•
NO
34 M
27*4
*
317
4 5-10
BO
1593
noj
■
Sand
•
*
mo
0.0
142
ir
S*r Sane?
*
•
•
■
♦
•
•
-
-
•
•
*
■
12145
•
-
•
•
ND
107J5
4412
35 7
-
(fi ueuQ/
IM 45
-
•
•
•
•
NO
M.M
44 32
4952
17.04
6
4 MB
•
•
•
•
NO
63 JO
30 41
52. B9
J
L J
4nd Drainage Schemes Factual Geotechnical Investigation Report
jlje imP11003
(Lot 4: _Upper IkjciDam)
sumnwv °'
and Bacteriological Water An„|ySrs
_____—------ r '
------- --------
— ——Source Of Sample
WH^OHMOaMxaimxiummum allowable
I
BH UBD02
BHUBD 07
Concentration
(m115. Suirrrary of Rock Strength Tests
’JOS- ’IM
2540857
1567737
’ y«emsC
oL(d
30Nile Irrilltton Jrtd Drainage Schemes Factual Geotechnical (Lot 4; Upper Bcfa Dam)
.
Katior
As part of the feasibility stage design of Upper Beles Dam project g consisting of field geotechnical investigation and laboratory testing e°teChnica Beles Valley at the proposed Dam site and Quarry area.
The field investigation included core drilling of five borehole holes al quarry area , SPT tests , falling head permeability and water pr
* as carriec
a*
piezometer installation and ground water measurements were n rf tests
at dam site.
Depth of boreholes at the dam axis range between 10m and n
Perfo^ed in
ju.um apd or
Borehole drilling showed that at the dam site saddle area, basaltic rock layer overly by soils of residual and alluvial origin having various thickness?^ Laboratory tests were performed in soils, rocks and water samples collected fro
The tests include index, chemical and shear strength tests on soils, index a rocks and chemical tests on water samples.
00 Slr
Addis Geosjstems Co Ltd
31rrTl«Don and Drainage Schemes Factual Geotechnical Investigation Report
d institution. Code of Practice for Site Investigation, BS 5930:1981:
j^standar Department of the Interior Bureau of Reclamation, 1998
I *,rth at The field description of Engineering Soils and Rocks.
: Afhparn M 1961 General Geology Map of the Blue Nile River Basin, Ethiopia,
ll■
V
h and water resources of the Blue Nile Basin.
VJO 000 in land ana
al (Compil ), 1999, Geological Map of Ethiopia 1:2,000,000.
Tefe ’
S'
t ^o*Gorup
... zjion pre-feasibility Study report, Upper Beles Irrigation Project, Addis
’
32Wf
R/frAh- <»"
an d Drainage
p21293594
E~26l2i7 ElevaMoo;
Total Depth: 38.7th, Inclination: V,ni„,
Bering Type R?“5'
DRILLING
geological descript^
Below 13.5-13.0n fofter
ut *fc Fr«p'* rti of tuff
r
Jfferentley weather* twf< 70X- transitional tone.
Weak occaWmlly pinkish white
to very
close
very C^yey J5£nItfc TUfT
wotherrt
,
a
less cenented. le**
and fine proxied.* Softer soapy textile
00 loneratk: trac y ^onerfttc
t
HH borehole
UBB8R
JLS
STORAGE RESERVOIR ROCK SAMPLE
RQD
upper rei.es balancing CD UNDISTURBED SOIL SAMPLE
KJ DISTURBED soil sample
Bo’Uxr Of Borehole
5 STATIC GROUND WATER LEVEL
rock QUALmr designation
TCR
total CORE RECOVERYrsTEM CO. LTD
fTD-GRttL and Drainage
proieCt Beies Dam Site (Belen)
• lipper
HouryCormt
Borehole No BH UBD01
Sheet 3 of 4
BH Coordinates:
N=1293594
E=261217 Ground Elevation: 1364m. Total Depth: 38.70m Inclination: Vertical
GEOLOGICAL DESCRIPTION
V ‘ V ‘
V V V
V V V V
V V V
V V V V
V V V
V V V
V V V
V V V
V V V
V V V V
V V V
V V V V
V V V V
V V V
7*«s5Kf»«
CZ) UNDISTURBED SOIL SAMPLE DISTURBED SOIL SAMPLE
“ Bottom Of Borehole
£ static ground water level
k RRecov^Y
Logged By: Samson AbebeADDIS GEOSYSTEM CO. LTD
Client: Halcrow Group LTD-GRID
Project: Nile irrigation and Drainage
Project
Site/ Location: Upper Beles Dam Site (Belen) Date Started: 13 Jul 2010.
Date Completed: 26 Jul 2010.
Boring Type: Rotary Coring.
DRILLING
E=2 t’round Ei€ Total Deptl Inc li atiOn
n
J
5i
X
V
: ft Q
LaJ
S5
Q•a
Jft
z\
X
vz
u
r\
X
xz
Q
a
ft
♦»
C
n
u.
□
L*
f
□
z
GEQLDGICA
->rTc------
31.35
100
958
1
Str ®?0 to wry basalt «itn
or. WJ-7 allohtly operv-tk «‘itK/cUy. v
dot*
3220
100
65.9
1
*
33.70
100
J 36
26.7
4
L 33 5
100
411
9
r
3750
100
33 5
15
]38.70
100
708
5
VV
v
vv
v
vv
v
vv
v
vv VV
VV
v
vv V
VV
v
vv
v
vv
v
vv
v
vv V
V V
V V
v
vv V
Very wtro*Xj da «et4un to widely
•phwnHIC MSAL1 with nlnerela
an BOREHOLE:
UBBSR UPPER BELES RAIANCING STORAGE RESERVOIR
R^> ROCK SAMPLE
RQD ROCK QUALITY DESIGNATION TOR TOTAL CORE RECOVERY
□undisturbed soil sample disturbed soil SAMPLE
Bottom Of Borehole
■S static ground water level
Logged Bystem co. ltd
Borehole No. BH UBD 02
Sheet 1 of 5
"jyrD-GRlO
ftn d Drainage
r Beles Dam Site (Belen)
■VPpe , A 03 ^n 2»10-
03 2010.
Coring-
BH Coordinates:
N=1293700
E=261090 Ground Elevation: 1333m. Total Depth: 50.00m Inclination: Vertical
GEOLOGICAL description
Very stlFF dark reddish brown stlgh Sandy CLAY with occasionally grovel- bcUder size basalt.
Reddish brown Sandy very Clayey GRAVEL Grovti Is subrounded to rounded Fine tD coarse grained oF basalt
fragnets.
7.4/6J.5A
“*tMQU
‘’■“OU
Sm Nation- \ SEREcOVERY
OUNDISTURBED SOIL SAMPLE DISTURBED SOIL SAMPLE
------ Bottom Of Borehole
■X- STATIC GROUND WATER LEVEL
Logged By: Samnon AbebeADDIS GEOSYSTEM CO. LTD
Client: Halcrow Group LTD-GRID ~ ~ ~ ~~~ Project: Nile irrigation and Drainage
Project
Site/ Location: Upper Beles Dam Site (Belen) Date Started: 03 Jun 2010.
Date Completed: 23 Jun 2010.
Boring Type: Rotary Coring.
DRILLING
^^hoh
BHC
_ Sh, °ord
Na Es
Ground E] Tot al Dept
Inc,inatiOl
GE 0LQg1c
<907.) fe but roc
UA5
13 HO
StrDAg pinki
•Fathered r tutf. Lrthic. to ^eertun Qr end tuff(5G Closely Jolnl COatlnQf. re redkjr «pac<
RH
UBRSft
RS
RQD
TCR
BOREHOLE
UPPER BELES BALANCING
STORAGE RESERVOIR
rock sample
ROCK QUALITY DESIGNATION TOTAL CORR RECOVERY
□□undisturbed soil sample DISTURBED SOIL SAMPLE
~ Bottom Of Borehole
J. STATIC GROUND WATER LEVEL
Loggedstem co. ltd
Borehole No BH UBD 02
Sheet 3 of 5
Cr oUp LTP-C WD ’ ct Rples D“m Site Upper Bele
.3 Jun 2010
J: 23 J«n 2010’
Coring-
BH Coordinates:
N=1293700
E=261090 Ground Elevation: 1333m. Total Depth: 50.00m Inclination: Vertical
GEOLOGICAL DESCRIPTION
• » • • •
Sane as above but Fresh to slightly weathered.
IM 93.3
Sane os above but neAn to
widely spaced jointed rtrong.
CZ) UNDISTURBED SOIL SAMPLE
disturbed soil sample
Bottom Of Borehole
h ^'^'JTrr
-¥• STATIC GROUND WATER LEVEL
^^S’ATIOX
H ^0VEry
Logged By; Samson Abebc\DD1S GEOSYSTEM CO. LTD
Client: Halcrow Group LTD-GRID
Project: Nile irrigation and Drainage
Project
Site/ Location: Upper Boles Dam Site (Belen) Date Started: 03 Jun 2010.
Date Completed: 23 Jun 2010. Boring Type: Rotary Coring.
BHCo
G e=26'«?'
C ’ro,l"•
JLfiO
hr
BOREHOLE
UBBSR
ltper bei.es balancinc
storage ^
c,ng
□undisturbed soil sample
res
K DISTURBED soil sample
RS
hock sample
RQD
—■ - Bottom Of Borehole
S- STATIC GROUND WATER LEVEL
RorK Wautc designation
TCR
lb*1
total core recovery
Logged By:
Su^00■
Group LTD-GRID irrigation and Drainage
ect
; Upper Beles Dam Site (Belen)
03 Jun 2010.
jeted: 23 Jun 2010.
P ‘ rnlflp
^ Rotary Coring-
Borehole No. BH UBD 02
Sheet 5 of 5
BH Coordinates:
N=1293700
E=261090
Ground Elevation: 1333m. Total Depth: 50.00m Inclination: Vertical
P
f
GEOLOGICAL DESCRIPTION
Strong light grey to pr*l|h
grey nix
to slightly
wothered fine to neclur\ grained aggioneretlc TUFT rttb (fstinct Ffrw grab-ied horizons. ltthk:s<30X> ba salt (SOX). Pin* tuff Joints clean, tight rough.
BOREHOLE
VPPER BELES BALANCING
STORAGE RESERVOIR
pock sample
"WK QUALITY designation
for AL CORE RECOVERY
□□ UNDISTURBED SOIL SAMPLE
KJ DISTURBED SOIL SAMPLE
------ Bottom Of Borehole
STATIC GROUND WATER LEVEL
Logged By: Samson Abe be■------
ADDIS GEOSYSTEM CO. LTD
nientT HaTcrow Group LTD-GRID
Project: Nile irrigation and Drainage
Project
Site/ Location: Upper Beles Dam Site (Ri ht Bank)
B °reh^N??\^
s»
(
Date Started: 27 Sep 2010.
Date Completed:.
ing Type: Rotary Coring.
G
DRILLING
GrOU”»».ltlc rock
,
Z
l-
1
5. J
J
z.
Grrylsh dark cobbly (JMVEL Gravel fine to -edur.
u
tutxinoulir Cobb** and gravel we basaltic rock frapwnt*
■
Dark arty slightly cobWy MoM'r silty GRAVEL. Grav«* b 6m U coarse subangUarXobM* s"d crave* ©re boaaibc rock fragments.
4
Drok grey flatly
5»AVEU>avei * coarse anaU»r V3 Cobb** ©nd gr©*** tr< rock frapRents
9
»H
LTBBS
BOREHOLE
EHp beles balancing LZD undisturbed soil sample STORAGE RESERVOIR KJ DISTURBED soil sample
RS
RQD
tcr
Rock sample
r ock quality designation total core recovery
Bottom Of Borehole
■X STATIC GROUND WATER LEVEL
AbfbJ0.K
HrAun
Total Depth: JO.OOm Inclination: Vertical
GEOLOGICAL DESCRlP^
Dark 6f<^ oightly Grw Oty
SAND Grovwl I* Ark
3rr b**“"C
core
Dark
Gr<**< • T Cfltotol*
***
3M 70.5
BH UBBS
RS
RQD
TCR
BOREHOLE
UPPER BELES BALANCING STORAGE RESERVOIR
ROCK SAMPLE
ROCK QUALITY DESIGNATION TOTAL CORE RECOVERY
I I undisturbed soil SAMPLE
£2 DISTURBED SOIL SAMPLE
------Bottom Of Borchok
J STATIC GROUND WATER LEX EL^SYSTEM co. ltd
lto-gkid
and Drainage
g eles Dam Site (Riaht Bank)
Borehole No BH UBD 05 Sheet 1 of 2
BH Coordinates:
N=1293995
E=260685 Ground Elevation: 1386m. Total Depth: 15.00m Inclination: Vertical
GEuLOGICAL description
4J0/9J.IBJ3
?^E
CZ) UNDISTURBED SOIL SAMPLE K DISTURBED SOIL SAMPLE
------Bottom Of Borehole
£ STATIC GROUND WATER LEVEL
s,'.
yrllowlfth prerrfch gray im
cfarh bro an ftaro.
V V V
V V V V
V V V
"Un k TapcUar to WXIM ;lwl
. to *rry doarljr Jolted
TNtfwrrt MSMT Stror^ vtoW
V rxirtl, rrthikt aaartz WIL-------------------------
BR BOREHOLE
UBBSR UPPER BELES BALANCING
STORAGE RESERVOIR
RS
ROCK SAMPLE
□ undisturbed son. sample
j^j DISTURBED SOIL SAMPLE
----- BoUono Of Borehole
y STATIC GROUND WATER LEVEL
RQD rock quality designation
TCR TOTAL CORE RECOVERYstem co. ltd
Group LTD-01110
G n and Drainage
ir ri^t,on 8
.UpPer .
Roles Dam Site (Belen)
’ »^°
:23 Jun 2010.
201
Borehole No BH UBD 06 Sheet 1 of I
BH Coordinates:
N=1293700
£=261090 Ground Elevation: 1333m. Total Depth: 10.00m Inclination: Vertical
Coring-
GEOLOGICAL DESCRIPTION
Stiff dark broen Clayey SAND
aP—
Stiff dark brown Clayey SILT.
Grey Sandy GRAVEL. Gravel If fir* to coarse and autoan^ulor to rounded
Grey Rixtir-e of SAND. »AVEL a^d CDBKL Gravel If fine to coarse ro*x*ded to subrounded With Irttle Ones.
^ehole
*
^PI.E
□ UNDISTURBED SOIL SAMPLE
K DISTURBED SOIL SAMPLE
------ Bottom Of Borehole
-X STATIC GROUND WATER LEVEL
^Designation
Recovery
Logged By: Samson AbebeT^geosystem co. ltd
- Client?Halcrow Group LTD-GRID
Client:
Project: Nile irrigation .nd Dr.m.ge
Project
Site/ Location: Upper Beles Dam Site (Belen) Date Started: 02 Aug 2010.
Date Completed: 07 Aug 2010. BoringT>pe: Rotary Coring.
^hole
——__ Sfoe B » Coo?di
N=i
E=2
Gr «und El
e
Total Depth Inclination:
drilling
geoldgicai
Stiff greyish de soil of high pid!
Stiff dork »ty piostlctty
Dark slightly gr< Grovel *« dork » ar>QJar,
Wratherd bed rc os (r»r oro*Jlr Grovel IS dork gr
to coarse bo sol t co«p‘elrl< TUFF.
0 65 100
I
BH BOREHOLE
UBBS UPPER BELES BALANCING STORAGE RESERVOIR
RS ROCK SAMPLE
RQD ROCK quality DESIGNATION TCR TOTAL CORE RECOVERY
□undisturbed SOIL SAMPLE
K DISTURBED SOIL SAMPLE
------ Bottom Of Borehole
J. STATIC GROUND WATER LEVELBorebole No. BH UBD 07 Sheet 2 of 4
LTD-GRI*/
Beles Dam Site (Belen)
2010-
‘ o7 Aug 201°
Coring-
BH Coordinates:
N=1293420
E=261600 Ground Elevation: 1419m. Total Depth: 35.00m Inclination: Vertical
GEOLOGICAL DESCRIPTION
GrryWi t** aeoloewra’K/uw Rodrrattly weathered closely touted TUFT. Hoderotely ftrong irtHcf tu€F<2(TO basalt3009 Joints art stained orange brown, rough open to tight.
Strong ba»alt(70X) tuff(3WO
frawntt
brown staged slightly open rouoh SV*SH*<5’
art oron«<
*
*
□ UNDISTURBED SOIL SAMPLE
K~1 DISTURBED SOIL SAMPLE
•-----Bottom Of Borcbok?
£ STATIC GROUND WATER LEVEL
DEs1CKation
Recovery
Logged By: Samson AbebeADDIS GEOSYSTEM CO. LTD
Client Halcrow Group LTD-GRID
Project: Nile irrigation and Drainage
Project
Site/ Location: Upper Beles Dam Site (Belen) Date Started: 13 Jul 2010.
Date Completed: 25 Jul 2010. Boring Ti|pe: Rotary Coring.
^ho
BBC^
N:
E=
Gr °und £
Tot al D
ep
DRILLING
Inc linatiQ
gedlog
Strong
24.60
25.00
TUFT at a bp
Dark. ap/wtfti rtos«ly joint*
30.00
BOREHOLE
UPPER BE1.ES BALANCING storage reservoir
ROCK SAM Pl A
ROCK QUALITY DESIGNATION TOTAL CORE RECOVERY
CDundisturred soil sample K DISTURBED SOIL SAMPLE
---- - BuUcni Of Borchok
5 STATIC GROUND WATER LEVELOSYSTEM CO. LTD
Group LTD-GRID ~ irrigation »nd Drainage
ject
i: Upper Beles Dam Site (Belen)
13 Jul 2010.
ed: 25 Jul 2010.
: Rotary Coring.
-—
Borehole No. BH UBD 07 Sheet 4 of 4
BH Coordinates:
N=1293594
E=261217 Ground Elevation: 1364m. Total Depth: 35.00m Inclination: Vertical
GEOLOGICAL DESCRIPTION
VV
V
V V V
VV
V V
VV
VV
v
vv
VV
v
vv
v
vv
\ Mim
v
'•WhushMAKCING
A «WWWl RESERVOIR
'l v-
DESIGNATION
'WRECOVERV
CZZ)UNDISTURBED SOIL SAMPLE DISTURBED SOIL SAMPLE
—— Bottom Of Borehole
£ STATIC GROUND WATER LEVEL
Logged By: Samson Abebek, fl
’IAPPENDIX 2
CORE PHOTOGRAPHSi
IOhntos: Upper Belcs 1)3 m Si,e (BH UB0 11
_ —~ ~~
Plate 1 0.00-5.00m (Core fiox 1 of 9)
5 00 9 60m (Core Box 2 of 9)V
Plate 4.14.05-20.05m (Core Box 4 of 9)Plate 5. 20.95-25.00m (Core Box 5 of 9)Plate 7 29 67-32 20m (Core Box 7 of 9)Plate 9 38 20-38 70m (Core Box9 of 9)Core box Photos: Upper Belos Dam Site (BH UBD 2)
Plate 1: 0.00 $.10m (Core Box 1 of 10)
• * 10-lO.lSm (Core Box 2 of 10.60)Plate 3:10.60-15.70m (Core Box 3 of 10)
e 4 15.70-20.65m (Core Box 4 of 10)Plate 5: 20 65-2 5.90m (Core Box 5 of 10)
Plate 6 25.90-30 95m (Core Box 6 oflO)Plate 7 30.9S-37 00m (Core Box 7 of 10)Plate 9 42.10 47.05m (Core Box9 of 10)
Plate 10 47 05-50.00m (Core BoxlO of 10)photos: UpP<* Beles Pam Site. Right Bank (BH UBD 4)
r
Plate 1:0.OO-S.OOm (Core Box 1 of 6)Plate 4:14.85-19 80m (Core Box 4 of 6)L
Plate 5:19.80 24.75m (Core Box 5 of 6}
?4 75’30 00m (Core Box 6 of6)Core box Photos; Upper fteles Dam Site. Right Rank (BH UBD 5)
Plate 1 0,00-5.00m (Core Box l of 3)
Plate 2: 5 00-10 00m (Core Box 2 of 3)prate 3:10.00-15.00m (Core Box 3 of 3)Core box Photos: Upper Helps Dam Site (BH UBD 6)
Plate 1: 0.00-5.55m (Core Box 1 of 2)
Plate 1: 5.55-lO.OOm (Core Box 2 of 2)Plate 1: 0.00'5.55m (Core Box 1 of 8)
- 70m (Core Box 2 of 8)Plate 3:10 70 15 00m (Core Box 3 of 8)
Plate 4:15.00-19.50m (Core Box 4 of 8)Plate 5:19.50-24 50m (Core Box 5 of 8)
24 50 *29 SOm (Core Box 6 of 8)Plate 7: 29 SO-34.00m (Core Box 7 of 8)
Plate 8 34.OO-35.OOm (Core Box 8 of 8)GO GO CO O O’ Q
APPENDIX 3
BORE HOLE TESTS
. Falling Permeability Test
. Constant Head Permeability Test
. Water Pressure TestAppendix 3.a: Falling Head Permeability TestSheet 1 of 1
ADDIS GEOSYSTEMS CO. LTD.
rM MNG HEAD /PERCOLATION/ TEST DATA SHEET
.wrCLEHFS PAM GF0T£CHNICAL investigation
£f?w----------
^^ukiiz-ai IMVFCTIGATinM
^rANT ^|CRQW Group Lt(L (GIRO) Consukants,
i^ENAME:BHy8002
yaHONDAM AXIS
p 261090, N= 1293700, Elev.=1333m,
(cm)
BOTTOM OF BOREHOLE(cm):
BOTTOM OF CASING(cm):
_________ TEST LENGTH(cm):i
_________ DIA. OF HOLE(cm):
200
200
8.6
DATE: 3-Jun-10
I El*»*d
Depth (an)
Head
------ TOOT
184.01
"Teo
ns?
Remarks
I Bore hole flushed
and water bailed out
to keep the hole
dean.
ITest section has
been saturated for
30m in.
I Generally test
900
1200
p5o
1800
2100
270
TT3
TO
360
553
40.0
450
47.0
490
51.0
173.0
1773
TUTU
TUTU
164.0
1623
Lnhl/h2
0.083381609
0.021978907
0.028170877
O.O11494379
0.005797118
0.017595/62
0.0179TOJ77
0.012121361
0.012270093
0.012422520
0.031748698
0.01298719b
0.013158085
0013333531
Hydraulic
conductivity (k,
cm/sec)
3 256955E-O3
8.585143E-04
1.100378E-03
4.4898OOE-O4
2".2W302E7W
U746IUEW
T79973IFU3
9.469408E-04
9.58$600t-04
9.704679E-04
6.200652E-03
2.536453E 03
2.569828EO3
2.6O4O94E-O3
section is Firm Brown
Silty CLAY with little
rock fragments.
Fragments are
aphanitic Basalt and
W
533
5S.0
0.013513719
0.013698844
2.639285fO3
angular.
2700
3600
AVRAGf;
2.675441E-03
57~U
60.0
0.011889112
0.021202208
2./I26U1FOT 8.281758E-O3
2J64955E-03
DERIVED FROM BS 5030:1981, CODE OF PRACTICE FOR SHE INVESTIGATIONS | W.tl))in(hl/h2),
,s
F=2ni
2
An|(UDH\(l^l7OJ ))
? ^permeability of soil/highly fractured rock 4’Crosssectional area of bore hole casing
intake factor
^'l’he»d(hi| of water at timetl
A2=head(h2) of water at time t2
action length
diameter of casingTest No. 02
ADDIS GEOSYSTEMS CO.LTD
failing head /percolation/ test data SHEFT
PROJECT: UPPER BELES DAM GEOTECHNICAL INVESTIGATION CONTRACTOR: ADDIS GEOSYSTEMS CO- PJ£ CONSULTANT HALCROW Group Ltd , (GIRD) Consultants.
BOREHOLE NAME: BH VBD.02
LOCATION DAM AXIS
E= 261090, Ns 1293700, Elev.=1333m,
BOTTOM OF
Time
Elapsed
(sec)
Depth to Water level (cm)
Depth (cm)
Lnhl/h2
Hydraulic
conductivity (fcr
cm/sec)
0.0
445 0
60
120
180
240
429.0
425 0
420.0'
418.0
0.036617363
0.009367750
0.011834458
2 837213E-04 ’10 ke
«Ptheh^
3384306^04 1
dean.
15.004773279
1 4456TTToT
300
420
540
417 0
414.0
34.0
411 0
0.002395211
0.007220248
0.007272759
~W
780
TO
T.0048780S8
38.0
407.0
0.004901971
900
1200
1500
405.0
400.0
398.0
0.004926118
0.012422520
0.005012542
1800
2100
2400
2700
3000
3600
396.0
394 0
0005037794
0.005063302
392.0
0.005089070
390.0
3880
385.0
0.005115101
0.005141400
0.007762005
AVERAGE:
T254382E-OS
~4.373597E.Q4
4.405406E-04 1
7M4838E-M ■
2.969323E-04
2.9839SOE-O4
1.881206E-03
7 590750E04
7.628991E-O4
7.667619E-O4
7.706640E-04
7 746060E-04
7.785B86E04
2.350881E-03
6.9B9827E-04
teen saturated hr
30min.
IGeneraiiyittt
section is Grey u
coarse gramed
GRAVEL with Mrtui
dense medium tc
coarse grained SAC
towards bottom.
Gravel is rounded u
subrounded.
-
2
FCWWLA DERIVED FROM BS 5930:1981. CODE OF PRACTICE FOR SITE INVESTK3A DONS K’(A/F(t2-tl))ln(hl/h2),
F=2m/Ln((L/D)+^(l+(L/D) )]
Where:- impermeability of soil/highly fractured rock
A=cross$ectional area of bore hole casing
F=intake factor
hl,tl-head(hl) of water at time tl
h2,t2=head(h2) of water at time t2
Latest section length
D-diameter of casingSheet 1 of 1
01
ADDIS GEOSYSTEMS CO. LTD.
/percolation/ test data sheet
BOTTOM OF BOREHOtE(cm):
200
^^^^n^dG!RDl_Cor^ltantK
BOTTOM OF CASING(cm):
0
TEST LENGTH(cm):
200
DIA. OF HOLE(cm):
8.6
___________ DATE. Hydraulic
conductivity (k,
cm/sec)
27-Sep-lO
I
I
ZhaCTQ* tfPil
'OffHOltNAME; BH UBQ04
0AM axis
. 1293860, E/ev .1370m
Depth (cmf
Lnhl/h2
0.038221213
0.015707129,
0007947062]
0.008010724
0.000000000
0.0000000001
Remarks
_0
7.5
10.5|
121
13.51
13.5
13.5
2000,
192.5
189.5
188.0
186.5
1.492952E-O3
6.13S335E-O4,
I Bore hole flushed
and water bailed out
to keep the hole
3.1O4188E-O4I dean.
3.129Q55E-O4
ITest section has
14.5/
15.5
0.005376357
0.005405419
3000
~ 15.5/
~ 15.5/
0.000000000
0.000000000
AVERAGE.
0 0000006400 been saturated for
OOOOOOOE+OQ 30min.
O.QOOOOOE+OO to grey graveley SILT
0. OOOOOO E *00with little medium
grained Sand. Gravel
is fresh fine to carse
grained
6.053676E-04
2.1OQO5OE-O3
IGenerally test
2.1114O1E-O3
Jsection is light brown
DERIVED FROM BS 5930:1961, CODE OF PRACTICE FOR SITE INVESTIGATIONS
Ln(hl/h2).
^2niAn|(L/D)«^(l+(L/D> )]
2
*
Impermeability of soil/highty fractured rock
A=cro$ssectional
area
of
bore
hole
casing
^intake factor
h ltl’head(hl) of water at
time tl
h ^t2«head(h2) of water
at time
t2
l twt
' section lengthTest No. 01
ADDIS GEOSYSTEMS CO.LTD
falling head /percolation/ test data sheet
PROJECT: UPPER BELES DAM GEOTECHNICAL INVESTIGATION CONTRACTOR: ADDIS GEQSYSTEMS CO PIC. CONSULTANT: HALCRQW Group Ltd . (GIRD) Consultants
BOREHOLE NAME: BH UBD04
LOCATION: DAM AXIS
E= 260860. N= 1293860, Elev.=1370m,
- 0rT°^°LB0REH0'i7-
Time
Elapsed
(sec)
Depth to Water level (cm)
OAT?
Depth (cm|
Head
Lnhl/h2
0.0
60
120
180
240
300
360
420
480
540
600
660
720
0
15
37
0.020202707
0030389079
_38
48
58
70
78
88
97
105
Tl?
122
750.0
735.0
713.0
712.0
0.001403509
702 0
0.014144507
692.0
680.01
0.014347448
0.017493157
Hydraulic
conductivity (k,
cm/sec
2-89134SE-Q4
1 187023EO3
>74822236-05
~5.524962E-04
5 6O4232E-O4
—)]
•***’ ^permeability of soll/highly fractured rock
A=cro$ssectional area of bore hole casing
^intake factor
^.tlshead(hl) of water at time tl
2 A2»head(h2) of water at time 12
L=t«t section length
Diameter ofTest No 03
ADDIS GEOSYSTEMS CO. LTD FALLING HEAP /PERCOLATION/ TEST DATA SHEET
PROJECT: UPPER BE LES DAM GEOTECHNICAL INVESTIGATION CONTRACTOR: AOOIS GEOSYSTEMS CO. LTD CONSULTANT: HALCRQW Group Ltd , (GIRD) Consultants. BOREHOLE NAME: BH UBDOS
LOCATION: DAM AXIS
E= 260685, N= 1293995, Elev.=1386m,
-----------------
--------------------
Time
Elapsed
(sec)
00
Depth to Water level (cm)
DATE:
Depth (cm) 0
Head
1000 0
Lnhl/h2
Hydraulic T
conductivity (k,
cm/sec)
1
15
985.0
0.015113638
9 839187^06
2
30
970.0
0.015345570
9 990178E^06
3
46
954.0
0.016632400
1 082792^05
4
62
9380
0.016913722
1 101107E-05
5
79
921 0
0.018289913
.
1.19O699E-O5
6
94
906.0
0.016420730
1.O69O12E-O5
7
109
891.0
0.016694879
1.086860E-05
8
123
877.0
0015837435
1.031039E05 j
9
136
864.0
0.014934224
9.722386E-06
10
148
852 0
0.013986242
9.105237E06
IS
217
783.0
0.084453831
2.749031E 04
20
283
717.0
0.088056855
2.866311E04
Remark'
'BoteholeM^'
and water bailed
to keen the
dean,
I'Test settlor h* i been saturated *m
l30min
I IGenerally tert section >s Dart gre,
[medium to course [grained G RAVIL
| Gravel is angular tc (subroundeo
25
348
652.0
0.095031279
3.O93334E-O4
30
408
5920
0 096537927
3.142376EO4
35
463
537.0
0.097508540
3.173970E-04
40
513
4870
0.097733971
3.181308E-04
45
553
447 0
0.085705528
2.789774E-O4
50
595
405.0
0.098671528
3.211826E-O4
55
613
387.0
0.045462374
1.479832E-O4
60
663
337.0
0.138341763
4.503120E-04
AVERAGE:
FORMULA DERIVED FROM BS 5930:1981.
K=(A/F(t2-tl)) Ln(hl/h2),
2
F=2ni/Ln((L/DH^(l*(l/D) )l
Where:- K=permeability of soil/highly fractured rock
A=crosssectional area of bore hole casing
F=intake factor
hl,tl=head(hl) of water at time tl h2,t2=head(h2) of water at time t2
latest section length
D-diameter of casing
1.561680E-O4Sheet 1 of 1
ADDIS GEOSYSTEMS CO. LTD.
/PERCOLATION/ TEST DATA SHEET
technical INVESTIGATION
BOTTOM OF BOREHOLE(cm):
200
BOTTOM OF CASING(cm):
0
> LT^AMTBHyBD26
^stream of 03^ Body
TEST LENGTH(cm):
200
DIA. OF HOLE(cm):
8.6
M= 1293640' EleV =1331m’
DATE:
30Jun-10
r-rr^to Water level (cm)_
*^THre
fjpsed Head
Depth ( )
crr>
Lnhl/h2
Hydraulic
conductivity (k,
cm/sec)
Remarks
__ ei,__
0.0__
iTw
240
300
0.0
4.0
6.0
9.0
200.0
196 0
194.0
191.0
189.0
186.0
0.020202707
7.891345E-O4
0.010256500
0.015584731
4.006274E-O4
6.087525E-O4
0.010526413
0.016000341
4.111704E-O4
6.249866E-O4
^600
20.0
180.0
0032789823
6.403988E 03
900
25 0
175.0
0.028170877
5.5O1889E-O3
1200
28.0
172 0
O.O17291497
3.377101E-03
1500
31.0
1690
0.017595762
3.436525E-03
1800
37.0
163.0
0.036148514
7.059955E-03
2100
39.0
161.0
0.012345836
2.411193E-03
2700
46.0
154.0
0 044451763
1.736323E-O2
IBore hole flushed and water bailed out to keep the hole
clean.
ITest section has been saturated for
30m in.
(Generally test section is Stiff dark brown Clayey SAND andStiff dark brown Clayey SILT at the
bottom
3300
56.0
144.0
0.067139303
2.622517E-O2
JJJA6E:
6.152O49E-O3
f cw>ev.«1370m.
1 BOTTOM QT WALHOvEjcr^y IHOVTOM Of CASlNGfcmy
Standing Water Level__________ VEST LtNGTH(cm ____________
t
D1A OF BOREHOLE Um,
DIR or CASlNG(cm)-.
(
)ATE;
llAOtt 10 1
Time (mknlutei)
Flow meter reading (m3)
Start
Firriih
ria pied
(min)
Volume
w
----------------------------------- -----------------------
Remark
Start
Finish
H
F
Hydraulic conductivity (k cm/sec)
11:10
11 11
1
41.4496
41 4943
44 7
1500
23 65
0.001260042
—
11:11
11 12
1
41 4943
41 5176
23 3
1500
23 65
0 000656801
1500
11:12
11:13
1
41 5176
41 545
27 4
23 65
0.000772375
11:13
11:14
1
41.545
41 5813
36 3
1500
23 65
0.001023256
11:14
11.1S
1
41.5813
41 6218
40.5
1500
23 65
0 001141649
111S
11:20
5
41 6218
41 7965
174 7
1500
23 65
0004924595
11:20
11:25
5
41 7965
42 0512
254.7
1500
23 65
0 007179704
11:25
11:30
5
42.0512
42 2376
186.4
1500
23 65
0 005 254405
■Average
1.7766011-01
FORMULA DERIVED FROM BS Ma 19S1. CODE OF PRACTICE FOR STTE HVESTTGA RONS
K-(Q/F(t2 lim
F-2.7S-D
Where:
K-permeability of soll/hlgnly fractured rock
D-Diameter of bore hole
F> Shape factor
H-Head of water above ao below ttandtog groundwater level_______________________________Tert Ko :
Sb»n l of 1
ADDIS GEOSYSTEMS CO. LTD.
PR OFF CT U»»tR »f (f 5 0AM Of OTtCHKIGAL INYFSTIGAKK CONTRACTOR ADO6 Gt QSYVIM5 CQJJP
CONSUL TANT MALCROW Ltd . (GlRDl COfU^UrU. BORfMOtf NO BH UBD »
I OCA HON QAM AXIS
QNSTANT HEAD PERMEABILITY TEST DATA SHEET
BOTTOM Of QQItfHOUKm) BOTTOM OF CAfrNGtcm): St*n*irg Water L-fyf' ______
TEST i£NG1M(cm>
(MA Of BOREHOU ;rm)
Drw$h
Volume
flu
M
F | Mydraubc Conductivity (h, cm/Kt]
12 11
12.19
2365
0 002283298
1
214201
21436
16
*°
12.19
12:20
2
21.4363
2145:
16.1
KO
23.65
000235377
12.20
12.21
3
0 0036 7864 7
21453
214791
26 1
JOO
23 65
12:21
12 22
4
214291
TOO
21 4854
63
2165
0.000887949
12:22
1223
5
21 4854
0 00222692
21 5012
138
300
23 65
12:23
12:28
10
21 5012
21 5765
75.3
300
23 65
0 010613106
12:28
12:33
IS
21 5765
216541
776
300
23 65
0 01093728
1233
1238
20 21 6541
21.7291
75
300
23 65 0 010570825
12:38
124]
2$ 21.7291
218005
714
300
23.65
0010063425
1
12 43
12 48
30
218OOS
21 J 722
717
300
23 65 0 010105708
1248
12:53
35
21.8722
21 9331
60.5
300
23 65
0 00854351
12:33
12:58
40
219331
219935
604
>00
23.6S
0 008513037
12:58
101
«5
219935
22.0532
59 7
300
23.65 0.008414376
103
108
*> J
22.0532
22.1125
59 3
300
23 65
0 DM357999
108
1 13
«
22 1125
22 169J
S68
300
23 65 0 008005638
>11
1:18
w 22-169)
223263
57
300
23 65 0 00803382/
—L —Appendix 3.C: Water Pressure Test-1
0. r- *- *f*"IOT
__________ ___
CALCULATION SHEET
- ^^w^essu-e, packer test
"'Relles nwJSrrE PACKER test
U6D2
Test
Depth
[mJ
Frcm
10.W
to
1500
T£m
W
10
10
10
10
Gauge Pressure
bars _
14
2.5
35
25
1.4
""waler injected
iinresi
FIOW
Type
Lugeon
Value
value
Approx
k
(ui/s)
2.2
135
175
16
0
to
c
E
to
1
1
1
1
1
1
i l.E-07
15,00
Id
20 00
10
10
10
10
10
1.6
3.0
45
30
1.6
3.5
4.6
6.05
12-9
2 15
t-
tn
c
E
1
1
1
1
1
1
1JE-07
,20 00
to
2500
10
10
10
10
10
2.5
40
5.0
4.0
25
0 15
28.35
0
0
0
to
c
e
3
1
1
1
1
1
1
1 £.07
25.00
to
SO 00
10
w
ID 1
10
ID
2.8
4.0
63
4.0
2.B
297 6
517
347 2
166
72 5
E
o
to
D
20
30
15
0
6
6
6.£-07
-L.JZIJ
w—*
30 00
to
35.00
10
10
to
10
10
2.B
4.5
7.3
45
Z0
279.0
170
3472
219.3
149.
c
3
■P
Z3
20
8
W
w
15
8
a E-02
35.00
to
40.00
10
10
10
10
10
2J
60
9.0
6.0
2.8
0 05
2.9
7,35
2 05
0
k—
ra
c
E
to
-J
1
1
1
1
1
1—.
1
l.E-07
J
*0.00
TO
45 00
10
10
ID
ID
10
2.0
6.5
9.5
6.5
28
29.7
30.2
190.1
348
204 e
o
T
JC
i>
2
1
4
15
20
20
' 2.E-O6
45.00
to
50.00
10
10
10
10
10
2.0
7.0
10.0
7.0
2.8
49 3
140.8
383.3
226 1
844
c
to
5
j
4
0
6
6
4
4.E-O7
• (Water InjeltedWro
) ((Depth_io| - [Depth Jrom])/[time] ' 10(bars)/[Gaugo Pressure [(bars
m fhe,/l?in ' 1050
19:33 amAppendix 4.a:
Laboratory Test Results - Soil,j> introduction
1* P«-« Summe-y of Moratory teat
Project ^e lest «* .„ Gram Ana w Anefb^
,
Coofonf. Unit W„M. Direct SMar. cw Swel
,W> are carried out foiiow.ng th. appropriate santpfe „,M,XlQri t-<^> Md the standard procedure foiioreed to cany M ,he
herein.
f.1S»
----- ___
SNo
Type of Test
Standard
Grain Size Analysis - Hydrometer
BS Test 7(B)
H
----------- •
2.
Atterberg Limit
BS Test 2 (A)42(B)
Natural Moisture Content
BS Test 1(A)
4
Unit Weight
V“
Direct Shear
•
Free Swell
Gibb' &Holtz (1956)s
I'
6
Swelling Pressure
BS 1377:1975.Nile Irrigation and Drainage Project
Summary of Test Results
Date: 23/11/2010
Parameters
UBD-2
(0.50-0 60m)
UBD-2
(2.50-2.80m)
UBD-2 UBD-6 (4 00-4.45m) (1.70-2.00m)
UBD-6 1 UBD-6 1JBD-7
(4.50-5.00m) i (8.0-
9.00m)
t2.80-3.45rh) '
i
Grain Size Analy sis
Clay %
Sih %
Sand %
Gravel %
1
•
•
3.00
11.76
25.54
59.70
-
8.00 0.00
15.93 2.42 1 - 76.07 3.27
Atterberg Limit
Liquid limit %
Plastic Limit %
Plasticity Index % Dispersion by Double
Hydrometer
94.31 k * J
--
57.84
36.84
21.00
54.78
35.47
19.31
•
•
59.52
36.11
23.41
-
-
-
•
94.14
44.32
49 82
ND
ND
-
ND
-
ND
Linear Shrinkage (%)
•
-
15.61
-
1764
Natural Moisture Content (%)
-
:
-
•
■1
•/
Checked By
Approved ByNile Irrigation and Drainage Project
Summary of Test Results
Date: 23/1172010
Parameters
Grain Size Analysis
Clay %
Silt %
Sand %
Gravel %
UBD-7
(4.60-4.80m)
UBD-2-US/1 UBD-6-US/1
UBD-6-US/2 UBD-7-US/1
(1.0-1 2m)
(1.0-1.2m) (3.40-3.85m)
(1.2-1.45m)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Atterberg Limit
Liquid limit %
Plastic Limit •/•
Plastic it> Index %
83.30
30.41
52.89
58.30
37 27
21.03
34.38
27.84
6.54
107.95
44.12
63.83
Dispersion by Double
Hydrometer
ND
ND
56.05
36.44
19.61
ND
-ND
ND
Unit Weight (gm/cc)
14.29
•
-
-
-
Natural Moisture Content (*/o)
-
23.38
25.43
37 12
35.70
_______________________Nile Irrigation and Drainage Project
Summary of Test Results
I)ate: 23/11/2010
I Parameters
[ UBD-2
(0.50-0.60m)
UBD-2
(2.50-2.80m)
| UBD-2
(4.00-4.45m)
UBD-6
(1.70-2.00m)
UBD-6
(4.50-5.00m)
UBD-6
(8.0-
9.00m)
T UBD-7
1 (2.80-3.45m)
1
Grain Size Analysis
Clay %
Silt %
Sand %
Gravel %
-
•
3 00
11.76
25.54
59.70
-
•
-
8.00
15.93
76.07
-
0.00
2.42
3.27
94.31
1
|
•
After berg Limit
Liquid limit %
Plastic Limit %
Plasticity Index %
57.84
36.84
21.00
54.78
35.47
19.31
•
-
59.52
36.11
23.41
-
-
-
-
94.14
44.32
49.82
Dispersion by Double
| Hydrometer
ND ND
1
ND 1 -
-
■J1
ND 1
Linear Shrinkage (%)
------- :------- 1
i
-
-
Natural Moisture Content (%)
1__
I
-
15.61 —4 —J 17.64
■ / L
-/
JNile Irrigation and Drainage Project
Summary of Test Results
Date: 23/11/2010
1 Parameters
HjBD-7
(4.60-4.80m)
UBD-2-US/1 (1.0-1.2m)
.
UBD-6-US/1
(1.0-1.2m) 1
-------- 1
UBD-6-US/2 1
(3 40-3.8 5m)
UBD-7-US/1
(1.2-1,45m)
Grain Size Analysis
Clay %
Silt %
Sand %
Gravel %
-
-
-
_______
1
1
-
-
-
*
*
•
-
-
♦
•
-------------------------- 1
•
•
•
Atterbcrg Limit
Liquid limit %
Plastic Limit %
Plasticity Index %
83.30
30.41
52.89
58.30
37.27
21.03
56.05
36.44
19.61
ND
34.38
27.84
6.54
107.95
44.12
63.83
Dispersion by Double
Hydrometer
ND
-ND
ND
Unit Weight (gm/cc)
ND
14.29
-
•
•
•
Natural Moisture Content (%)
-
23.38
25.43
37.12
35.70
Checked By
Approved By»
*
I 1
1
^7
i7*' Project: Client.
m rtPT ww uttc JTC£+ MPtfd IW7IH
euc-rw^ :
Nile Irrigation 8nd Drainage Project Addis Geo Systems CO. LTD
I♦
I
I
» 1
'!
i
»
Loabon Upper Belles Storage I BHNc. UBD-2
Depth(m) *. 0.50-0 60
Water Works Deal Supervision Enterprise
Service
[. -Soil 4 Material Tesfin Sun Type Disturbed
Test Type Hydromcter^ith Dste '02/11/W
Total mass of sample.
60
SlM
No (
)p*y(*”e)
Mass of t Sitt*(&)
tantfsn* • R/Z j*l@
Mass rf
[/. soil
Perantape
Rj fated
Cjemuhtitt "j
% Retained
No 10
2.00
551.10
551.10
0.00
0.00
0.00 ~
taen/qr
Passt*; lOOnn
No 16
1.18
558.90
539.48
0.58
1.09
1.09 *
Nt 50
0.60
516.70
518.90
2.20
4.12
5.2? “
No 50
0.32
^0 50° 60
Penmiaft
| Cmfatnr
RtLunrJ
% Rftawd
Pfrirnlagf Pojfin
551.10.
538.90
55130
539.63
516.70
488.20
481.90,
459.20
519.00
492.02
484,99
461.66
0.00
1.22
3.83
0.00
1.22
5.05
100.00
98.78
94.95
6.37
515
11.42
16.57
88.58
8545
4,70
0.00
20.67
___ 0.00
7933
0.00
H7
]
Its! Terffaru,
ittn,
22
Tfftpra/urt
corrected
Ejjtctivt
Coeficirrt
Gnu
Perrratage
ilytn^rirr
HyJrv^ffrr
Rtadiitg
Depth
(cm)
K
Sift
(mm)
Fmer
Gmhntd
Hr
- 155000
22.0
15.5000
13.70
0.01332
0.0349
25.83
j
11.0000
22.0
110000
1450
0.01332
0.0227
18.33
I
7.0000
22.0
7.0000
15.20
0.01332
0.0134
11.67
4.0000
22.0
40000
15.60
0.01332
0.0096
6.67
I 19
Si
3.0000
22.0
3.0000
15.80
0.01332
0.0068
5.00
I 19) 2.0000
22.0
2.0000
16.00
0.01332
0.0034
3.33
L [ 0.0000
22.0
OOOOO
16.30
0.01332
0.0014
0.00nun w* W* *T'rc
MX/7 ZrM
Project: Nile irrigator and Drainage Project
. Addis Geo Systems CO LTD Loainon: Upper Beles Storage I
BH-No. UBD-2
Depth(m): 0 50-0 60
Water Work
Supervwon
Labor.
tory Sei
’So# 4 Malarial Tastln
S*m Type : Disturbed Test Type; Double
Date: 12/11/m
^ydrotnet,
Grain Size Distribution Curve.BS
Grein Size
mm)
Gravel
Sand
Silt
ClayoMe^ *TTC
’ “*'"X“k»»™c0LT0
Water Works Design and Supervision Enterprise Laboratory
Service
Sam. Type : Disturbed
Test Type; Hydrometerfwith sot'n) Date 02/11/10
iX‘ dpperB*
ueo-i
Total mass
~ SU'irf
S*t*& _
~ Mtusofnm •
Krt ,SOll(g)
Mass of
Fit. jm7 (g)
Ptnrntagt
Rtiatnta
% Rs fat nt a
Ptrvrntage
Passing
i~ 551.10
00C
o.oc
0.00
100.00
775
Ti8M
539.98
1.08
2.00
2.00
98.00
519.22
2J2
4.67
6.67
93.33
■'------- 060 f) IO
516.70
48820
494.15
5.95
11.02
17.69
82.31
^^055
008
481.90
487.40
5.50
10.19
27.87
72.13
--------
~ 459.20
462.82
3.62
6.70
34.57
65.43
0.00
0.00
0.00
0.00
0.00
i
i Sj
ja if soil 26J--------
1 irt 1 tnrpen 22
itnrt, dtg.c
rr... f 4/£mXi
Tf^aiart
Cornett a
rj/ecftve
(.Atjjlatnt
Ptrtmfagr
7w
’ «r'
FyJrw*/tr
Piydnsmtttr R/adtng
Depth
(^f)
K
J7^r
(wurj
Ftntr
CambintJ
J 7.0000
22.0
31.0000
11.20
0.01343
0.0318
51.91
r>
35.0000
22.0
29.0000
11.50
0.01343
0.0204
48.56
0
30.5000
22.0
24.5000
12.30
0.01343
00122
41.02
—r:—
285000
220
22.5000
12.60
0.01343
0.0087
37.67
0
26 5000
22.0
20.5000
12.90
0.01343
0.0062
34.32
:«
22.0000
22.0
16.0000
13.70
0.01343
0.0031
26.79
w
18.0000
22.0
12.0000
14.30
0.01343
00013
20.09
Goin Size Distribution Curro.BS
.‘iff'-rvtxJ bynub'l Wf xm *TTC
Wild A7U7i>+ /
Project. Nile imgatxxi and Drainage Protect
Qrat Addis Geo Systems CO.LTD Loaooc Upper Belles Storage I BHNo. UBD-2
p;
Water Works Design an(1 Supervision Enterprise labors
Service
Soils Material Testing s „
Stun. t ype •• D^mrbed
Kw
Test Type Hydrometo(with out soln, Dutc: 02/11/W
■a
Dtpth'm):250-2 80
Tola/ mass o* sample.
60
Sit*
Masi of
Majs if /irar *
Mass of
Ptrrrntaff
Cnmn/atJut
Perantag
Kl
C ?«*£**’'
Sievefc)
Rr/.wr/ft/
Rzt sot/
Retamed
% Retasned
Ki 10
2.00
551.10
55t./0
0.00
0.00
OM
N» 16
lit
538.90
559.84
0.94
1.57
100 00
1.57
.
9843
No 30
0.60
516.70
519.46
2.76
4.60
6.17
9383
Nt 50
030
488.20
494.51
6.51
10.52
16.68
Nt 100
0.15
481.90
487.63
5.75
9.55
26.25
~7377]
Ko 200
0.08
459.20
463.20
4.00
6.67
32.90
67.10
pan
0.00
0.00
0.00
0.00
...t
iz:
~o.do
Esatud
AtSH&
Tfnpratnrr
Comae d
Effective
Coefficient
Grain
Prrrnla^t
Tom
(mj
Hjdrumfr?
Ra4>^
4tg.c
Hydrvfnt/rr
Readtr.t
Depth
(cm)
K
Si^e
(mm)
Finer
Combined
2
14.0000
22.0
14.0000
14.00
0.01343
0.0355
23.44
5
10.0000
22.0
10.0000
14.70
0.01343
0.0230
16.74
15
6.0000
22.0
6.0000
15.30
0.01343
0.0136
10.05
30
3.5000
22.0
3.5000
15.70
0.01343
0.0097
5.86
60
3.0000
22.0
30000
15.80
0.01343
0.0069
5.02
250
1.5000
225
1.5000
16.00
0.01343
0.0034
251
1440
0.5000
22.0
0.5000
16.20
0.01343
0.0014
0.84
Grain Size Divtribubon Curve,BS
Approved b)*
TT C
1
I
fi*
-Jf- ' r*
I I ■«
/
»’"’«•P,oiM £lX-“LrD
Waterworks Design and Supervision Enterprise Laboratory
Service
^MfUTtsting^tctlon
Sim. Type; Disturbed
1 est Type : Double } lydromrter Date: 02/11/10
L-s"«sS"”9'1 !■< U^2
*>«*
Grain Srz» Dtotribution Corva.BS1
nin-f jP'tFf
«TTC
Water Works Design.
I
ni
jtcjh p«ind.
+ii
Mm+
Supervision Enterprise La
Service
So.U<& Material testing St
Project Nile Irrigation
and
Drainage
Project
Sun Type ■ Disturbed
t Client: Adds Geo Systems CO LTD Loauon upper Belles Storage I
BHNo. UBD-2 Dqithfm): 4 00-4 45
Vest Type • Wet Sieve * 1 lydrometei Date-.03/11/10
of sample hefc
oj sample aft
vr nwh, g
?r wash, g
236.50
201.70
i
JifW
Opmmgfm*)
Mail ct
Stevtfo
lass c pen ‘
Mast oj Ret. tfiil (g)
Pmtnfage
Retained
Cumniatm % Retained
~Pcvrentagc Passing
75.00
1800.00
1800.00
0.00
000
0.00
100.00
50.00
1205.50
1203.50
0.00
0.00
0.00
10000
57 50
1087.80
1087.80
0.00
0.00
0.00
100.00
25.00
1191.20
1191.20
0.00
0.00
0.00
100 00
19.00
718.50
748.40
29.90
12.64
1264
87.36
* i
i
12.50
586.10
625.30
39.20
16.58
29.22
70.78
9.50
598.40
613.30
14.90
6.30
35.52
64.48
4.75
578.10
605.90
27.80
11.75
47.27
52.73
2.56
533.00
556.60
23.60
9.98
57.25
42.75
2.00
551.10
556 90
5.80
2.45
59.70
40.30
1.18
538.90
554.00
1510
6 38
66.09
33.91
0.60
516.70
533 60
16.90
i
7.15
7323
26.77
0.30
488.20
502.00
13.80
5 84
79.07
20.93
0.15
481.90
492.00
1010
4.27
83.34
16.66
0.08
459.20
463.70
4.50
1.90
85.24
14.76
i
■»
PAN
425.50
460.40
34.90
14.76
100.00
0.00
Spea/ic Grant} oj soil
2.66
Test Temperature, depc 22
Efapstd
Actual
TtKpratxrv
Corrected
Effective
Coefficient
Grain
Percentage
j
Tint
(nio)
Hydrometer
Reading
<**<
Hydivmfter Reading
Depth
(cm)
K
5i^e
/mm)
Finer
Combined
i
2
20.0000
22.0
14.0000
14.00
0.01331
0.0352
8.43
5
18.0000
22.0
12.0000
14.30
0.01331
0.0225
722
15
165000
22.0
10.5000
14.60
0.01331
0.0131
6.3L
30
15.0000
22.0
9.0000
14.80
0.01331
0.0093_
60
14.0000
22.0
8.0000
15.00
0.01331
0.0067
5.42_
4.82
250
12.0000
22.0
6.0000
15.30
0.01331
0.0033
3.61
:!
U
1
1440
10.0000
22.0
4 5000
15.50
0.01331
0.0014
2Jj\
i
, t
I
I
i
j
I
J
I*
»
t
tt *T'r.C
«•**
__ _
p ^KI
J^?^COLTD
Water Works Design and Supervision Enterprise
Laboratory Service
.. ^bff ^Material Taiting Saction Sam. Type : Disturbed
Test Type Combine Graph Date: 03/11/10
I»«’’
Grain Stte D^tnbuOon Curvw,BS
kIiro-H FVFt
*TTC
JTCJH MUA-td MCHfrf
V
Project Nile Irrigation and Drainage Project Cbcnt Addts Geo Systems CO LTD Locibon; Upper Belles Storage I
BH-No. UBD-6
Depth(ra): 1.70-2.00
Total ntarr -jf
Water Works Desigr Supervision Enterp
Laboratory Servv Soil A Material
Sam. Type • DhtuAcd Type: Hydrometer (with k>
Dsie.OVU/10
60
Sim
Na
Srm
Mojj of V Sievtfe)
'osj of am -
K/r joi/(g)
Marr of 'Iff rati fa)
Pm**!#?
R/latned
No10
2.00
551.10
551.10
0.00
0.00
Cumulate
% WttiUned
0.00
JPajfiny 100C
N* 16
1.18
538 90
538.94
0.04
0.07
0.07
Na 30
0.60
516.70
516.81
011
0.21
0.28
99l
^995
No 50
0 30
488.20
488.81
0.61
1.14
1.42
98*
No 100
0.15
481.90
483.90
200
3.75
5.17
94 1
No 200
O.tt
45920
461.91
2.71
5.07
10.24
.
8SC
P*'
___________
2.58
0.00
0.00
0.00
0.00
O.(
Specific Grant} of jail
Tert Tf^pfrulifn,
22
EM'ci
Aetna* | Tenpratun
Corrected Effective
Coefficient
C >rain
-Prrrnitop
Towe
ima)
Hydrnnit"
R/adty
Hyden*"ter
Reading
Depth
(cm)
K
Siqa
(mmj
Viner Cofnbtnta
2
49.0000
22.0
43.0000
9.20
0.01364
0.0293
72.*
5
44.0000
22.0
38.0000
1010
0.01364
0.0194
64.
15
38 5000
22 0
32.5000
11.00
0.01364
0.0117
55.\
so
355000
22.0
29.5000
11.40
0.01364
0 0084
49.
60
325000
22.0
26.5000
11.90
0.01364
0.0061
44.
250
28.000C
1 22.0
22.0000
12.70
0.01364
0.0031 37..
1440
23.500C
) 22.0
17.5000
13.40
0.01364
0.001 J 1 29.Belles Storage I
Water Work* Design and Supervision Enterprise Laboratory Service
< SbffjA llaterfa/TeiWng Sectfon Sim. Type : Disturbed
TcjC Type : Hydrometer (with out sol’n) Date 01/11/10
mail oj famptt,
60
5**
9
(\pe* g(*P*3-
-^loo —‘ T7k
Mats of
5ievtfg)
Wats if tine ♦ R/r
Mass 4 rtPT w> *ttc JtCJH- P^nt-FA il?07frf
:•.•
Project
Water Works De»lgn Supervision Enterpr
Laboratory Servic Soil 4 Material Testing s
Nle Irrigation and Drainage Project
__ __ _ Add® Geo Systems CO. LTD Chart:
lotion Upper Belles Storage I BHNo UBD-6
Deplh(m):1 70-2.00
S*m Type Disturbed
Test Type Double Date: Ol/ll/io
Hydrometer
J
Grain Size Distribution Curvo.BS
1000
1.00
0 10
0 01
000
i
1. 1
I
Grain Siz4 |mm)
u
I
[
Gravel
Sand
Clay
i
>
•I J
1 j
I
I
I
I
IHurt fir?* Wit *TTC
PML+A a 7070-1
and Drainage Project
n ., Nile Irrigation l J
fl Adda Geo Systems
,BX Upper Belles Storage UBB-t
COLTD I
Water Works Design and Supervision Enterprise Laboratory Service
Sam. Type : Disturbed
Test Type : Hydrometer(with soTn) Dice: 02/11/10
Total mtusof f^P^&
60
\lanof™* ‘
Mass of
PflVMlag
Retained
Catanlafi*
Ret. sot!
% Retained
Penrntage
Paerin
551.10
551.10
543.11
0.00
4.21
1226
20*4
6.30
0.00
7.02
516.70
528.96
509.14
488.20
20.43
34.90
10.50
0.00
7.02
27.45
62.35
72.85
100.00
92.98
72.55
37.65
27.15 \
461.13
1.93
3.22
76.07
23.93\
(A VC
y _
0.00
0.00
f *7 uf iod
262
0.00 Test Tempm
0.00 itKH, df&C
0.00
22
r
TenpniUfre
( oerected
EffiOnft
Coefficient
Groin
Perventag
7m
Iff I
f'-h+wnetcr
dtAr
Hydrometer
Reading
Depth
(cm)
K
Si^e
(mm)
Finer
Combined
165000
22.0
10.5000
14.60
0.01347
0.0364
17.62
i
150000
22.0
9.0000
14.80
0.01347
00232
15~10
If
13.5000
22.0
7.5000
15.10
0.01347
0.0135
12.59
JO
13.0000
22.0
7.0000
1520
0.01347
0.0096
11.75
1
50
12.5000
22.0
6.5000
15.20
0.01347
0.0068
10.91
JO
11.0000
22.0
5.0000
15.50
0.01347
0.0034
8.39
(440
10.5000
22.0
4.5000
15 50
0.01347
0.0014
7.55nm-i
n6 C' 90°-9 00
Water Works Design and Supervision Enterprise Laboratory
Service
Soil A Material Testing Section Sam. Type: Disturbed
T D e ir st e T: 02/ ype11/ We10t Sieve + f iydrometrr
Grain Size Distribution Curve,69
A.|grt
w* *TTC w* , thiuh wr**
Water Works 0^
!> Supervision Enterp^'9"
Servin
So// & Mater/a/ TesjM »
P^.? N.telmgatK.nand Dra-nase Project (lent Addis Geo Systems CO. LTD Loctwn Upper Belles Storage I
BH-No U0O-7
Depthfm): 2.80-3.45
Sim Type : p„ lUf'
9 Secy,
Test Type: Hydros,«(with Date: 02/11/10
n;
Total nasj of .'amf>u>£ 60
SlfTf
M
StfVf
Mats of
SttOtfo
\
faJtofswe 4
Mass of
R//. sail (&
Perwttqgt
Rs tamed
Cm/ta/m % Retained
Percentage Passing
Ni/0
2.00
551.10
551.10
0.00
0.00
0.00
M 16
1.18
538.90
540.48
1.58
2.63
100.00
2.63
- ~9757
M30
0.60
51620
519.58
2.88
4.80
7.43
92.57
M50
0.30
488.20
490.22
2.02
3.37
10.80
89.20
No 100
0.15
481.90
482.90
/.oo
1.67
12.47
~8755
No 200
008
459.20
459.99
0.79
1.32
13.78
o.oo\
8622
0.00
0.00
0.00
0.00'
Spufc Grant) of toil 2.67
Tut Ttnepemtun,
22
fA4■
buspiea
Ami
Tenpratun
Comets d
F.tfatn*
Coefficient
Grain
Pernntag
Tint
("•)
liydrwmtrr
de^.c
JljdfMMtfT
RttldlH&
Depth
ft*)
K
Siy
tfnm)
Finer
Combined
2
55.0000
22.0
49.0000
8.30
0.01327
0,0270
81 30
5
54.0000
22.0
48.0000
840
0.01327
0.0172
79.64
15
52.0000
22.0
46.0000
8.80
0.01327
0.0102
76.32
30
50.5000
22.0
44.5000
9.00
0.01327
0.0073
73.81
60
49.0000
22.0
43.0000
920
0.01327
0.0052
71.34
250
46.0000
22.0
40.0000
9.70
0.01327
0.0026
66.37
1440
42.0000
22.0
36.0000
10.40
0.01327
0.0011
59.73
Grain Size DwVibutk>n Curvo.BS* rI”rn
.1 hioifr*
and Drainage Project
Water Works Design and Supervision Enterprise Laboratory
Service
So# A Maferfa/ Testing Section
Sam. Type: Disturbed
T D a a t teT :ype10/11/ Hydr10ometer^uith out soro)
60
rS.
iX
^-xc°LTD
, JPP«0«"e5SM^
ubd-
7
‘^250-345
ToUilmasiof
Rr/
Perrrnfage
Retained
CjVHUilfa*
% Retained
PtrvnUgt
Pairing
551.10
551.10
0.00
538.98
516.93
489.04
483.75
0.08
0.23
0.84
1.85
013
0.38
1.40
3.08
0.00
0.13
0.52
1.92
5.00
100.00 99.87 9948
459.20
461 30
0.00
2.10
0.00
3.50
0.00
8.50_____
goo]
98.08 95.00 91.50
0.00
y u:
JW
2.67
Ttft Tfmpfratun, de^.c 22
T
Corrected
Effective
Coefficient
Cna'n
Ptrctutage
j*
i <’M_l».
^anwler
Hydrometer
Reading
Depth
(eny
K
Si^v
(mmj
Finer
Combentd
1
24.0000
22.0
24.0000
12.4
0.01327
0.0330
39.82
1f
16M00
22.0
16.0000
13.7
0.01327
0.0220
26J5
hr-
9.5000
22.0
9.5000
14.7
0.01327
0.0131
15.76
1X
5.5000
22.0
5.5000
15.4
0.01327
0.0095
9.13
5.0000
22.0
5.0000
15.5
0.01327
0.0067
8.30
2.5000
22.0
2.5000
15.9
0.01327
0.0033
4.15
[ Tao 1.0000
22.0
1.0000
16.1
0.01327
0.0014
1.66
Grain Size Distribution Curve,BS
rnrn-H /“tPl UTTC JTCJ?
pontfd inmi
Water Works Desian
u Supe
rvision Enterprise Lt
4
Service
_ ____ ,*» • .iSl i
Nite Irrigation and Drainage Project
Soli
& Material Testing s
S»m. Type D
isturbed
Addis Geo Systems CO LTD
Upper Belles Storage I
Test Type
D»tc 02/H/10
HydrometctCwiih out v
UBD-7
Grain Size Distribution Curvo.BS
100.00
90 00
5* 8000
- 7000
• 6000
T 5000
♦* 4000
• 3000
g **
a. woo
000
001
0 001
1 4I
!
i
Gravel
01
I
Grain SLzalrpm) , Sand
I
J
/Water Works Design and Supervision Enterprise
Laboratory Service Soff 4 M^Sria/Testf^ Mectfon
n and Drainage Project
Li Ni""S,^COLTD
S*m. Type Disturbed Test lypc : Hydrometer Dire: 10/11/10
j6D-7
4 60-* 00
m&r of lamp k, f
60
3
Mau of
551.10 558.90 516.70 488.20 481.90 4 $9.20
’uav G^
rJ> jf ton /LhtjJ
d*i
7 */r/>rjX*rr
Corrected
Effective
Coefficient
Grau
Prmntdgt
I
r*
.wrl
^melrr
Hydrometer
Reading
Dtpth
™
K
Sqr
'aiij
Finer Combined
i
50.5000
22.0
445000
9 00
0.01414
0.0300
81.28
If
49.0000
22.0
43.0000
9.20
0.01414
0.0192
7854
r;
47,0000
22.0
41.0000
9.60
0.01414
00113
74.89
I»
45.0000
22.0
39.0000
9.90
0.01414
0.0081
71.23
*
44.5000
22.0
38 5000
10.00
0.01414
0.0058
70.32
I :« 41.0000
22.0
35.0000
10.60
0.01414
0.0029
63.93
Wl [ 38.0000
22.0
32.0000
11.10
0.01414
0.0012
58.45Water Works Desir,
S ^on
Laboratory Servjc *
p,
and Drainage Project Addis Geo Systems CO.LTD
s
S °"4 Maftial Tt^ng -
s
Loauon Upper Bedes Stooge I
BH-No. UBD-7
Depdi(m) .46
Stm. 1 ypc : Disturbed T«r Type: BydrOmctcr(wit. Date: 10/11/10
*^0
* ol'n)
loloi rums of simph.l
60
Grain Sirs Distribution Curve,BS
TtiltC by ;
1 ^-hdb).
styprvfvd h:»»**
Water Works Design and Supervision Enterprise
Laboratory Service
-n and Drainage Project Systems CO LTD
Sim Type Disturbed
Test type : Double Hydrometer Date: 10/11/10
J
USD-? ^4.604M
w°(*'
Grain Size Distribution Curve,BS* TTC
•> i
I
t, 7.'
r S. • Protect
Negation and Drainage Project Adds Geo Systems CO LTD
Cbent:
LoaDor. Upper Belles Storage I BHNo. UBD-2-US/1
Dcp 0.0(
0.00
100.00
j 538.9b
541 86
0.98
1.71
1.71
98.29
-------- MC
■""OX ' oTs
tz^
) 516.70
521.40
2.90
5.07
6.78
9322
' 488.20
491.28
4.70
8.21
14.99
85.01
481.90 " 459.20
484.64
308
5.38
20.37
79.63
459.20
0.00
2.74
4.79
25.16
74.84
0.00
0.00
0.00
0.00
Test Temperstart, de&.c 22
~Am>
T/npratart
CofTTiftd
Effecttoe
Coqfiatnt
Grain
Percentage
sn
•*' !
fa
Hydrometer
Dtpth
(«»/
K
Silt
(fa
Fnar Combined
1 17.5000
22.0
17.5000
13.40
0.01343
0.0348
30.71
f
12.5000
22.0
12.5000
14.20
0.01343
0.0226
2124
tj
1.5000
22.0
8.5000
14.90
0.01343
0.0134
1422
X
6.5000
22.0
6.5000
15.20
0.01343
0.0096
11.41
2» 2.0000
4.5000
22.0
4.5000
15.50
0.01343
0.0068
720
22.0
2.0000
16.00
0.01343
0.0034
3.51
1.5000
22.0
1.5000
16.00
0.01343
0.0014
2.63I®
Water Works De |
Supervision Ente ^
8 On
8
er Ce
• ■ »• * ■ ■
Laboratory s v? Soil & Material Tesfin
Pw
.
„ Ni»>'im9a«“"'’
«« Geo Systems C01TD
n,,D “™^Pr0|eC'
t<™,. upper Belles swage I
Sim. Type: Undisturbed 9 S*Ctl°° Test Type: Double Hydromete- Due: 11/11/10
;
BH-No. UBD-2-US/1
Depth(m):100-1 20Water Works Design and
Supervision Enterprise
Laboratory Service
So 'l & Material Testing Section ;
and Drainage Project
Sim. Type : Undisturbed
1 est Type : Hydrometer
Date: 11/11/10
■j4?' U0£> '
6 US/1
<00-120
f sample, &
60
"'Sv*''
tert")-.
"'200
- tTs
Mart of
Sttvafg)
fan of Jim
Rr/ .joi/tfj
Majj of
R//. iaJ (g)
PfraMap
Retained
Cmntiatiee
% Rstaiiud
Pmotqgt
Pajiinj
Ji-*
" 551.10
5)8.90
551.34
0.00
0.00
0.00
room
539.84
0.24
0.42
0.42
9958
------- ~060
516.70
518.10
0.94
1.64
2.06
97,94
' 0JO
488.20
490.13
1.40
2.44
4.50
9550
~ 0.15
481.90
484 14
1.93
3.36
7.86
92.14
*4 «W
459.20
45920
2.24
3.91
11.77
88.23
0.00
0.00
0.00
M
jjcfiCnP
0.00
0.00
,n ot tot/ 2.66
TfJt TtmpfralMrt, deg.c 22
Aftwi
TflfpnjntrT
Corrrctfd
Effective
Coefficient
Grata
Percentage
Tm
•m
tydnatfltr
Ka>^
dt&C
Hydrometer Readme
Depth
(cmj
K
Si#
(m)
Finer
Csmbtntd
500000
22.0
44.0000
9.10
001331
0.0284
76J3
J
450000
22.0
39.0000
9.90
0.01331
0.0187
67.84
13
40.5000
22.0
34.5000
10.60
0.01331
0.0112
6001
W
38.0000
22.0
32.0000
11.10
0.01331
0.0081
5566
a
35.5000
22.0
29.5000
11.40
0.01331
0.0058
51.31
M)
31.0000
22.0
25.0000
12.20
0.01331
0.0029
43.49
•no
280000
22.0
22.0000
12.70
0.01331
0.0012
38.27Water Works De |
8 ari
FAPt-H W"fr
S-P-v-ton E
Laboratory Servi “
c
Prit
rr^«’n and Dramage Project
Add® Geo Systems CO LTD
Upper Belles Storage I
x So#t*»««
BH-No. UBD-6-US/1
Depth(m): 1 20
maji oj sample. &60
Sieve
Nt
Mojj of
Sieved
iiJJ Of HM
R/r.jwV^
Maj j of R/7. soil (gj
Percentage
Retaited
Cnmnlattm
% Retained
" Nt M
2.00
551.10
551.22
0.00
0.00
0.00
PtrUHfagt Pasting
100.00
1.18
538 90
539.80
0.12
0.21
0.21
99.79
NH0
060
516.70
518.67
0.90
1.57
1.78
9822
030\
488.20
490.63\
1.97'
3.43
5.21
94.79
Nt 100
0.15
481.90
48433
2.43
4.24
9.45
90.55
Ne200
0.08
45920
459.20
2.43
4.24
13.69
86.31
pan
0.00
0.00
0.00
0.00
ooo
\ deg.c 22
Ehfued
Actual
Tenprutnrt
Cnrrrcted
Effective
Coefficient
Grain
Pervtnfagt
Tone
(mJ
R/Jity
Hydrometer
Redoing
Depth
M
K
(mm)
Piner Combined
2
18.5000
22.0
18.5000
13.20
0.01331
0.0342
32.18
5
12.5000
22.0
12.5000
14.20
0.01331
0.0224
21.74
15
8.0000
22.0
8.0000
15.00
0.01331
0.0133
13.92
30
6.0000
22.0
6.0000
15.30
0.01331
0.0095
10.44
60
4.0000
22.0
4.0000
15.60
0.01331
0.0068
6.96
250
1.5000
22.0
1.5000
16.00
0.01331
0.0034
2.61
1440
1.0000
22.0
1.0000
16.10
0.01331
0.0014
1.74-
■Ol'TC
Water Works Oealgn and
Supervision Enterprise
Laboratory Service
i-?.Spff 4 Mitefaffating section
■^nSt^1 and Draina9B PrOieCt
Sim. Type: Undisturbed
Test Type : Double Hvdrometer Date: 11/11/10
1 00-1 20
.Appmtd bfI
nan wf mv; *ttc j?c#
P-IHd-fd A701lbf i
rut rvwrtM '
fu
Water Works Design Supervision Enterprise Ubc™nR.
Service
7? Soil * Material Testing Section
Nrie Imgabon and Drainage Project
Sim Type Undisturbed
Profit:
Client: l.odDon
Addis Geo Systems CO LTD
Test Type-.Hydrometer
Upper Belles Storage I
Date : 11/tt/tO
BH-No. UBO-6-US/2
Depth(m): 3 40-3 85
Total man o'.
60
Sieve
No
Sinn
Mau of
Sifted
Mass of
RrA sot! (&)
Percentage
Retained
Citrnnlattm % Retained
Percentage
Pasting
No 10
2.00
551.10
551.67
0.00
0.00
0.00
No 16
1.18
538.90
546.09
0.57
Moo
0.98
0.98
99.02
No 30
0.60
516.70
534.27
7.19
12.39
15.57
866)
No 50
030
488.20
494.93
17.57
50.27
43.64
56)6
No 100
0.15
48190
484.57
6.75\
11.60
55.24
44.76
No 200
0.08
459.20
459.20
2.67
4.60
59.84
40.16
pn
000
0.00
0.00
0.00
000
Etyrtd
Actual
Tenprufnrt
Corrected
Effective
Coefficient
Grain
Percentage
Ton
■mtn
Hydrtmder
R/iii/rn^
i lydrometer
Reading
Depth
(c»)
K
Si^f
frnm)
Finer
Combmed
2
20.5000
22.0
14.5000
15.90
0.01559
0.0353
25.04
5
18.5000
22.0
12.5000
14.20
0.01359
0.0226
21.59
15
16.5000
22.0
10.5000
14.60
0.01559
0.0132
18.13
JO
16.0000
22.0
10.0000
14.70
0.01519
0.0094
17.27
60
15.0000
22.0
9.0000
1480
0.01559
0.0067
15.54
250
15.5000
22.0
7.5000
15.10
0.01 J 39
0.0033
12.95
1440
12.0000
22.0
6.0000
15.50
0.01339
0.0014
1036
Grain Size Distribution Curve,BS
I
I
10
GfBV«l
1 0.1
Sand
Grain Sizej (mm)
0.01
SIH
0001
-J L-- X----- Z-----s--- js- l
tested by:
Checked by :
Approved by :
!
If
L s'
L, u81s *ttC
’“‘"^Xs.emsCOlTO
OBOES'?
340-3 85
Water Work, D«ian ,nd
i SuP«vialon Enterprise laboratory
Service
i ?i.Spn 4 Testing Section Sam Type: Undisturbed
Test Type Hydromcterfwith out sol'n) Date: 11/11/10
Kr/
Mass of R/f. soil &
Cjatniadvr % Ullawd
o&jffL ^200 - Hi
Mau of ’ 551.io
Pmsas^p
Pawn
551.58
544.44
0.00
0.48
0.00
0.83
0.00
100.00
0.83
99.17
516.70
554.29
5.54
955
10.37
89.6)
—olo ------- 0T5
48820
497.49
17.59
50.51
40.68
59.32
48190
485.46
9.29
16.01
56.69
45.51
oox
459.20
459.20
3.56
6.13
62.82
37.18
0.00
000
0.00
0.00
0.00
Li——t
Actual
TfK^ a7urt
r
Corrected
Effective
Coefficient
Gnua
Pfrcrit!af<
*31,'
plydrorntter
RsadOft
Depth
(an/
K
Sl^t
imn;
Finer
Contbmtd
11.5000
22.0
11.5000
14.40
0.01339
0.0359
5
19.86
75000
22.0
7.5000
15.10
0.01339
0.0233
12.95
i 11
5.0000\
22.0
5.0000
15.50
0.01339
0.0136
863
0
JO
4.0000
22.0
4 0000
15.60
0.01339
0.0097
6 91
2»
2 5000
22.0
2.5000
15.90
0.01339
0.0069
4.32
10000
22.0
1.0000
16.10
0.01339
0.0034
1.73
l«o
0.5000
22.0
05000
16.20
0.01339
0.0014
0.86
Grain Size Distribution Curvs.BS
i'a
i1nabl /Ml AW? *TTC ACA
Wt-Fd A707rt-+
Sam. Type Undisturbed Test Type D°ub'c Hydrometer Ehte-.U/U/W
Water Work* De*|9n and Supervision Enterprise LabOrtv^
Service
Soil & Material Test,n Secton
9
Pnixt
Nile Irrigation and Drainage Project
Chait:
Adds Geo Systems CO LTD
Ix»aoon: Upper Belles Storage I BHNo. UBD-6-US^
Dcpth'm): 3 40-3.85
Grain Size Distribution Curve,BS
100 00
90 00
80 00
70 00
60 00
5000
40 00
30 00
20 00
1000
000
10
1 0.1
0 01
0001 ooo
Grain Sizetfnm)
Gravel
Sand
Silt
Clay
Tultd b) Checked by.FtrW WW IlTTE
## "Mi hltHfr+
Water Works Design and
Supervision Enterprise
Laboratory Service
' ■r
-
r
title irr-i^gtafon tionanadndDrDarina;inage Project Adds Geo Systems CO LTD
Upper Belles Storage I U0D-7-US/1
120-145
Total mass ofwrplt, £
Sam. Type: L’nduturbed Test Type : Hydrometer Date: H/ll/W
60
Mast«/ Sievefa
551.10 558.90
~ 516.70 488.20
481.90 459.20
(Air of neve Ret
554.04 541.59
518.Q7 488.76 482.17 459.20
0.00
Marr of
R/r. soil
aoo
2.94 2.69
1.37 0.56 0.27 0.00
Ptntntye Retained
0.00
5.15
4.72
2.40 0.98 0.47 0.00
Cttwnirtnv
% Rftaincd
0.00
5.15
9.87
12.27 13.25 13.73
0.00
PrrvtHLig' Pii;::ng
100.00 94,85
90/3
87,73
86.75
86.27 0.00
7yJ zbiiu/
IjJtTmpfratMrr, Jtf.c
Tftp mt art
Corrtrttd
Ejfrrth*
CtcffiatHf
(rrm
Pmtnfag
—X—
1
an.
Hjdwwftr
R/a£tj
Hydrofifter
Depth
(an)
K
Inn)
Finr
Ctnbintd
t
535000
22.0
47.5000
8.50
0.01339
0.0276
83.47
5
525000
22.0
46.5000
8.70
0.01359
0.0177
81.71
515000
22.0
45.5000
8 80
0.01339
0.0103
79.95
f
505000
22.0
44.5000
9.00
0.01559
0.0073
78.19
0
50.0000
22.0
44.0000
9.10
0.01559
0.0052
77.32
?W
495000
22.0
43.5000
9.10
0.01339
0.0026
76.44
49.0000
22.0
43.0000
9.20
0.01339
0.0011
75.56
Grain Stea Distribiftton Curva.BS
nn
Approv'd by
-y0
rnubi wl W* *TTC
stjtt MUfrH MOTH-
ru e
■ * <
is/*.
Sofr.fc Mate^
L ‘^ x^
s
Project Nile Irrigation and Drainage Project (j^at. Addis Geo Systems CO.LTD
Loaaorr Upper Belles Storage I
BH No. UBD-7-USH
Depth(m): 1 20-1 45
Sam ■*> SZSd®® S<*uon •.
T«tType H
; ydfon)e c
,
Dale; 11/11/10 WUlOu‘^n)
Total wi ojsamffo. jj 60
Sv*
No
Sint OfinatfMitji
2.00
1.18
Mojs of
'ajj of rieve
R// .joil(g)
554.09
542.15
Man of
Rrf. nil
Ptrrrntaff
Rrtatned
% Rrio/^ejl
Nt fO
551.10
538.90
0.00]
MM
OOO
2.99
0.00
524
Ni 50
0.60 51630 518.29 3.25 5.70 10.94 8906
Paijir.;
10()Cu\
94 76
No 50
0)0 48820 488.81 1.59 2.79 13.7V 86.27
N# 100
No 200
015
0.08
481.90
459.20
482.10
459.20
0.61
0.20
1.07
0.35
14.80
15.15
85.20
84.85
fan
0.00
000
0.00
0.00
0.00
Specific Gravity of loti 2.64
Tert Tempe ratnrt. i/rr r 22
Eiapted
Ttnpntfxn | Corrected
Effort:™
Time
(min)
Ptntnlag
Viner Combined
2
5
15
50
60
Actual
Hydrwter vaadtn^
23.5000
20.0000
15.0000
12.5000
10.0000
6.0000
22.0
22.0
22.0
22.0
22.0
22.0
Hydrometer
Reading
23.5000
20.0000
15.0000
12.5000
10.0000
250
6.0000
12.40
13.00
13.80
14.20
14.70
15.30
Coefficient
K
0.01339
0.01339
0.01339
0.01539
0.01339
0.01339
Grain
Si^t (mmj
0.0333
0.0216
0.0128
00092
00066
0.0033
41.29
35.14
26.36
21.96
17.57
10.54
1440
4.0000
1 ^0
4.0000
15.60
0.01339
0.0014
7.03
Grain Sire Distribution Curve,BS
*
c
10000
9000
BO 00
7000
iu
**
60 30
5000
c
£
4000
30 00
20 00
1000
ooo
T«rt^ by:______A*^__
1 - >■fmil *’
rT c
.
Water Works Design and
Supervision Enterprise
Laboratory Service
Soil & Material Testing Section
_ *' S>SV«»
n
m,COLT
Smti. Type : Undisturbed
D Te a s t t e: T11/ ype11/: D10ouble Hydrometer
'■>
H* j 20-1 45
Grain Sire Dtetri button Curve,BS
I
10
1 0.1 001
0001 000
Gravel
Sand
]
Silt
J I
slppwti by :______ •V’-
rat nft ♦TTTE
e"
jrtJH
M1U+
T«s 251-116 18 55
Waterworks^ Supervision Enterprise Cem
Laboratory Service’^1
Soil&NlitwlUTittjnf. -
♦501
Se ^ion
F W 251 -116-61 53 71«1 08 98
«+ waMt HtH
1191*4
'
Water Works Design and Supervision Enterprise Central
Laboratory Service
MZ/7
f^A .^.
Td 251 - 116-18 55 16«1 45 011
Fax 251 - 116 - 81 53 71*61 08 98
P.O Box 2561
Addis Ababa
Ethiopia
'on
e-mail w.w.d-t.eQethlonetet
Project
Nite Irrigation and Drainage Project
Client:
Addis Geo Systems CO LTD
Locabon Upper Belles Storage I BH No : UBD-7
Depth (m): 2.60-3.45
LIQUIO ANO PLASTIC LIMH DETERMINATIONS
DATA AND COMPUTATION SHEET
Sampte type Undisturbed Test type Atterberg Limit Date 28/11/2010
I pc of test
LL
LL
LL
LL
ComeifwNo
156
350
386
24
No. ol Btowi
36
29
23
15
W.tf sample ♦ Tare war
34.400
35.580
36.720
“ 37 530
WLof sample ♦ Tare dry
24.760
25570
25.970
26 320
Wt Of water
9.640
10.010
10.750
11 210
Tara
14240
14 890
14 660
14 750
wtofdry sol
10.520
10.680
11.310
11 570
Water content %
91 635
93 727
95.049
96 889
Type of mt
PL
PL
Container No
98
148
W Of sampit ♦ Taro we*
29 660
29 800
VM of simple ♦ Tare dry
26280
24 890
VM of water
4.580
4.910
Tire
14.900
13.860
Of dry Mil
10.380
11.030
Water content %
44 123
44 515
44 319
Flow curve
Result
LL_ 94.14% p L 44.32%~ PI 49.82%
Tested By
Checked ByjtfJW HTTTC
**»»”*
Water Works Design and Supervision Enterprise Central
Laboratory Service
fW"
rui/w
^
Tti 251-118- 1B5!
251- 110-1855 16/61 45 01
fFl>t, 225511-■111816-0. 1 53 71/61 08 98
, t--mmitHU ww..ww.dd..ft..ee@e Qetthhlloonneett..e,,t
NHe Irrig«aftlnion; and Dra-i-n--a-g--e Project ’^7 Adda Geo Systems CO LTD
'* upper Belles Storage I U8M
Addis Ababa
Ethiopia
Sample type Undisturbed Test type Atterberg Limit Date 28/11/2010
;r ^Mnos
^COMfVT^TfON SHEET
------ -r-
LL
341
Ctqw m?
34
IX
100
23
M^irc*•Tot wt
31 370
32 430
K/iry ♦ fom g-z
25 290
25.910
‘ 6.080
6 520
35.590
27.900
7690
15.110
ZEZ
16
36.570 28.360
8210
WfuMF _________
14.790" 10.500
37.905
14.880
14 980
lUfTUi
11 030
12 790
13.380
59.112
60.125
61 360
Pt
PL
CWfrNc
77
128
Mb ww ♦ T*n» w*t
31.^40
31.470
tiurpw* Tare (fry
27.180
27 040
wy«m
4.360
4.430
*n
15060
14 820
12 120
12 220
*» onrts
35 974
36 252
36 113
Fk>w curve
Result
L.L 59.52% PL 3611% P.l 2341%
fIW r*.PT AIM? ♦TTTC KJH mMt Hltd
irrnf v\y
rtUrrwXtfT itaA I 'M/2
Water Works Doalgn and s Supervision Enterprise Centri 4 Laboratory Sorvlce
T«* HI- 116-18 55 16351 4501
F«t Mt • 116-61 S3 71«t 08 98
w w dieftethlonet »t Prced Me iTuatKxi and Drainage Project On;: Addis Geo Systems CO LTD LocsXn Upper 6ete$ Storage I
BN No : UBO-7
DepCh(nt) 4 604.60 IIOUOANCRASTICIMT CETtRiaHKTlOKS
DM AND COMPUTATION SHEET
Soil AMeteriai Tutlhg Settlor,
P 0 Box 2661
Addis Ababa
Ethiopia
Sample type. Undisturbed Test type Atterberg limit Date 28/11/2010
Tywtf test
LL
LL
LL
LL
DonanerNo
74
114
131
178
No of Bfcer.
33
28
22
15
MtfttTpfe* T«tw*
28 350
29.620
30260
31.910
same* ♦ Tn 6.y
22 090
22 700
23150
23.990
Mdsiv
6 260
6 920
7.110
7.920
Tbv
14.370
14.390
14.740
14 750
dry d
7 720
8310
8410
9 240
81088
83.273
84 542
85.714
TjctdM
PL
PL
CarsBhet Na
385
131
Mcf samp* • Tan wet
26 650
26.510
Wd srrfc ♦ Toe dry
23 810
23 800
W.cfwttr
2 840
2.710
Tse
14 590
14.770
•rtf Gy si
9 220
9.030
Svrtrccrtwt*
30.803
30.011
30 407
Rew curve
X 88.000
5
c
8
a?*
• 0
2
84 000
82000
80 000
Result
L L 83.30% p.L 30.41% PI 52 89%
Tested By Checked Approved ByiW vrrrg
Water Works Design and Supervision Enterprise Central
'trSF? Laboratory Service
* tun* 1
aitTtl 251 ■ 116 • 18 55 IM1 45 01
fff 251 -116-0153 71381 00 gg
w.wd.9.9&*thlon*tot
t NM Imgabon and Drainage Project Addis Geo Sy sterna CO LTD Upper Beles Storage I
fij; UBD-2-US/1
■fpfiml 1.00-120 guveMsncuuiT
pl UC COMPUTATION SHEET
U.
Soil
r**Uw SeOJon
P.OBm 2581
Addis Ab«be
Ethiopia
Sample type Undisturbed Test type Attertoerg Umtt Date 10/11/2010
(J**1 *_______
vTitw________
K/WW4 To wK
^furpt • T*9 pry
_________
n
r-netet
4501
i
Projecf Nile Irrigation and Drainage Project Cbent: Addis Geo Systems CO LTD Location Upper Belles Storage I
BH No : UBD-6-US/1 Depth (m): 100-1.20
LIQUCAND PLASTIC LIMIT DETERMINATIONS
DATA ANO COMPUTATION SHEET
Water Works Design and
Supervision Ente-rpr „—«is-e>— - ' r..^Cen
Laboratory Service SdU&xMateriW Testing Sec®.
P.O.Box 2561
Addle Ababa
Ethiopia
Sample type Undisturbed Test type Atterberg Limit Date 10/11/2010
Type of test
PL
Pt
1
Container No
147
52
VT of samp* ♦ Tero wX
29.750
“29.770
W o< sample ♦ Tare ary
25.910
25.830
Wo
AMs Geo
Geo Systems CO LTD
Upper
Belles Storage I
Water Works Design and Supervision Enterprise Central
Laboratory Service Soil & Material Testing Section
POBox 2561
Addis Ababa
Ethiopia
Sample type Undslurted Test type Atterberg Limit Date 10/11/2010
a* ■* iaiflv
UBM-US/2
340-3 85
.. PLASTIC IMT
ifA^OhS
yVMC COMPUTATION SHEET
raw*' FUTk»
LL
141
LL
361
LL
“ 528
30
~22~
16
» Taraj*^
34 390
35 9CC
36 920
29 220
30 270
30770
5.17C
5.630
6 150
14 640
15 160
14.890
14.580
15 110
15 880
*
34.245
35.460
37.260
38 728
PL
PL
CrrxiHc
53
187
^Jiircw ♦ Tan we*
29 830
29 81ft
* Tan dry
26.630
26 480
3 200
3.330
*n
15 06C
14 600
•frrrywi
11.570
11 800
27 658
28 030
27 84
Result
LL 3438% PL 27.84% PI 654%
f1
I
Wl IUH NUM 4TTTC
KIH 1WTC
kWTH
'
p.
1 %i
Water Works Design and Supewteion Enterprise Central
Laboratory Sendee
'7 . Soil & Mortal Testing Section
Tel 251- 116 -18 55 16/81 45*01 POBcx 2561
1
*
I
Fax. 251 -116 - 81 53 71/61 08 88 KMil w.w.d.s.eQethionetet
Project. Nie irrigation and Drainage Project Client: Addis Geo Systems CO LTD Location Upper Bettes Storage I
1 BH No. UBD-7-US/1 c Oeptr (m). 1.20-1.45
UQUID ANO PLASTIC LIMIT
Addis Ababa
Ethiopia
Sample type. Undisturbed Test type Atterberg Limit
Date 10I11Q010
\
1
.I
4
DETERMINATIONS
DATA AM) COMPUTATION SHEET
frypt o# test
~
r
PL
iCornmw He
168 |
319
bMotumole * Titewtrt
26 316 1
28.300
IWId wmplt* Tin dry
24.370 |
24.170
nMotwaer
3.950
4.130
I Tan
15.370
14 860
|*A of dry sort
9000
9310
ftater ortantX
I 43.889
44 361
44.12
Ftowcunn
1
1
I
I
111.000 !
* HO MO ■
J 1W000
5 100.000
t 107 000
11 os 000
1 105000
104 000
Result
I L 107 95%.
PL 44 12%
PI 63 83%
1
1
Tested
1
i
I
Checked B^
*WovedByauction
10 ln^ Summery of laboratory test result of soils taken from Upper Belles T hisfepOft ?rf) Sit® ” A of feasibility study for Nile Irrigation and Drainage project. The
, are Gram S'
. l0oge da
Analysis, Atterberg Limit, Linear Shrinkage, Natural Moisture
jesi re50S'1 ulphate Con e t water extract from soil and Dispersion test by Pin Hole The
Contflafni'vsis are 030100
f.f Stan dard Procedures so’ana y
-ere i"
‘ GrairTSize Analysis Atterberg Limit Linear Shnnkage
following the appropnate sample preparation and testing ,_rH Drocedure followed to carry out the analysis is presented
Standard
BS Test 7(B)
f
5
Natural Moisture Content
Sulphate Content water extract from Dispersion test by Pin Hole
W
Linear Shnnkage
Turbidity Meter Method Berard eTaT(l 976)I
Parameters
UBD4
(0.30-1.(Him) S.No-1
Nile Irrigation and Drainage Project (Lipper Beles Storage Dam)
Summary of Test Results
Date: 11/01/2011
UBD4 (1.00-4.00m)
S.No-2
UBD4 T (6.30-7.00m)
S.No-3
UBD4
(9.00-9.50m) S.No-4
UBD4 (13.00-14.00m)
S.No-2
UBD4 (17.80-18.25m)
S.No-6
Grain Size Analysis
Clay %
Silt %
Sand %
Gravel %
12.00
16.79
8.48
62.73
9.00
27.22
14.45
4933
2.00
2.69
57.67
37.64
30.00
37.66
11.49
20.85
44.50
52.01
3.49
-
7.00
75.91
17.09
-
Atterberg Limit
Liquid limit %
Plastic Limit %
Plasticity Index %
-
•
-
20.35
17.20
3.15
67.97
28.89
39.08
72.60
33.35
39.25
•
-
Linear Shrinkage (%)
-
-
-
20.36
20.54
____________________
1 Natural Moisture Content (%)
-4
-
•
:
I
1
1 . -1
__
1
| Sulphate Content water 1 extract from coil (meq /1)
-
30.55
1 ■ 1 ~ /
I
1 Dispersion test by Pin Hole 1__ I
ND!
NDr
. ND! J ND< ■
L
____
Ss* -t
1fVilc frrigataon anil Drainugc Project
r~" S.No-7
(Upper Beles Storage Dam)
Summary of Teat Results
Date: 08/12/2010
1 UBD4
(21.30-2230m)
UBD4 (26.20-26.60m)
S.No-8
UBD4 UBD4 UBD4 VBD4 \ (29.40-30.00m) 1 (1.00-1.45m) \( (10.00-10.45m) ( ll.90-n.35m)
S.No-9 SPT-3 < i SPT-2 SPT-1
1 Grain Size Analysis
Clay %
Silt %
Sand %
Gravel %
1.64
13.46
23.80
61.10
5 50
32.66
45.23
16.61
15.00 49.98 16.50
7.00
36.86 47.36 81.50 17.82 |
48.14
-
2.66 2.00 13.87
-
-
61.31
Attcrberg Limit
Liquid limit %
Plastic Limit %
Plasticity Index %
-
•
-
-
-
-
51.42
29.03
22.39
•
77.28 74.28 32.08 37.23 45.20 37.02
Linear Shrinkage (%)
•
SB
•
13.57
23.21
21.07
Natural Moisture Content (%)
•
-
-
27.25
33.18
42.24
Sulphate Content water extract from soil (meq / 1)
■
•
•
■
-
33.18
Dispersion test by Pin Hole
ND,
___________
-
ND.
--------
ND.
ND.
-
ND- Non Dispersive
Checked By Approved By Nile Irrigation and Drainage Project (Upper Belcs Storage Dam)
Summary of Test Results Date: 08/12/2010
Parameters
UBD4
(5.40-6.00m) S.No-1
UBD5
(6.60-7.00m)
S.No-2
UBD5 (8.00-10.00tn)
UBD5 (1.00.1.45m)
S.No-8
UBD5
(2.90-335m)
S.No-9
Grain Size Analysis Clay %
Silt % Sand % Gravel %
3.50
8.82
49.01
38.67
0.44 Fine Gravel 0.08% 7.52 Medium Gravel 3.13%
35.07 Coarse Gravel 96.79% 56.97
4.00
11.32
8.18
76.50
9.50
16.11
10.37
64.02
Atterberg Limit Liquid limit % Plastic Limit % Plasticity Index %
•
•
•
28.72
18.87
9.85
-
-
Linear Shrinkage (•/•)
-
-
1
1
Natural Moisture Content (%)
Sulphate Content water
' extract from *oil( meq /1)
Dispersion test by Pin Hole
•
-
■ 1 20.66
-
63.33
32.01
31.32 |
26.90
_____________ 1 32.97 I
_ •
1
- -C<
S'*
1
■ I
ND, 1 nd4Water Works Design and
. Supervision Enterprise Laboratory
Service
^ Drainage Project(Upp
er Betas Storage Dam)
^”8PK
SC_a_m_ 1. No: 1
(S
Sam. Type: Disturbed
^ B*S
Test Type : Wet Sieve + Hydrometer
UBO*
Date : 15/12/10
Total mass ojiamplt Rrfon vaih . j
Tntal man of tempi' Afttf Hash , g
r X«»»/
H TmTq) 12QJ-W
~7i9l20 718.50
M f' *" *
Rr/
.
Man o f
Rif. soil fa)
1800.00
1205 H>
586.10
"59840
57810
236
1H
060
dfO
035
(M
pan
srcnc jf /■___
t
53300
551.10
538.90
516.70
488.20
48190
459.20
1087.80
1224.20
791.50 O Z£9I t.fiUf)
~~608.40
605 10
543.50
551.10
546.90
522.20
492.70
486.40
462.20
0.00
000
0.00
H 00
75.00
35.00
10.00
27.00
10.50
0.00
8.00
5.50
4.50
4.50
3.00
P'rrrntage Attain'd
0.00
0.00
0.00
10 98
24.29 11.65
3.33
8.99
3.49
0.00
2.66
1.83
1.50
1.50
1.00
% Rftent'd
0.00
0.00
0.00
1098
55.27 46.92
50.25
59.23
6273
6273
65.39
67.22
68.72
7022
71.21
300.50 214.00
Pmntegf Pairing
100.00
10000
10000 8902 64.73
33.08
49.75
40.77
37.27
37.27
3461
52.78
31.28
29.78
28.79
425.50
512.00
86 50
28.79
100.00
0.00
2.&4
Tfriprafurr
Test Temperature, deg.c 22
Artmtl Hjdtnntttfr
370000
MOW 320000
20.0
20 0
20,0
20.0
20.0
Corrtcud
f lydromttrr
Rtadiiig
30.0000
27.0000 250000
23.0000
19,0000
17.5000
14.0000
11.90
12.20
12.50
13.20
Cotffidtnt K
0.01293
0.01293
0.01293
0.01293
0.01293
Gnuii
Jqr
0.0309 0.0199 0.0117 00083 0.0061
13.40
.'Wai?, o.oojo
Ptnmlagt
Filter
Combined
22.15 19,93 18.45 16.98 14.03 1292 10.33now rtf* mum *ttc ire
MPt+A »w
S °H 4 Material Project Hie Irrigation and Drainage ProjectfUpper Bales Sto --------------------
Jraoe Dam\
Tt '
na/ 1
Ghent: Addis Geesystems Pic Location : Upper Befes
BHNo. UBCM Depthfm): 030-1.00
-Sam. No ; 1 Dam)
Sam Type: Disturbed Test Type Combined Date; 15/12/10
Graph
Grain Size Distribution Curva.BS
10 1 0.1 0.01
Grain Srze
I J
I
j
!
9i
TtJlcJ b ••____ ' TT1 Cbtchd by •_
I1Water Works Design and Supervision Enterprise Laboratory
Service
4, ,.....
. Drainage Project(Upper Beles Storage Dam)
^i^’u"aPK
Pk;
> ^rBeles
Saw. No: 3
Sam. Type: Disrvrbcd
'fest Type : Wet Sieve 4- Hydrometer Date: 15/12/10
Toto/ mass of samplt Btfen wash, p
Tata/mass of samp/t After wash, p
MOSS of
i R/A son' £
1800.00
1087.80
59840 578.10 53300 551.10 538.90 516.70 488.20 481.90 459 20 42550
Aifad
3wnn• . *
< X-i'W 5
x\ V z' -Vj <*•.•jnd JWater Works Design and
Supervision Enterprise
Laboratory Service
Drainag Project( Upper Betes Storage Dam)
e
**“ items P,c
Sam No : 4
Sam. Type Du curbed
Test Type Wet Sieve + Hydrometer Date: 13/12/10
Total mass of lamplt Btfon wash, £
of sampU Aftrrwash, g
1800.00
Total mass < Mass of
Rtf. soil @
0.00
Pentatapr Rtldimd
0.00
GMvhtrrr % Pa taint 8
0.00
23500 76.00
Pemnfage Passing
10000
0.00
0.00
0.00
0.00
0.00
0.00
0.00
000\
100.00
10000\
597.10
[90
586.10
533.00 55110 538.901
555.50
551.10
552.40
11.00
7.50
8.00
2250
0.00
0.00
0.00
4.68
7.87
1128
20.85
20.85
100.00
100.00\
9532
92.13
88.72
79.15
79.15
13.50
26.60 '
516.70
488.20
523.20
490.20
6.50
2.00
0.00
0.00
4.68
3.19
3.40
9.57
0.00
5.74
2.77
0.85
2936 '
7340
7064
30.21 "
69.79
481.90
45920
425.50
484,90
461,20
584.50
3.00
2.00
159.001
1.28
0.85
31.49 “
32.34 ~
68.51
67.66
67.66 '
ioooo[
0.00
Tut TemptratoTr, 4/g
Tfnprj/t.rt |
I
HyhiKirr Kfdartg
430000 38.0000
Tlffectivt
Depth
20.0
20.0
Corrtcftd Hydrofncttr
37,0000
32,0000
c 20 Gnua
1020 0.01318 0.0298
11.10 0.01318
0.0196 55.30
20.0
20.0
29.0000
26.0000
11.50
12 00
0.01318
0.01318
0.0115
0.0083
24,0000
i^oooo
16.0000
12.40
0.01318 \
13.20\
0.01289\
00060
0.0030
50,11
44.93
41.47
32.83
0.0013
27.65)
i
nm-i rvrt Jinn'; *ttc
Water Works Design;
jrc#+ MPtH *w
Supervision Enterpn
Laboratory Service
_ <5t T~»z'» Project: Nile imgaton and Drainage Project)Upper Beles Storage
Soil & Material Testing St
i
O
r'-"1
”Sim. No : 4
Sam Type : Disturbed
<
Client. Location
Addis Geosystems Pic Upper Betas
^®nt)
BH No. UBD-4 Dcpih(m): 9.00-9 50
Test Type . Combined Graph
Dale: 09/11/10
?
I,KS
ns *i"[c
r1
t MA’’**
Water Works Design and Supervision Enterprise Laboratory
Service
Toting s^ctibn^ b
Total v
projec((Upper Betes Storage Dam) Sam. No: 5
Sam. Type: Disturbed Test Type : Hydrometer Dace: 15/12/10
f sample, g 50
551.10
5)8.90
459.20
2.67
551.10 539.20 517.15 488.57 482.23 459.48 \
0.00
• Mass of
)
0.00
0.30
0.45
0.37 0.33 0.28 0.00
Ptrtnto# Retaiited
CMftfulatnr
% R/£tJr**/
0.00
0.61
0.91
0.75
0.67
0.57
0.00
Tut Ttrnpenifan, dq.:
0.00 0.61 132 2.26 2.93 3.49 0.00
20
Pmmtaff Pacing
100.00
99.39
98.43
97.74
97.07 9651
000
Effective
Depth
(<*)
Coefiatnt
Gnu it
jb J tronmrter
TtnprjtapL
*8‘
Corrected
Hydrometer
St^t
Penrntagf
Filter
1W1
Rea dr
mm
Combated
4 425000
7 40.5000
20.0
35.5000
10.50
0.01357
0.0311
7628
if 15.0000 Jl.OWO
20.0
20.0
20.0
20.0
33.5000
30.5000
'28.0000
24.0000
10.80
11.30
11.70
12.40
0.01357
0.01357
0.0135?
0.01357
30
’W
285000
25.0000
22.0
20.0
22.5000
12.60
0.01327
0.0199
0.0113
0.0085
0.0062
0.0030
71.93
6553
60.16
51.57
43.35
18.0000
13.30
0.01357
0.0013
33.68nan rtPT *ttc tnntH moiih
Mxr jfWWiJf
, Wator Works Dea,
i supervision Enterp*?? ’nd
ServICe Lab°r
Project; Nile Irrigation and Drainage Project(Upper 8eles Storage Dam)
Sec^
Client: Addis Geosyslems Pic Loauon Upper Beles
BH-No UBD-4
Depth(m) 17.80-18-25
Sam. No : 6
Sam. Type : Disturbed
Test L*vpe : 1 lydrometer
Date: 13/12/10
Tola/ mass ofsamph, 50
Sieve
No
Stevt
Mass of S*t*(&
ass of ntvt Kr/ .soi/fgj
Mass of Hr/, soil (gj
Pentfrtajp Retained
CnmnUtj^ T % Rr/aj/rrJ
Penctnta#
No 10
2.00
551.10
551.10
0.00
0.00
No 16
1.18
558 90
544.07
5.17
5.82
0 00
3.82
9 A IQ
No JO
0.60
516.70
527.90
11.20
827
12.08
87 09
No 50
0.30
488.20
492.85
4.65
3.42
15.50
No 100
0.15
481 90
483.26
1.56
1.00
16JO
No 200
0.08
459.20
460.00
0.80
8) 50
0.59
17.09
/ui/r
.
82 91
0.00
0.00
0.00
0.00
0 00
.
Sptafi: Gnn TO OJlOii
2.84
Tort Trrnptnrtvrr, dtg c 20
Eiapttd
Ttmt
(mini
Artrnsl 1 [ydnmtUr
Tenpnrtttn
**'
Corrected
J fydnumeler Reading
Ejffrcthn
Depth
(cm)
Coeffiaenl
K
Gram
irrrrn)
Pervrnfaft
Fi*r
Corrrbimd
2
25.5000
20.0
18.5000
15.20
0.01293
0.0332
36.16
5
25.0000
20.0
16.0000
13.70
0.01293
0.0214
31.27
/5
20.0000
20.0
15.0000
14.20
0.01293
0.0126
25.41
JO
18.0000
20.0
11.0000
14.50
0.01293
0.0090
21.50
60
16.0000
20.0
9.0000
14.80
0.01293
0.0064
17.59
250
12.0000
22.0
6.0000
15.30
0.01264
0.0031
11.73
1440
8.0000
20.0
1.0000
16.10
0.01293
0.0014
1.95
Grain Size Distribution Curvs.BS
100 00
90 00
80 00
70 00
60 00
50 00
4C0C
10 00
20.00
1000
000
TeriW b)Vittet Works Design and Supervision Enterprise
Laboratory Service
So//4 Material Testing Section
Pro)ect(Upper Beies Storage Dam)
Sam- No: 7
Sam. Type: Disturbed
Test Type : Wet Sieve + Hydrometer Date: 12/12/10
Mau of
Ptrctttagt Pj tamed
Camubtiee
% Rftamed
0.00
0.00
o.oo
1087.80
0.00
0.00
0.00
149.50
0.00
53.11
0.00
2.13
53890 516.70 488.20 481.90 45920 425.50
• Xn. jC70 jf m/
Actual
602.40 585.10 5J8.50 551.10 552.90 545.20
500 70 48990 46320 468.00
2.72 Tertpralur*
df^.c
7.00 5.50 0.00
14.0) 28.50 12.50
8.00
4.00
42.50
Correctea Hydrometer
Reading 14,5000
13,0000
10.0000
8.5000
70000 3.0000 2.0000
2.49
0.00
0.00
0.00
53.11
53.11
5524
56.66
59.15
195
0.00
4.97
61.10
61.10
66.07
10.12
4.44
2.84
1.42
1510
7620
80.64
83.48
84 90 100.00
Tut Temperature, de&i
Henefer Rud&ii
20.5000
J
^JlPOOQ
'50000 f4 50oo
Effictme Depth
/ ’cm> 13.90
14.20
14,70
14.90
1520 15,80 16.00
Coefficient K
0.01337
0.01337
0.01337
0.01337
0.01337
001307
(L
281.50 239.00
Ptrrtftfagf Pattm^
100.00
100.00
100.00
46.89
46.89
44,76
43.34
40.85
38.90
38.90
33.93
23.80 19.36 16.52 1510 0.00
c 20
Cmm
(mm
0.0352 0,0225 0.0132 0.0094 O.OOtf 0.0033
PeewUdgt
Fmcr
Censed
9.53
8.54
6.57
5.59
4.60
1.97
1.31
iDOM WT *TTC
Project;
Cheat:
Luciaon:
BII-No.
&
1( M, Beta Storage
N* Imsaloc .no Grata). P.o,ec Up
'*ator Work,
Soil t ^?‘tory Ser??
r«»„„
Addis Geosystems Pic Upper Beles
UBD-4
Sim No: 7
Sim. Type Disturbed
>
9S *
:
Depch(m): 21.30-22 30
Type: Combined C,nph
D«e: 12/12/10 PhO ne^ *‘ ’
r rr‘
Water Works Design and
Supervision Enterprise
Laboratory Service
/ jpperBe*’
r . » at J iT
projecttUpper Beles Storage Dam)
Sam No: 8
Sam Type: Disturbed
T«t Type Wcc Sieve * Hydrometer Date 13/12/10
Man of Parfxtagt
Rftauxd
CtamdOnt
% Refined
14150 87.50
Pernntotf
PdJJinjr
0.00
0.00
0.00
0.0 t”TTC Mxr ;frntfK
. • |finxtn & .?aY^?
5
p ro1K1 Nile Irrigation and Drainage Project(Upper Beles Storage Dam)
Storaa<* n ^ - ’
a
Client
Addis Geosystems Pic
London Upper Beles
BH No. UBD-4
Depth fm): 26.20 26.60
Sam. No ; 8
Sam. Type : Disturbed
Test Type : Combined Graph
Date: 13/12/10♦ttc
!?*
Water Works Design and
Supervision Enterprise Laboratory
Service
Soil 4 Material Testing Section
and Drainage Project(Upper Beles Storage Dam) r Nile Irrigation and Dramat
Addis Geosystems Pic
UPP*Beles UBD-4
^•29.40-30 00
T>0t»W *
Sam. No: 9
Sam Type Disturbed
Test Type Hydrometer
Date ; 13/12/10
i VW
! Mzir r /)y■
»
50
N*
Jm*
W*gf**J
Most of Siet*(g)
551 10
f«l/J of JtfPt
RM joiifa) 551.10
— v a
Matt of
Ret. toil ft
0.00
Percentage
Retained
o.oo
Cumulative % Retained
0.00
Perrtnlage
Pairing
100.00
1.18
538 90
539.86
0.96
1.93
1.93
98.07
"5775
0 60
516.70
525.84
7.14
14.37
16.31
83.69
0.30
488.20
498.58
10 38
20.90
37.21
62.79
0.15
481.90
485.63
3.73
7J1
44.72
55.28
‘'N.W
0.08
459.20
460.90
1.70
342
48.14
51 86
Hr-
0.00
0 00
0.00
000
0.00
jtea>- Gratify twl
2.83
Tut lcMptru/urr, 20
1'ffTpra/urr
Tiw
mJ
Actual
I Ijd/vmfter
R/adig
Corrected
/ lydrvrneter
Effertne
Depth
(cm)
Coefficient
K
Crmn
(””)
Percentage
Finer
Combined
2
27 0000
20.0
20.0000
15.00
001297
0 0331
38.77
5
25.0000
20.0
18.0000
13.30
0.01297
0.0212
34.89
15
22.0000
20.0
15.0000
13.80
0.01297
0.0124
29.08
30
200000
20.0
13.0000
14.20
0.01297
0 0089
25.20
60
19.0000
20.0
12.0000
14.30
0.01297
0.0063
23.26
250
15 0000
22.0
94)000
14.80
0.01267
0.0031
17.45
1640
13.0000
20.0
6.0000
15.30
0.01297
0.0013
11.63
Grain St» Distribution Curve, BSI
m rtPT w; ♦ttc jrcfrb PMi-H A7tnn-f \ rxcr/W’/K' WM ?
Project: Nile Irrigation and Drainage ProjectfUpper Beles sr
Water Works Design and Supervision Enterprise
Laboratory Service SoO Material Testing Section ,
I
□lent: Addis Geosystems Pic
Location: Upper Betas Bl I No UBD-4
Depthfmj 1.00-1 45
Sam. No: SPT-3
- - ------------ fa9e °arn) *
Sam. Type : Disturbed Test Type : 1 lydromctcr
Date: 15/12/10
Total mas s of sample g
50
Sieve
No
SlfTt
Mass of Sievtfa/
lass oj sieit Ret .soil(y
Mars of Ret. sotl fa)
Percentage Retained
No 10
2.00
551.10
551.10
0.00
0.00
Catmuiat™ % Retained
OSH)
Percentage _ Passing
10000
Nt 16
1.18
538.90
539.09
0.19
0.40
0.40
99 60
No JO
0.60
516.70
516.83
0.13
0.28
0.68
.
99A?
No 50
0.30
488.20
488.35
0.15
0.32
1.00
99.00
No 100
0.15
481.90
482.20
0.30
0.64
1.64
98.56
No 200
0.08
459.20
459.68
0.48
1.02
2.66
97.54
pan
0.00
0 00
0.00
000
0.00
Specific G rarity of soil
2.83
Tert Temperature, deg.c 20
Elapsed
Time
mini
Actual Hydrometer
R/Jdrnf
Teapruture
Corrvr/ed Hydrometer Reading
Effect™
Depth
(<*)
Coefficient
K
Gram
Si^e
(mm)
Percentage Finer
Combined
2
490000
20.0
42.0000
9.40
0.01297
0.0281
85.92
5
46.5000
20.0
39.5000
9.80
0.01297
0.0182
80.80
15
43.0000
20.0
36.0000
10.40
0.01297
0.0108
73.64
30
40.0000
20.0
33.0000
10.90
0.01297
0.0078
67.51
60
35.0000
20.0
28.0000
11 70
0.01297
0.0057
57.28
250
32.0000
22.0
26.0000
12.00
0.01267
0.0028
53.19
1440
28.0000
20.0
21.0000
12.90
0.01297
0.0012
4296
Grain Size Distribution Curve,B5
; 100.00
V 90.00
? 80 00
E 70 00
• 60 00
? 50 00
t 40.00
5 3000
£ 2000
a. 1000
000
0 0001
10
Gravel
1
_______ Grain
Sand
0.1
Tested by*
Checked by:
•_!*t«
fir*
r - » •’F
Water Works Design and
Supervision Enterprise
Laboratory Service
SoH.^MattrlalTosting Section
and Drainage Project(Upper Beles Storage Dam)
if N^|rnga"°n
Addis Geosyslems Pic ^pperBeies
ubcm
iy,oo-io45
Sam. No SPT-2
Sim. Type: Disturbed
Test Type: Hydrometer
Dire: 13/12/10
Total masi tumpk x$0
i 1 rf
'
"5^"
ft#
r
2fi0
1.16
Marr of SiM$
551.10
{dJf OjjtfTt
R/t jw/|X
Mau of
Rr/. W (g)
Prrmtagr
Pairing
551.10
538.90
0.60
O.3O
0.15
516.70
48820
481.90
0.08
45920
539.01
516.93
48832
482.13
459.49
0.00
0.00
0.11
0.22
0.12
0.23
0.29
0.00
Parmtdgf
Rflaiwi
000
0.22
0.47
025
0.47
059
000
CtnKtdatM
% PjUmtd
0.00
022
0.69
0.94
1.41
2.00
100.00]
99.78
9931
99.06
9859
98.00
0.00
0.00
/.fen. 6/wfi ?/r
w/ 2.73
Tut Ttnrptralwr, deg t 20
1 E^utd
1w
2
Actoai Hydmmfcr
R/adw
Te/rtwtMn
Effrrtnt
Drptb
>/
Cotffiamt
K
445000
L2
43.0000
1v
40.0000
20.0
20.0
20.0
P--
1 60 L 30
375000
260000
31.0000
20.0
200
22.0
Comcttd Hydrwacftr
R/jihrf
37.5000
36.0000
33.0000
30.5000
29.0000
25.0000
10.10
10.40
10 90
11.30
11.50
12.20
0.01334
0.01)34
0.01334
0.01334
0.01354
0.01503
Gram
Siqt
fan)
0.0300
0.0192
0.0114
0.0082
0.0058
0.0029
27.5000
20.0
20.5000
12.90
0.01334
0.0013
Ptmntagt
Fmrr
Combmid
75.30
7229
66.27
61.25
58.23
5020
41.17
? 100 00 . r Woo
Grain Sot attribution Cum.BS
- ♦ . f . » * h^jtj-----;:ni.
zizur»
1
i
I
non W* MW *T,rc jtcJH- pnntfi ftioifr’f
Water Works
Su Pervision E^9n and
Moratory
:x .‘
:
So ^M
afcrfa/
7
fi
S ^ice
Project:
Client
Nile irrigation and Drainage ProjectfUpper Beles Storage Da"™*
,R —
Addis Geosystems Pic
Ixxitioo Upper Beles BH-No. UBD-4 Deptbfm): 11.90-1135
Sim. No: SPT-1
Sam. Type : Disturbed Test Type: Wet SleVe + Hvdr IDWaltUeB:/1in5/12/10
Total man of lamp!/ Brfarr snub, Total mass of santttlt Afttr
.J...
—.
7 ncTc*
68.50
Sit*
Ofifttttfnnn,
Man of
5ieie(g)
Ifj j oj ntvt
Rft.ldty
Mass of Ret. toil fa)
Ptntnla#
Retained
Cumaiatrn % Retained
75.00
1800.00
180000
0.00
0.00
sow
0.00
1203.50
1203.50
0.00
__ 51.50 Ptrnnidgt
Passtnp 100 00
0.00
0.00
37.50
10!7.!0
10S7.S0
0.00
o.oo
. 100 00
0.00
25.00
1191.20
119120
. ZOOM
0.00
0.00
0.00
19.00
718.50
738.50
lOO.oi)
20.00
29.20
29.20
12.50
586.10
594.60
8.50
70 80
12.41
41.61
9.50
598.40
598.40
58 39
0.00
0.00
41.61
4.75
578.10
58 39
587.10
9.00
13.14
54.74
236
533.00
. 4526
537.50
4.50
6.57
6131
2.00
551.10
38 69
551.10
0.00
0.00
6131
1.18
538.90
541.90
.
38^69
3.00
438
65.69
0.60
516.70
1431
519.20
2.50
3.65
0.30
69.34
488.20
30 66
490.20
2.00
2.92
0.15
72.26
481.90
27 74
482.90
1.00
1.46
0.0!
73.72
459.20
.
26 28
460.20
1.00
PAN
1.46
75.18
425.50
.
24 82
442.50
17.00
24.82
5peafi: Grau
100 00
Oj IM
.
0 00
2.76
.
Test Tanperjiurr, dei
.
hiapsed
Time
(min)
|X- —u
Coefficient
X
c 20
Actual
Hydrometer Reads
Tnpratxrr
Corrected / lydnmeter Reading
2
Effective
Depth
'em)
Grain
Sup
(mm
Percent*# Piner
Combined
2 S.0000
20.0
21.0000
5
12.90
0.01322
0.0336
16.52
25.5000
20.0
IS.5000
13.20
0.01322
0.0215
14.55
15
23.0000
iv
20.0
16.0000
13.70
0.01322
0.0126
12.59
21.0000
(0
20.0
14.0000
14.00
0.01322
0.0090
11.01
n.oooo
20.0
11.0000
14 50
001322
0.0065
8.65
250
16.0000
22.0
1440
10.0000
.
14.70
0 01292
0.0031
7.87
14.0000
20.0
7.0000
15.20
.
0.01322
0.0014
5J1
r
I
»
i
♦
j
i&•!«■« * »«*♦*
TT C
,
Water Works Design and Supervision Enterprise
Laboratory Service V ,z pdiriMattriAiTestfng Section
Geosyetems Pic
(X ‘ UpP ®
er
eleS
U8D-4
' lWl255
ProjectfUpper Bales Storage Dam)
Sim. No: SPT-1
Sim. Type : Disturbed
Test Type : Combined Graph Date : 15/12/10
inow ww *ttc
JTCJt+ NHH hltllfrt
W «tar Works D...
Supervision E ?
nt
n ar”»
Laboratory
.1
.//..®...<..»..«..*...M_ ateria/?^*1*
Project: I
Nile Irrigation and Drainage Project(Upper Betas Storage Dam) )
Client? Loci non BH-No.
Addis Geosystems Pic Upper Betas
UBD-5
Depth (m) 540-6.00
Sam. No: t
S«m Type: Disturbed
Test Type: Wet Sieve +! Ivdromcter Date: 15/12/10
Total mass of sample tyfon wash , 203 00
Tola! mass of sample Afar wash. p f 7u /v.
O
Steve
pmi^mmj
'
Mass of V Sitveyj
aiitfntve •
I
Mass of
ts. soil (gj
Percentage 1 Gmuteht p % Retained
75.00
1800.00
1800.00
0.00
0.00
000
frontage Pasnng
undo
50.00
1203.50
1203.50
0.00
0.00
0.00
10000
3730
1087.80
108780
0.00
0.00
0.00
wm\
25.00
1191.20
1191.20
0.00
0.00
0.00
/oo.oo
19.00
718.50
718.50
0.00
0.00
0.00
100.00
12.50
586.10
592.60
6.50
520
3.20
96.80
9.50
598.40
609.40
11.00
5.42
8.62
91.38
4.75
578.10
610.60
32.50
16.01
24.63
75.37
2.36
533.00
561.50
28.50
14.04
38.67
61.33
2.00
551.10
551.10
0.00
0.00
38.67
61.33
1.18
538.90
572.90
34.00
16.75
55.42
44.58
0.60
516.70
556.20
39.50
19.46
74.88
25.12
0.30
488.20
503.20
15.00
7.39
82.27
17.73
0.15
481.90
488.90
7.00
3.45
85.71
14.29
0.08
459.20
463.20
400
1.97
87.68
12.32
PAN
425.50
450.50
25.00
12.32
100.00
0.00
Speafic Gran/) of soil
2.79
Test Temperature, dtg.c 20
Elapsed
Actual
Tenprature
Corrected
Effect™
Coefficient
Grain
Percenup 1
Time
/wj
Hydrometer
R/oir^
*&c
i lydnsmettr
Reading
Depth
cm!
K
Si^e
(mm\
Finer
Combined
2
165000
20.0
9.500G
14.70
0.01311
0.035.
J M6
5
15.0000
20.0
8.000C
15.0C
0.01311
0.022
7 755
15
14.0000
20.0
7.000C
15.20
) 0.01311
0.013
2 660
30
130000
20.0
6.0001
) 15.3(
0.01311
0.009
60
12.000C
20.0
5.000(
) 15.5(
] 0.0131
1 0.006
250
11.OOOC
22.0
5.0001
) 15.5i
) 0.012&
I-
4 3.66
7 V*
2 4.72
” *> 0 1
1440
10.00(K
20.0
3.0001
J IM
3
i • '*72
,
/k
.
H 5 C Vr II ' 7Water Works Design and Supervision Enterprise
Laboratory Service
w*.
lW P>*’
» uBO-5
1^. 540-6.00
Sage ProieeH Upper Belas Storage Dam)
Sam. No: 1
Sam Type : Disturbed
Test Type Combined Graph
Date: 15/12/10
Grain Size Diatrfbution Curve,BS
I
I
I
I
II*
• ♦
I I
non WW *TTC
JTCH MUiJrH *101H
I
Project: Nile Irrigation and Drainage Project(Upper Bales Storage D
Water Works Design and Supervision Enterprise
Laboratory Service Soil i Material Testing Section
Client:
Addts Gensystems Pte
'
1
i
Location Upper Beles
Sam. No: 2
Sam Type . Disturbed
BH-No
UBO-5
Depth(m): 6 60-7 00
Teat Type: Wet Sieve + Hydrometer
Date B/12/10
Total matt of /ample before maik . &
Total maci of tample After ygjh ,
201.00
185.fin
Sine
Mau of U Siereig)
ajjefam * / R/f .ntty R
'darstf I i it toil (g)
^erctntag (
RrtaiJW $
nmulalirt o R/ tamed
^ementage ]
7500
1800.00
/SOO.GO 0.00
0.00
0.00
700.00]
50.00
1203.50
1203 50 0.00
0.00
0.00
/oooS]
37.50
1087.80
fO«7JO 0.00
0.00
0.00
foo.oo
25.00
1191.20
1191.20\ 0.00
0.00
0.00
100.00
19.00
71850
769.00
50.50
25.12
25.12
?4.88
1250
586.10
596.60
10.50
5.22
30 35
69.65
950
598.40
606.90
850
4.23
34 58
65.421
4.75
578. W
600.60
2250
11.19
45.77
54.23
2.36
533.00
555.50
22.50
11.19
56.97
4303
2.00
551.10
551.10
000
0.00
56.97
4).03
1.18
538.90
563.90
25.00
12.44
69.40
30.60
0.6b
516.70
541.20
24.50
12.19
815$
18.41
0.3(
) 488 2C
501.20
13.00
6.47
88.0t
11.94
0.1
481,91
486.90
5.00
2.45
905
5 9.45
0.0
J 4592t
) 462.20
3.0C
1.4$
92.0
4 7.96
PA2
J 425.51
3 441.50
16.01
7.9(
5 100.0
0 0.00
Gncin of soil
Actual
I {ydromrfrr
RftJdtgf
13.0000
2.73
Tttyratkre
Contend Hydrometer
R/dJjr,
Tut Temperature de^c 20 ffectn* Coefficient ] Grain
Depth K
Si^t
I mm;
0.0369
Penentage Finer
Combined
20.0
6.00001
0.01334 \
12 0000
70.5000
20.0
20.0
5.0000
35000
0.01334
0.01334
0.0235
9 5000
8 5000
20.0
20.0
2.5000
1.5000
15 90}
16.00
0.01334
0.01334
0.0136
0.009?
70000
21.0
1.0000
16 10
0.01303
0.0069
0.0033
65000
21.0
0.5000
16.20
0.01334
Tejted by:
Checked by:* T'r n
i
Waterworks Design and Supervision Enterprise
Laboratory Service
■y .>
rCa,nage project upper Bales Storage Dam)
C^r^PIc
* JKX'8*"5 uBt> s
.SO’"0
...-.-ms r
S ™No:2
Sam Typ<>. i:hlturbcd
Test Type : Combined Graph Date: 13/12/10
d«'-3
Grain Sirt Distribution Curvs.BS
I
I
Inm-N /“t9”F JUiJn*? *TTC
JT
CJH PWtfA Aimrb-V
Sup
ervisio,,^^!^
'M
rue rulJtt '^i'-
,
Laboratory c l »e
r >n
Project
(Client
N»le Irrigation and Drainage Project(Upp
er Beles Storage Dam”
5lnr -r^—
an
S»i
(j()|)
Addis Geosyslems Pic
Sum. No : 3
'* ’*h
Loci non : Upper Beles
Sam Type : Disturbed
Blf-No. UBD-5
Test Type ; Dry Sieve
Depth(m). 9.00-10.00
Date: 13/12/10
Total nan q] sample 1917.00
J/flY
UpfJBWglWJ*
Mai j of Sieve (g)
If MJ SffH *
Rrr
Man of
KcZ. sod fe)
Percentage
Retained
Cmemtafim % Retained
Pertentaj^t
Passing
7100
1800.00
1800 00
0.00
0.00
o.oo
50.00
1205.50
1586.00
182.50
100 00
9 52
9.52
37.50
1087.80
1880.50
792.50
.
90 48
41.54
50.86
25.00
.
49 14
1191.20
1915JO
724.00
37.77
88.63
.
11.37
19.00
718~50
875.00
156.50
8 16
96.79
3.21
12.50
586.10
657.60
51.50
2.69
99.48
0 52
950
598.40
606 90
8.50
0.44
99.92
.
0.08
4.75
578.10
578.10
0.00
0.00
99.92
0 08
2,36
555.00
555.50
0.50
0.03
99.95
0.05
2.00
551.10
552.10
1.00
0.05
too.oo
0.00
118
558.90
558.90
0.00
0.00
100.00
0.00
060
516.70
516.70
0.00
0.00
100.00
0.00
0.30
488.20
488.20
0.00
0.00
100.00
0.00
0.15
481.90
481.90
0.00
0.00
100.00
0.00
0.08
459.20
459.20
0.00
0.00
100.00
0.00
PAN
425.50
425.50
0.00
0.00
100.00
0.00
1917.00
Grain Stea Distribution Curve.BS
100.00
90 00
B0 00
70 00
60 00
50 00
40 00
MOO
20 00
10.00
0.00
Gravel
Chet kid b
f
TITI
Water Works Design and Supervision Enterprise Laboratory
Service
ie Project(Uppef Betas Storage Dam)
irrigation and Drainage Gecsystems Pic
y-*
Sam- No : SPT-1
Sam Type : Disturbed
Test Type : VTct Sieve + Hydrometer
Date; 12/12/10
Total matt of Jamplt Before mvA . £
Talmas: of sample Aftrr twh
12222
10350
Most of
R/r. soil
Ptrmtop
Cjtuniainf
Pfrrrftfdgt
Rj/aifud % Rffantfd
0.00 0.00
0.00 0.00
0.00 0.00
29.46 29.46
13.91 43.36
6.55 49.91
11 86 6177
9.41 71.18 532 7650 0.00 76.501 3,27 79.7? 2.45 82.23
1.23 8346 0.82 84.27 0.41 84,68
1532 100.00
Pasmfc
1800.00
0.00
0.00
100.00
100.00
5i6.1O
1087.80
T227.20_
J35 50
594.10
0.00
36.00
17.00
8.00
1450
1150
6.50
0.00
100.00
70,54
56.64
612.90
589.60
533.00 539.50
551.10 551.10
538.90 542.90
516.70 519.70
50.09
38.23
28.82
2350
2350
488.20 489 70
481.90 482.90
459,20 459.70
425.50 444.22
4.00
3.00
150
1.00
0.50
18.72
2023
17,77
16.54
15.73
15.32
0.00
2.84
Trtprutan
Tut Ttmpfrahaf, drg.
Com did
Hydrone:rr
Cocffiatxt
20
Grau
PrnrnZig'
nycn*cttr
^210000^ 20.0
I • torr
----------—-
Rjadnif 1
21.0000
0.01293
0.0328
CofobtJted
8.97
27.0000
20.0^
20.0000
0.01293
0.0208
20.0
20.0
20.0
17.0000
15,0000
14.0000
1350
13.80
0,01293
0.01293
0.0125
0.0088
21.0
20,0
10.5000
8.5000
14,00
14.60
14.90
0.01293
0.01270
00062
0.0031
0.0015
*>4 *
s
V-t
1 p*** *rnon rvFt Jims ♦TTC JTG.
vnntTt ftirHH
Wafer w
*
_____
5up’rvi,ion\7^8^
Nite Irrigation and Drainage Project(Up
per Beles Storage Dam)
--
Addis Geosystems Pic
Sam No : SPT 1
- --
'Oh
Upper Betes
Sam Type : Disturbed
UBD-5
Test Type : Combine Graph
100 145
Date: 12/12/10
luted by/ater Works Design and Supervision
Enterprise Laboratory Service
^nd Dra‘^e tef ns P>c
Pro$ect(Dpper Betos Storage Dam)
Sam. No: SPT-2
Sam. Type : Disturbed
Test Type : Wet Sieve ♦ Hydrometer Dare: 15/12/10
sample 0»«
iR55 16/61 4501
Project: Client Location BH No
Te ‘ 251' <1* 6153 71/61 08 98
Fax .251 -116 ~S
e-mail W * d • NUelmgeOonandOfW
Addis Geosystems Pic
Water Works Design and Supervision Enterprise Central
Laboratory Service
Soil & Material Testing Section
P.O Bom 2561
**»’ W>abo
Ethiopia
Upper Betas UBD-4
Depth (m): 9.00-9.50
LlQUIO ANO PUkSTIC LIMn
DETERMINATONS
DATA AND COMPUTATION SHEET
Project(Upper Betas Storage Dam)
Sam. No J 4
Sample type . Disturbed Test type Atterberg Limit Date . 28/12/2010
Type of test
LI
LL
LL
Conteine* No.
B-17
M14
B-13
No ofBtowa
30
25
18
IM of aampte ♦ Tire wet
32.020
32650
33.100
IM o' umpte 4 Tare 07
26.000
26.270
26.300
Wl of watet
6 020
6.380
6.800
Tare
16 96d
16930
16 570
Mof dry tod
9.046
9.340
9.730
Water content*
66 593
68 308
69.867
Type of test
PL
PL
ConteteerNo
F
11
IM of aampte ♦ Tire wet
27.870
27.700
Wl o# sample * Tare dry
25 570
25.200
Wtof water
2.300
2.500
Tare
17.140
17.000
Wt.Of dry toil
8.43C
8 200
Watr content X
27.284
30.488
28 89
Flow curve
T
i
4
<
Result
i L_ 67.97% PL_ 28.89% p.l 39 08%
<
Tested By *
Checked By*TTTC
fL.Ct-iab«
Water Works Design and
Supervision Enterprise Central
Laboratory Service
>(<
^>1
55 1 8/81 45 01 251-116-61 53 71/61 08 SB
**
P.O Box 2561
Addis Ababa
Ethiopia
X imgauon and Oramage Project! Upper Beies Storage Dam)
pflA'1
f
Cje <
LuG3iXJn
gH Mo ‘
Depth (ml
Addrs Geosy s lems Pic Upper Belas
USD 4
!3.00-14-00
Sim. No;
Carrin.!* turus ■ rile
Sample type: Disturbed Test type Atterberg Limit Date 16/12/2010
dETpR'/|^
^O^PUSHCUMrT
T1OMS
ANO COMPUTATION SHEET
hr ryf ttit
—- -------------
LL
LL
LL
LL
177
026
123
097
qq ffl B^oWI
36
30
22
18
Vdlirf simple ■* Fur# wst
29 910
30.46Q
29.410
30610
W-cfump^ * Ifr® dry
23.040
23.890
23.150
24.020
W-ot*«1er
6 370
6.570
6.260
6 790
Tira
13.170
14 840
14.650
14 840
w»{if dry foil
9.870
9.050
6 500
9 180
YWtf artwl %
69 605
72.597
>3.647“
73 965 ]
FyptOlliat
PL
PL
65
25
'M of itrTcie <- Tara wet
28.620
28.56C
'N ol Mmpie * Tare dry
25.610
25.400
W of wakf
3010
3 160
Tin
16.260
16.240
<0* Jry Wil
9350
Idirarcytini %
9.160
32.193
34 498
33 35
Flow curvt
Result
L.L 72 60% P.L 33 35% P.l 39 25%1
i
|
i
pb, Ml jiw> ♦tttc
ttJH RtMt 1-04-+A
47U7A-+
AM*
Tel. 251 -116 - 18 55 16/81
Fax 251-116-61 53 71/61 06 96 e-mail w.w.d-a.efjethionetat
Water Works Design and Supervision Enterprise Central
Laboratory Service
-oeo, 2ssi
Addis Ababa
Ethiopia
$
"Lt
Projecl: Nite Irrigation and Drainage Project Upper Bales Storage D
Addrs Geosystems Pic
Sam. No: 4
Location
Upper Beies
Sample type Disturbed
»
I
••
j
UBD-4
BH No :
Test type Atterberg Limit
Depth (m) 1.00 1.45
Date 04/01/2011
LIQUID ANO PLASTIC LIMIT
*
I
DETERMINATIONS
1
DATA AND COMPUTATION SHEET
Typed test
IL
LL
LL
LL
Container No
17S
G16
13-1
7
Nc o< Btowi
34
28
22
16
Wld sampte ♦ Tam wet
36.500
35970
35 680
39220
Wl of sample ♦ Tare dry
29 680
29 520
29.100
31.310
A*, olwaitr
6820
6.450
6 580
7 910
Tare
15.920
16 910
16 570
16.460
wtof d^ *od
13.760
12 610
12.530
14 850
Waler content %
49.564
51.150
52 514
53.266
Tywonesi
PL
PL
Container No
007
8
W of sample ♦ Tam wet
32260
25290
of sample ♦ Tam dry
28780
21.820
Wt o< water
3.480
3.470
Tam
16.620
10.030
wtof d-y tod
12.160
11.790
Water content*
28.618
29.432
2903
Flow curve
Result
L L 51 42% P.L 2903% PI 22.39%
«
J
1W* *7* * inn**
^^^1fi"T55
i6«i4 oi
5
fL 251 -116 -e-53 71/61 °fl 98 ..mall w.wd.«.e®ethlonetet_
Water Works Design and Supervision Enterprise Central
Laboratory Service
So/f 4 Material Testirig .Section
P O Box 2561
Addis Ababa
Ethiopia
Nife'lrrigation and Drainage Project (Upper Betes Storage Dam)
Adds Geosystems Pic
C '”2L Upper Bales
L0C* II URBDU-U4-4BD-4
No
10.00-10 45
LlCUO ANO PL*ST1C LIMrr
rj TERMINAWNS
>T * AMD COMPUTATION SHEET
Sam. No: 4
Sample type Disturbed Test type : Atterberg Limit Date 04/01/2011
Ffpe of test
LL
LL
LL
LL
■■.veor No
045
F22
085
——------------------------- JSO C^QlOWS
66
34
28
22
16
Wto-tarnple ♦ Tin wet
35 630
37.040
35 680
34 130
^ya»npie • Tao dty
27 290
28 200
27 380
26 240
few**
8 340
8 840
8 300
7 890
16 290
16 710
16 730
16 280
mt^diy soil
11 ooo
11.490
10 650
9 960
war comrw %
75 818
76 936
77 934
79217
[Typt cf test
PL
PL
bwie'No
D9
35’
W o' unpie ♦ I art wet
28 370
30.450
>M of sample • Tare dry
25 580
26 960
W 2f water
2.790
Jai ‘
3 490
16.800
16 180
p*dr,
8 780
10.780
&«*'Warn %
51.777
32 375
32 08
Flwcurvs
Result
LL 77 28% P L 32.08% PI 45 20%
10
100• I
nay rtFT X.W? ♦tttc
JttJH W 4flA.fi
Tel 251 -116-18 55 16/01 4501 Fax 251-116-61 53 71/61 08 98 e-mail ww±e.e®ettiionet.M
Water Works Design and Supervision Enterprise Central
4 Laboratory Service
P.O.Box 2561
Addis Ababa
Ethiopia
H* *■--------- TrtOffiinage ProjecKUpper Beles Storage Dam)
Project
N*e im—gaW0 and
Client Addis Geosystems Pic
Location: Upper Beles
BH. No U0D-4
Deptti(m): 11.90-12.35
LiomoAND plastic limit
DETERMINATIONS
DATA AKO COMPUTATION SHEET
SsmNo: 4
Sample type Disturbed Test type Attertoerg Limit Date 04/01,2011
Type of lest
Pl
Pl
ContmrNo
008
B-3
Wlo< sample ♦ Tare wet
30 190
31450
Mo’ umpN ♦ 7 we dry
26.460
27.610
Wl.of waler
3 730
3 840
Tire
16.190
17.540
M. of dry wl
10.270
10 070
Wteer content %
36 319
38.133
37.25
R
ow curve
77 000
*
c 76 000
Result
o 75000
1 L 74 25%
| 74000
P L 37 23%
PI 37 02%—
o 73.000
72.000
Tested By
f| *
J® - J v*<
’
Checked By JfaT
Approved fly
• - * ■
i.mr* *tttc (»’ ''JfL*’ 'M't+4
251-116'1&55 16/61 4501 Jt 251 -116 -61 53 7W1 08 *
f t w w <*•« *©*thiontt rt
Water Works Design and , Supervision Enterprise Central
Laboratory Service
POBox 2561
Addis Ababa
Ethiopia
* Xtion and Drainage ProjectfUpper Belen Storage Dam)
CD»nt
Loca®011
Nite iry
A
33.150
35.470
35.480
34.440
^tofumpu ♦ Tare dry
29.500
31.350
31 210
30.290
wtc/wtor
3 650
4.120
4 270
4.150
Till
16 220
16.910
16.570
15 460
koi Wy so«
13.280
14.440
14.640
13.83(5”
kne* ton tert %
27 465
28 532
29.167
30.00A
test
PL
PL
^trnwer So
052—
2
w^senpa • Tare wet
28 760
25.190
;«lol sample * Tats ary
26 800
22 800
St tf water
1 960
2 390
■re
16 500
Mdryaoti
10 030
10 3oo
12 77D
content %
19.029
18716
18 07
Fkow curva
12D00
Result
LL 2572% PL 18.87% PI 9.55%
fiurmbarof Blow*u M-nr*; *TTTC
Water Work* Design and
Supervision Enterprise Centra
Laboratory Servi
ce
/Soil 8.
P.O Box 2561
Section
” »,.<«■ S'»”»’««
Addis Ababa Ethiopia
Project: Client; Location BH No
e-"»«
W W d 6iS^Xge Projectiupper Betes Storage Dam) Sam. No-. 4
Nite Imgatton and Dratnag
Addis Geosystems Pic Md is Geosy stems c Upper Beles
UBD-5
Depth (m): 2.90-3 35
□quid ano pus'ncLwrr dcterminations
data ano computation sheet
Sample type Disturbed
Test type Atterberg Limit Date 04/01/2051
TypeoftaSt
IX
IX
LL
LL
Container No
9
19'
p
H
Mo of Blows
34
28
22
16
W of sample * Tare wet
38.630
34 540
38.300
34.730
VM of samp* 4 Tare dry
30 120
i7.690
29 740
27 610
Wl of waler
8.510
6 850
8 560
7.120
Tire
16.560
16.740
16 380
16 540
w* of dry so*
13.560
10950
13 360
11.070
Waler content %
62 758
62 557
54.072
64 318
Type of test
PL
Pt
ContewerNo
F15
16B
W.of sample 4 Tare wet
27 990
29.450
w of sample 4- Tero dry
" £5.100
26.310
V/ of water
2 890
3.140
Tart
16.200
16 360
< of dry uM
8900
9.950
Water content %
32.472
31 5f>8
32.01
Flow curve
i i
i
65.000
64 000
63 000
62 000
Result
L L 63.33% P L 32 01% p» 31 32%
I
i
I
J
Tested By _
Checked By^
Approved By
1♦ TTC CT*+
I** flfit+4 w' *
-
Water Works Design and Supervision Enterprise
Laboratory Service
Fax 251 • 116 - 61 53 71/61 00 98 e-mail w w d s e@ethionel.et
Test Method: Dlsotvlng
P.O Box 2561
Addis Ababa
Ethiopia
Location .*
and Extracting Instrumental
w><1'25)_____
F
Dry DanMty I
Egan'
UCS
( KNAm' >
Modulus Of
Elasticity
< KNAn? )
Voraaity
nJ
54729
13GB2T7
1
I
LfPii > - 5 |uBD-8
1 |4 4^15 M
1
| 12.15
2250
-
1
1- M»
Approved by
Tested by Amsalu Mulugeta
Date
*02/01/2011
Checked by Abate Legetse
Date
’01/01/2011
HEASE MAKE SOW THAT THIS tS THE COEWC1 BSW MEOW UStForm H*
OF/CDSCo/139
Iwue N* fogtH*
1 Page 1 of 1
W.O.N” = 05412
Dale -01/10/1
s
(lien*
Nt le lrrie«lio” *
Addis Geo» «ro
Upper B*'cS
Rock samples
Drainage Project/Upper Beles storagi P.L.C
Dry
Density
S’
T’
i
Sample
N"
LHD1
UBD1
Depth
(M)
Water Absorption
(*)
Moisture
Content
(%)
porosity
n
%
DCS
KN/m*
Secant modulus of
elasticity
kW
i LBDI
♦ IBD1
i IBD1
i UBD2
7 UBD2
fl UBD2
fl UBD7
10 l’BD7
( 11 VBD7
“ 1.65-2.25 13.06-13.38 23.77-24.03 26.10-26.30 33.00-33.20
6 51-6.75
13 16-13.41
2265-22.90
6 65 6.94
13.10-13.34 17 44-17.65
2.28
11.38
40.77
-
-
11.52
9 48
8.44
903
8.43
5.71
2532
2200
1296
2020
2307
1972
2194
2250
2159
2378
2291
0.98
5.74
22.33
-
-
1.2*
6.28
3.93
7.75
4 80
3.87
1.4
2J4
12.4
-
084
238
2.1
345
289
1.58
36572
29787
-
3539
45294
48001
25478
20524
20495
15961
20495
2540157
1567737
-
-
-
-
•
•
-
-
Zln*hu E»k«tu
ilMorio
Approved by z-Girma Mekonnen
£•"'7 -Ab„.
** ’• iviono
Date
15/18/10
>F Sl’*E 1MM THIS IS TmE CORPFCTI55U6 B€ O*£f
rAppendix 4.b-2: Laboratory Test Results - r
I J
)
JlaB 1I& Drainafle
B'• ABC1S QEQSY§TEM§_EL£
Yoar Ref.No. AGS> 10352 ON: 244M/10
*l[fOF: flock Sample
U T|O>: i nner Belles storage Dam quarry site
' *1 i;rQ»^^rn' Drv D«n»tV* Water Absorption, Porosity &■ Slak Durability S,,rr0 T.> ADOIS GEOSYSTEMS PLC
DaleON^^OnO^
;
Sample
No
Dry Density
g/Cni3
Water
Absorption
(%)
Porosity
(%)
SZaAr
Durability
(%)
UPSQ1 (BASALT)
2.962
0.214
0.63
99.67
UPSQ2 (TUFF)
2.155
9.00
17.90
99.34
. ' «4ft
hanged.
»o«, Ar»re».t~ A L L L
k^uktwcoou material^
A.ph»h». C.aw.ta, Water reinforcement .uet b.rv
P.O.Boi 41726
Fix:- 231-1-514231Revision
0
TRANSPORT CONSTRUCTION DESIGN SHARE COMPANY
Material Testing Result For Aggregate
LAB. NO : 335 A 338 0003
PROJECT 1 NW InWtai and Prato— liatir Bataa Btor-^ p^. submitted by : Addis Geosystams PLC
SAMPLE OF : Rock
date sampled : —■—■■« STATION : Quarry Blta (Burfaca Pxaoaura) TEST REQUESTED : MBACV TFV
a
reported to : Addis Geosystems PLC
Sample Ho
Station
UPSQI (Basalt)
UPSQ2(TUFF
1. Soundness loss by Sodium Sulf ate (AABHTO T-104)
1%
___ * I
2. A r;Tl01
s- Quarry Site (Surface Eufflire)
:
\TE SAMPLE D:; - - - —
P ^ct REQUESTED: Potential Alkali-Silica Reactivity
^PORTED TO: ADPLS_GECgYSTEMg PLC
I. Sample No:- UPSQ 1 (Basalt)
Reduction in Alkalinity, Rc = 295 mmol/lit
Date ON: 29/09/10
---—■
Dissolved Silica, Sc
II. Sample No:- UPSQ 2 (TUFF) Reduction in Alkalinity R -
= 133.2 mmol/lit
c
Dissolved Silica Sc
532.5 mmol/lit 99.9 mmol/lit
^•^Rqjorted by;
becked
Hal
n □>
°T o|
t
TnE MajOR SERCISES RENDERED BY
L Appro*
dhrfciofl
CTS
eMC*ftcCr*Bf properties of ybtIssj C^trhAlpn mat __ __ w iqU» *lXTrE>te% Asphalts, Cements, Water rdnlarcenM(Sih C 289
-L__
-T
,
.A matter espo««‘®" mor< *hon 01 per ctM,n 0 ytQr
* eK(.nt«ntolni"» '-38
coul*« , . mnflor oponiion less thon 0.1 pcrcant mo yfOr
AQ wrdt' ’0,nt Ch*eh mortar eipo«»ion dole ore n°’ ovoilobla but
iaaf»««,fl
which 'n’'V h morlor eiponsion do’° °rt no1 ooilobte but
A og t?o»«’ Co/to b« Innocuous by pettogroo Me eiomiea it0R
io be dclc»i"Ou» by pctrogrophic •iOminelian.
-hici arc '"* °
c
B ouRdo»y "
nt ®tT
i
•„ innocuous ord dticiariput oggr«q
Q tt.
I Aggregates
Considered . Potentially " De’.etericjs
11
Aggregates Considered Innocuous
75 100
Quantity S_ - Dissolved Silica (millimoles per l'lre)
c
— __ ----------------------- _--------- ----
lnor>o.tt. w b..i.Geological Survey of Ethiopia Geosciences Laboratory Center
Result Form
- Chemical: Lab Section: - Silicate
Waler
-■ - J""®
Hydrocarbon j " j
rA:
;< s Rock Name: -.PorphYrithic Olivine Basalt
Checked bv
Date Completed 07/09/2010
' ’ WtclulGte '
:A
?
I
opnen c.
CL G/KHI3TOS
"Vk.Z WurRfcii ----------- -----
<- ■'
Beige ! of 2Geological Survey of Ethiopia Geosciences Laboratory Center
Result Form
CaieTtam:- Chemical: Lab Section: -Silicate
Gold & Base metal -
Hydrocarbon ‘
15
a«Dtc« C—1 G“'’' | I' P"’ | ; |
file name: - 143J«£r Area RefNo of Samples: -2 Sample No.
Sample Typc:-R9ds_ L«b |Vo:'
Type Anafrris^cwraphv Preparation required: - Run section Date Submitted; - ^lt
I) Hand specimen Description: Rcddj^royaLincplQlJjnc grained andwejLhcrfidjM^u^ II) Mineral composition
i
X
t
Mineral
Modal (%)
Texture
Rock fragment
55
-
Volcanic glass
30
-
/
if •
>
Quartz
10
Cryptocrystalline
OpaquefFe-oxide)
5
Anhcdral
I \
: /V//
Pyroxene
Trace
Anhcdral
\
r
\
>1) re«M1
Jasall and rhvnlrt a££_suspended over glassy and cryptocrystalline
’TBS!' Some empty (unfilled) voids are_se$n in the section IV) Rock Name: Lithic Tuff
Described Ib/ABiksti
1< Worked qt< J 2 . Adtse Mekonncn
Checked hv
Dale Completed 07/09/2010
G/KNSli^
' aod fV»T»i.< phy
k
*Appendix 4.c: Laboratory Test Results - Water
1. ml X.Hr>*-’ *TTC M«Wt
Water Works Design and Supervision
Enterprise Laboratory Service
, iWH-r Ms.®®**'®'-
Fax 251 -116-61 53 71/61 08 96
e-inail w w d.se@cthionel et
_ -gDPHYSIO CHEMICAL AND BACTERIOLOGICAL WATER ANALYSIS RESULTS ^imiect: Addis Geo-Systems
-------- --------------------
5CURCE OF SA.MPLE----------------
-
-
WHO
LOCATION___________________
^^cnF COLLECTION
Ur
: ----------------------
12/2/2003
10/2/2003
------- -
1
TTrc^FCEIVtD
pATt
CLIENTS ID.NO.
.
UCAQiIWHiUif (aop)
15/10/2010
15/10/2010
Upper Belles Dam
UBD-7
Upper BeileS
DemUBD-2
maximum
allowable
Concentration
(mg/1)
i aq id NO
B12/2003
813/2003
—
I*rr/——----------------------------
_
Tiirhlditv INTU)
• n11i Solids 105’C (mgfl)
T Dksaotved Solid 105°C(mg/l)
5.0
_
6200
226 00
1000.0
[Electrical Conductivity (pS/cm)
118 00
348 00
6.88
7 36
6.5-8.5
r
[Ammonia (mg/l NHj)
247
1.97
Sodium (mg/l Na)
900
52 50
200.0
Polittium (mg/1 K)
5 70
4 30
Total Hardness (mg/1 Ca CO )
3
43 70
76 00
500.0
[Calcium (mg/1 Ca)
13.68
1900
200.0
Magnesium (mg/1 Mg)
228
684
150.0
Total Iron (mg/1 Fa)
1.95
0.74
0.3
Jtangarwse (mg/1 Mn)
0.1
Fluoride (mg/1 F)
0 72
0.91
1.5
Chloride (mg/1 Cl)
1.82
1.82
250.0
Nitrilo (mg/1 NO,)
008
002
Ntat» (mg/1 NOj|
1.87
0 69
*JI«llntty (mg/1 CaCOJ
45.0
62 70
174.80
.jTbonat* (mg/i co,)
Nil
Ni!
SWbonate (mg/t HCOJ
^Pwe (mg/1 SO )
4
•^H!Hlnurn (mgA Al)
The test result can t
.____> .L
y)lpresented on the last column Th^wetersampie was collected and submitted to _guMabo>atory by the client.
76 49
21326
8.70
452
(mg/t po4)
400
0 30
0 32
Nil
^ 5_(mq/l)
ro
Nil
0.013
o
0013
>e compared with
---------- J_________________ the WHO maximum a I Iowa b
le concentration
----------------------------
Approved by
• o
*: . /•ft
Date:
‘IFfirv.'
r Mnuty tfWattr and Eatrp
Efirtfn .Xii JryflrfftM jad Dn**^t PnfrrtAppendix 5
Picture s showing mobilization and drilling
Activities at upper Beles Dam site.Photo 1 &2: Transportation of rig parts and accessories to dam site by human laborPhoto 3 Inter-borehole mobilization by local labor Photo 4: Camp for drilling crewVr^rtyjl DtBxrjfit R/fMi
Miwtry of ITafrr jod Eotrjp
Efhiopu* N/> ad Dnrc^r PrwMW(
- dJ£*^
ANNEX F
DAM SITE SLAKE DURABILITY PHOTOGRAPHSFe/M Dt9ocm/h RfpoHn (f F.tbeofea, Mimrtrj of Wat er & Eoer^ Ffaefoo* Mt Irngotwv Dwy ProjectUpper Beles Dam Site Core Samples: Slake Soaking Test
^^slakc soaking test is a subjective test to observe the performance of samples of
^•k when placed in water for a set penod of time. By photographing the samples, it is f,X sible to observe w hether there is any reaction of the material to being soaked (for ^amplc swelling, disintegration, spalling or ’slaking’).
Samples of lithic tuff borehole core from the Upper Beles dam site ground investigation were immersed in fresh water for 78 hours and were reviewed and photographed periodically (approximately 4 to 8 hrs) on the following schedule.
Testing was completed al Addis Gcosyslcms Co. Ltd core store / offices:
Date and Time
Duration from start (hrs)
05/10/2010: 08:00 hrs
0
"05/10/2010: 14:00 hrs
6
05/10/2010: 18:00 hrs
10
05/10/2010: 22:00 hrs
14
06/10/2010: 06:00 hrs
22
06/10/2010: 16:00 hrs
32
07/10/2010: 14:00 hrs
54
08/10/2010: 14:00 hrs
Photographs are shown on the following pages for periods highlighted in bold
The samples tested are from boreholes L'BDOl and UBD02 on the left side abutment
and comprise slight to moderately weathered lithic / agglomerate tuff.
BHUBD01
BHUBD02
____
5.00m
17.70m
6.75m
20 00m
7.20m
21.75m
—___
9.05m
he photographs show that after about there is some spalling within the first lOhrs of soaking, but no significant change from then until about 22 hrs after testing. From
v erbal Communication with Addis Geosystems Co Ltd, no significant disinlegralion *s reported after 78 hours, but photos and measurement are not availableUpper Boles Dam Site Core Samples.
Slake Soaking Test: Before Soaking: 4/10/2010, l2:00hrs
(wore test started at 08:00 ltrs on 05/10S2010)Upper Beles Dam Site Core Samples.
Slake Soaking Test: Soaked in water-05/l0/2010: 6PMlipper Beles Dam Site Core Samples.
Slake Soaking Test: Soaked in w ier-05/10/201G: 10PM
fl
UBD2Upper Beles Dam Site Core Samples.
Slake Soaking Test: Soaked in water-06/10/2010: 6AMM I"**"* nJ Dim* p^
dam site
ANNEX G
GEOPHYSICAL SURVEY FINAL REPORT JANUARY 2011M**
Krp-rv. tf
Mtflh ^V’arrr f ^»np
f .’♦mX/w .V « PRW^d by ft. RAJI modc, deliver current up to SOOmA at a ma
lj
e 6ctf(
^png f
umberger electrode configuration was used, with smallest inter-
& O<
°f t*,e smallest inter-electrode spacing (n»)
: to n 6 were progressively used so as to increase the depth of
■nvewgation* th I
collected in 6 'nter’electrode sPac'n« mainly used being 60m. The dan » :uch a way that the distance between the potential electrodes 1$fixed at 10m. while Che current electrodes are increasingly spread out from a minimum of I Dm to 60m. At each station, measurements are made for all eiectrode spacings, and the whole set up is then moved co the next station. In this way, the process is repeated until the profile is covered completely.
2,4 Data Processing and Presentation
The 2D resistivity imaging survey data for each line is first edited to remove any
erroneous data which could have detrimental effect on the inversion process, The
edited data is input to the 2D resistivity inversion software, RES2DINV. which
automatically determines a two-dimensional (2D) true resistivity model of the
subsurface for the data obtained from the imaging survey along a particular profile.
The program divides the subsurface into a number of rectangular blocks, and tries to determine the resistivities of the rectangular blocks that will produce an apparent resistivity pseudosection that agrees with the actual measurements. The inversion method basically tries to reduce the difference between the calculated and measured apparent resistivity values by adjusting the resistivity of the model blocks in a number of iterations. A measure of this difference is given by the root-mean-squared (RMS) error,
The final output of the inversion provides three sets of sections, i.e. the measured apparent resistivity values, the calculated apparent resistivity response of the model and the true resistivity model itself. The true resistivity model section is further interpreted in terms of the local geology, and is presented in Figure 2 to 5 for the four profiles, respectively.J. Results and Interpretation
3.1 Line-/
The interpreted 2D resistivity section along Line-1 (Fig. 2) shows djjtinct responses generally marked by low and high resistivity.
On the right abutment, two distinct resistivity responses are found Th. r
’ nc T,r*t zon€
extending between station 0 and 400 dearly indicate that a two hv.r
'*yer struaur(! underlies the area. The top part characterized by low resistivity of less thlr 3o Ohm-m has a uniform thickness of 12-15m, which is attributed to highly weathered and/or fractured basalt The bottom part is characterized by relatively high resistivity response of 40 to 300 Ohm-m. which could be the response of fresh and massive rock.
The second zone extends between station 400 and the river bank at station 670. In this area, no clear layering is observed. But the zone is generally dominated by low resistivity response of less than 30 Ohm-m probably indicating highly weathered
and/or fractured formation or talus and terrace deposit depending on the topographic position. These low resistivity zones are more than 20m thick at places (e g. picket 460-500. picket 530-590).
In the area of station 600-610, a small body of relatively high resistivity (100-200 Ohm-m) is observed, which may be correlated to moderately to slightly weathered rock.
There is no data in the river bed extending between picket 670-7IS- But on section, this area appears as low resistivity which is simply an artifact intro the interpolation algorithm of the software.—
Elevation
Upper Bries Dan AxisRII
Mo Or J resistivity vith topography Iteration 5 ANS error - 11.6
1*1*1
1m
139 B-
13BB-
137*
1368
135*
13**
133*
133*
1>1*J
To™ TTb™ ™^ri.T3 ™o"
Resistivity in ohn.n
Unit ElectreBe Spacing - S.tR
Figure 2. 2D Resistivity Section along the dam axis, Line-l.The left abutment extending between picket 715 to 1030 u u is nara
c
cteri u
resistivity response. Very low resistivity of less than 10 Ohm m
Vlrt’ble
area towards the end of the left abutment between picket °bSerVed «the
Indicating highly weathered and/or altered rocks with la a.
than 20m
The area between pickets 810 and 890 is underlain bv verv k.-k
Probsbly
of
X high resistiMty m
of more than 100 Ohm-m. The high resistivity response dearly co
7 or relates with the
outcropping tuff, which is probably slightly weathered to fresh.
Low resistivity values varying between 5 and 50 Ohm-m cover the down slope part of the left abutment between picket 810 and the left side of the river bank at about picket 720. The low resistivity response probably indicates the highly weathered nature of the underlying rocks which is indicated to have large depth extent in excess of 25m.
3.2 Une-2
Line-2 is situated in the central left part of the dam axis, and extends across the dam axis from downstream river bank to upstream river bank
The 2D resistivity section along the Line (Fig. 3) shows that the line is generally underlain by low resistivity layers of 5 to 50 Ohm-m. The low resistivity response probably indicates the highly weathered and/or fractured nature of the rocks.
The top part of the section covered with patches of very low resistivity oc PX the top 5 to 7m is probably attributed to highly weathered and/o
formations or clayey alluvium. Towards the northern end of the lin picket240. the lowest resistivities are observed having thickness of abou interpreted as clayey alluvium.Line 2111
Model resistivity with topography Elevation iteration 6 RHS error - 9.7
135 ftq
1345-
134ft-
1335
133ft-
132S-
132ft
1315
ubd6
(JBDl
240
3.l^™00 111 3B.• 5ft.0 100 Resistivity in ohn.n
"
Unit Llectrofte Spacing - 5.0ft n.
Figure 3. 2D Resistivity Section along Llne-2,
11The central part of the section. « intermediate depth, having relatively rno resistivity of 40-70 Ohm-m (e g between pickets 80-110 and picket |
composed of highly to moderately weathered rocks.
The very low resistivities observed at depth below 25m between pickets probably Indicate saturation with groundwater.
50 to |4Q
3.3 Line-3
Line-3 is located In the spillway area with a direction perpendicular to the spy^,
axis. The 2D resistivity section along the Line (Fig. 4) shows two distinct tones o( contrasting resistivity responses.
The western end of the line, between picket 0 and 50, Is characterized by very high resistivity values of 30 to 300 Ohm-m probably attributed to the outcropping slightly fractured to fresh tuff bedrock.
Model rriKtiwltj Mitt
llvretiM i ■« error • It.5
Um-MH
i-----------
WtU
1M|.
im
UH
1H5
Figure 4. 2D Resistivity Section along Line-3.
In contrast, a Urge part of the line towards the east is underlain by low res’$ less than 20 Ohm-m, which indicates high degree of weathering and/or fra
. is more
the underlying rocks. The thickness of the highly weathered/fracturea than 30m as observed from the section.3.4 Line-4
Lme^l extendi along the spillway axis. The 2D resisuvfty section along the Line (ftg- 5)
s hows almost uniform subsurface stratification.
The top part along the whole section is characterized by low to very low resistivity response varying in the range of 3-20 Ohm-m. which may be correlated to highly weathered and probably altered formation having thickness varying between 10 to 15m.
The lower part of the section is composed of relatively high resistivity response in the range of 20 to 200 Ohm-m attributed to the bottom moderately weathered to fresh rock. It is observed that the depth to the top of the fresh rock increases southwards.
flwdel rriiitlvltf rirn
LSD?
i.m >.n v.w
‘
■■'Eistlvltgi In Blm.li
"J
- ------------- _______________________________ __________ Mt ffltcJrMKi tpartjHf • £, M ■.
Figure 5. 2D Resistivity Section along ldne-4.
134. Concknien* R‘KomfnCnd’Gon*
rrjtrml *h.ch correlates well with the resistivity result.
attributed to weathered and/or fractured rocks,
The rest of the dim axis is underlain by low to very low resistivity formation probably attributed to highly weathered and/or fractured rocks or loose material Such areas are found tn the right abutment within picket 400 to 670, and in the right abutment between picket 720 and 810. and 890 to 1030, The very low resistivity (< S Ohm-m) observed towards the left end of the dam axis, within picket 890 to 1030. may indicate alteration to day. and is more than 20m thick which should be verified by dnlmg or pitting Similarly, in other areas these highly weathered and/or altered layers have large thickness of more than 20 to 25m.
At the location of UBD4. about 15m thick relatively high resistivity material a observed which correlates well with coarse grained sediments.lootion of UBO2 are charter emed by lbw ro medium high resisowe/ of M-50 Om- m down to about 13m depth. which may be correheed to coarse grimed tard mb gravel (up to 5m) and medium strong fresh lithic tuff up to Mm. Ac depth, low resistivity dominates contrary to the lithologic log showing slightly w«herod to fresh fithc tuff. It therefore appears that water saturation plays a major role m controlfcrg the resistivity structure »n the area.
In general, the dam axis is underlain by rocks with heterogeneous future characterized by varied degree of weathering and/or fracturing.
4.2 Spllfwoy
The two lines measured in the spillway area depict varied nature of the subsurface
Line-]. extending in the E-W direction, shows that the eastern half of the line is
underlain by an extensive highly weathered and/or fractured rock or so*l with
thickness of more than 30m. whereas the western part of the line »s underlain
relatively fresh rock.
The results along Llne-4 in the direction of the spillway axis indicate that depth to bedrock is almost uniform throughout tho lino. Tho thickness of overburden is in the range of 10-15m. with thickness gently mcroasmg towards the southern end of the line. Correlation of the resistivity result with the borehole log of UBO7 is good But on line-3. the resistivity results do not match with that of the borehole log Low to
very low resistivities of less than 10-20 Ohm-m underlie the area east of Picket 60
which does not correlate with the borehole log. The log Indicates up co 8m of loose material (chy. silt. highly weathered tuff), below which sitghdy weathered to fresh rocks are observed.
The variation in the interpreted depth to bedrock at the intersection of bnc-3 and Line-4, probably indicates the isotropk nature of resistivity in that reustmty vanes Wlth direction of measurement, and also that the subsurface configuration dong the two lines is also highly variable.Ftdrral Democratic Rcpubhc of Ethiopia. Minn tn of Water and Energy Ethiopian W/t Irrigation and Drainage Projecte* n«f>
hr.*
75kPa
»kPa
9flkPa
BSkPa
IDSiPb
******"(Ft►
ffalcrow —■!=
Project Name
Upper Bales Irrigation Scheme Location: Betas
Project No
BELES
Coords 261315E-1293535N
Level. 140000m ASLM
1.40m
Client
Federal Democratic Repubbc of Ethiopia Ministry of Water Resources
Dimensions
Depth
2 00m
Samples ft In Situ leeting
Depth (m) | 1
Type] Results
(m ASLM)
1399 90
010-0 40
Stratum Descnptw TOPSOt- dartc grave*?sWyCLAY Gcr-ei fcOs*
Very gra^ly Mndy silty CLAY GrMl u grey co^o ngj* y boulder, cobWey veil, $,hy CLA Y Grrve i w
angular (ColluMum)
5 lr
"* k
Stability: stable
Remarks:
Groundwater dry
FarmlandKalcrow £T.l
Project Name
Upper Betes Imgabon Scheme Location Bales
Project No
BELES
Coords 261267E - 1293603N Level 137l00mASLM
Dm ens ions
1 50m
Depth
1
Client Federal Democratic Republic dl Ethopia
Ministry of Water Resources
2 00m
5'
Hole ID
UBDP3
Sheet 1 ol 1
Date 07/05/2010
Scale
1 25
TT
Logged By
Mnptai & In Situ T evil ng
Dtp*’ Typo Results
Dctxti Level
("I (mASLMi
Stratum Description
Srrff dark tfqhlly yaveib uiry CLAY Gr»»el Is dark prey fine to mcdnxn
anptMr - Cceh/Murn)
0004 65
0
i
137015
rteafww'j
(Mw»och
rvco*«rvd
m pirenh grvy silty sandy GRAVTl Gm is
greyish pr
e m«kjn to
Cosme eng
ulnr iResudu^ So*)
065-200 D
200
1369 00
I
nepi I'nmpiMa ■ 2.00 ir
io
I
Stability:
stable
Remarks.
Farmlard
Groundwater drytfalcrow 2X.1
Project Name
Upper Beles I
Project
No
rrigation Scheme
BELES
Location Bele
s
160m
Client
Federal Democratic Republic
of
Ethiopia
Depth
8
E
Ministry of Water Resources
2 00m
Samples & in Srtu Tnung
Depth
Depth (m) Typej Result
(rn)
Lewi
(m ASLM)
T
-x
r*X ££
•J - V
_-
__ D-* flrey grawtiy Mity ClAV (ColluvHjm)
S,r,,urT1 ^*criDl.or
”
,0
M *
1
000-1 eo D
1 80-2 00 D
1 80 1381.20
1381 00
Cor^M. * 2Q0 m
Stability
Remarks- Farmland
Groundwater dry
stabletfalcrow 2J1
Proied Name
ijppcr Betas imgalKJn Scheme
Project No
BElES
Cowcls 2«M9tE-t29396lN Level: 1347.00 m ASLM
Hole ID
UBDP5
Sheet 1 of 1
Cale
0&W2010
L OC3tX’n: 0eto*
150m
Cleat Federal Democratic Republic of Ethiopia
Ministry of Water Resources
Dimensions.
Depth E
250m
Scala
125
Logged By
rr
. Type’ S»«*» tm)
Shirtum D*«njrtic<* Sbl" rUrt MtyCLAY fRrwr 'maro DepcMl
Drirh arfihny gra^. if silEto* CLAY Dfmnl h •arwytcJi dart rnffiturn .jiihmf *afr
naundwl 4 Rin** “'wane Di^e-Mv
StaOiiity
-Fb
^
- ar,
M.Sf'tdrru/ Dfar^rati. RspMc ofE/fdopia, Mi/riffr) of Udler and Enrff)
1
Ethtopw* Nik Irrigation and I >nana$e ProjfitMir Imfimvn jutrf Dnn^ I’n-n;
ANNEX H. 2
TRut. prr photographs: dam sue areaFedtnd cruft. Pjfutbht oj Ethiopia, Mint/try of Water & Fifty Ethiopian Nik Irrigation and Drurna^ ProjectPlate I: Trial Pil L'BDPl SW side
Plate 2: Trial Pit UBDP1 E side and spoil—-—Hate 5: Trial Pit VBDP2 spoil
Plate 6: Trial Pit UBDP2 looking upslopc, left abutmentPlate 8: 1 rial Pit UBDP3 site area looking eastSlid IVIHJ.
3X15
wow
Si1as3s
isai uvi
f H X3MxyFrrirru/ Drnr&rufi, Kspufa: Ethupa. Mtm/fn Effapan A7£ irrigation and Drm nap Prvprt, p |ncrod«cn
report presents Summery of laboratory test results of soil taken from Nile Irrigation and e Project The lest results are Hydrometer, Alterberg l imit, Proctor. Linear Shrinkage,
p hie Hydrometer ar,d Moisture Content. The soil tests arc carried out following the appropriate pie preparation and testing procedure The following are the standard procedure followed to
arryout the analysis
1.1 Standard Procedures
iNa
T
1—“—
2
Type of Test
Hydrometer
Attcrberg Limit
Proctor Compaction
Standard
BS Test 7(A) & 7(D)
BS Test 2(B)
1 -
1 BS Test 13
L-------- J 4
Linear Shrinkage Limit
BS Test 5
5
6
7
1
Double Hydrometer
ASTMD422I
1
Moisture Content
BS Test 1(A)
Acid Extract Sulphate
BS 1377-3:1990
(
Water Extract Sulphate
Turbidity Meter Method
9 Organic Carbon
10 pH
Walklay Black Method •
pH mlcterNile Irrigation and Drainage Project Summary of Test Results
16/06/2010
Parameter
Grain Size Analysis
Clay (%)
, Silt (%)
Sand (%)
1 Atlerberg Limit
Liquid Limit (%)
UBDP1
] (0.00-3 00m j
27.50
48.42
24.08
UBDP2
(0. IO-O.4Omj
32 0
31 37
UBDP2
(0.40-2.00m)
400
45.28
UBDP3
1 (O.OO-O.85m)
58.5
1 25.75
15.75
UBDP3
(0 85-2.00mJ
UBDP4 1 (0.00-1.80m)
48.0 42.47 953
UBDP4
d 80-2.00m)
•
-
njBDPs
(0.00-1.50m)
LBDP5
(1 50-2.50m)
r
T
36 63 1442
——
-
•
43.50
43.16
13.34
46.0
33 56
20.44
73.88
I Plastic Limit (%) 27.36
Plasticity Index (%)
Proctor
MDD(gm/cc)
0MC(%)
46.42
1 635
22.50
7.52
87.17
43.29
43.88
62.20
40.79
21.41
| 102.55 44 21 58.34
62.75
31.59
31.16
59 07
33.91
25.16
49.90
27.89
11.01
63.94
3445
29 49
53.60
29.23
24.37
-
•
-
•
•
■
1
Linear Shrinkage (•/.)
Double Hydrometer
! Permeability (cm/sec)
16.97
6.75
22 5
• 750
•
14.54
12.04
I
—
J
ND
1.47 x IO4
ND
•
ND
ND
-
i
i
----------------------- L
1
____1
-
1
1
-
•
1
1
J
-4•r
1
Moisture Content (%)
12.11
1 1
37 28 24 26 1581
1
iL
22.73 27 34
11
15.03 26.83
i
22.69
1L
i
_____ L
Jl
Note: - The remaining chemical tests will be reported as soon as the tests are completed.i—_
I
" r jjT.JH
jntHfr*
, r ***
iiX1*
T , Ha]cr^
,r '.Ln Pam Site
Ndc l^*tlon afld D
" *P Project
in r
UBDP4. Layer A
, oOO-l-BC
Water Works Design and Supervision Enterprise Laboratory
Service
SoW & Material Testing Section
Sim No :
Sim. Type Disturbed Test Type: Hydrometer Dire : 26/05/10
Total miJH fff Tamp/f g
t
50
Jiri*
{7/rA.'p^i,‘af^
Mats t)f
SifVf(£j
fajr
RrZ .rtity
Mau of K/A soil (g)
RtfaiNcd
Pfrfenhigt Pairing
iM J V if?
. ,v r|r _
?
W.l
551.1
0.00
0.000
aoo
100.00
/J*
538.9
539.5
0.60
1.254
L?5
98 75 |
J0
0.6
516.7
518.3
1,58
3.303
4.56
95.44
\i ID
03
488.2
4894
1.23
2.572
7.13
92.87
0.15
481.9
482.4
0.47
0.983
811
91.89
7 .w
0.075
4592
4599
0.68
1.422
953 \
90.47
r
425J'
425.5
0.00
0,000
O.W
0.00
Hydrometer Arialyiia
Gw
rb a/ jw/
2.60
Tut Ttfrptralun. 4tg.t
?2
HOT
/
Rfi/ota?
Teftprubirr
fa
Cwfrr+W
Hyarwtter
R/jwtaij
Effufit*
Dtpri?
(a*j
CofficitKl
K
Groin
(jWStJ
Ptw.Lige
Finrr
CMtlnntd
* £?■
45.0000
22.0
390000
990
0.01353
00301
8250
5
42.5000
22.0
36.5000
10.30
0,01353
00194
77-21
15
395000
220
33 5000
10.80
0,01353
0.0115
70,87 (
JO
37.5000
22.0
31.5000
11.10
0 01353
0.0082
6tf.63
60
3 i.0000
220
290000
11,50
0,01353
0 0059
61.35
jfo
31.0000
22.5
25.5000
12,10
0.01337
0 0029
53.94
._ J wo
27.5000
20.0
20.5000
1290
0 01386
0 0013
Grain SL» Distribution Curv*,6Snun httc
Mzt- rtruw i/VA
Project: Nile Irrigation and Drainage Project
Client: Hal crow
Location Dam Sire
T.Pil No UBDP4.1-aycr-A
Drpth(m) 0 00-1.80
Water Works Design and supervision Enterprise Laboratory
Service
Soil & Material Testing Section
Sam. No
Sam Type : Disturbed
Test Type 1 lydromctcr(with Date : 26/05/10
OU! sol’n)
i Totdl masi oj s umf it,
50
Sieve
Marr of
Ret, sod
Cumulate*
° 0 Retained
0.00
Percentage
Retained
0.000
V'rrentag Pan/Hf
1.18
0.6
0.3
doss of stn e Ret .soil(&)
551,1
539.5
0.61
_ J 0000^
1.275
1.33
0.75
2^*
~9872
No 100
2.781
1.568
4.06
0 33
200
run
0.15
0.075
481.9
459.2
425.5
518.0
4890
482.2
459.6
425.5
0.37
0 00
0.690
0.774
0.000
93.69
Hydrometer A
nalysis
0.00
ific Gravity o:
jw/
7
Flapped
Time
(min)
At Inal Hydrometer
Readme
8.0000
1 enpratnre deg.c
21.0
Comcted
} hydrometer Readme
8.0000
Effectne
Depth
(cm)
15.00
5
15
Coefficient
K
0.01369
7.0000
6.0000
Grain
Si^e
hem)
0 0175
Percentage Finer
Combined 16 99
21.0
21.0^
7.0000
6.0000
30
15.20
15.30
5 0000
001369
0.01369
.
0.0239 0 0138
14.81 1 69
21.0
5 0000
60
15.50
0.01369
4.5000
0.0098
10 58
21.0
4.5000
250
15.50
3.5000
0.01369
0 0070
9 52
21.5
3.5000
1440
15.70
2.0000
0 01332
.
0.01169
0 0013
7 4Q
21.0
2.0000
1600
n nnu
A 71
Grain Size Distribution Curve,BSiW
/MZ6* rWMV fr*'A
, )ert. Nile Imgiiuon and DwJnjge projw
rrt . Ibkrow
a
tion: Dam Site
<■■ Wn. UBDP4, Laver-A
Water Works Design and Supervision Enterprise Laboratory
Service
Soil A Material Testing Section
Sam. No:
Sim. Type Dufuxbed
Test Type Double Hydrometer Dire r 26/05/10
Grain $iz« Diatribullori Curv»,B5
1D0 00
90.00
C 80 00
c 70 00
6000
& 50.00
£ 4U.C0
8 30 00
£ 20 00
100Q
ox
4^ — r--h-
with out sol’n/witti sol n * 100 = 2 8.00/S9.SD^lOO^ 13,45 %
ii
-I | _ J _i lIL | |. _ — ii r— •— —
Ir'1 “;l
I4I r
10
01
0 01
0.001
0.0001
Grain Zlze
mm
GravW
Sand
Sil
ClaynnH
$TTC £C.H MHi-fi
Ainift-f
Mzr mW h*A
x \l Z"
Project:
Client:
Location :
T.Pit. No.
Nile Irrigation and Drainage Project Hal crow
Dam Site
U13DP5. Layer A
Depth(m) 0.00 1.50
Water Works Design and
< Supervision Enterprise Laboratory Service
Soil & Material Testing Section
Sam No :
Sam. Type Disturbed
I cst 1 ypc : Hydrometer Date : 26/05/10
Total mass oj sample,
60
Steve
No
Sieve
Mass of
Sievc(&)
leifs of sieve Rtf .soi/(g)
Mass of Rrf. soil (g)
Percentage
Retained
Cttmnladvt % Retained
Percentage Passtn^
No 10
2
551.1
551.1
0.00
0.000
0.00
100.00
No 16
1.18
558.9
559.4
0.46
0.841
0.84
99J6
No 30
0.6
516.7
519.1
*> j ?
4.425
5.26
94.74
No SO
0.3
488.2
490.6
2.37
4.331
9.59
90.4 f
No 100
0.15
481.9
485.0
1.07
1.955
11.55
88.45
No 200
0.075
459.2
460.2
0.98
1.791
13.34
86j66
pan
425.5
425.5
000 0.000
0.00
000
Hydrometer Analysis
•tijic G rat 'tty o) soil
2.65
Test Tenn
\ des.c 22
F. lapsed
Time
(mm)
Actual
I lydrome/cr
Reading
Tenprofxn
Corrected
I ly drome ter
Reading
Effective
Depth
(cm)
Coefficient
K
Grain
Siqe
(mm,
Percentate |
Fmrr
Combined
2
4X5000 22.0
41.5000
9.50
001345
0.0293
76.19
5
44.0000
22.0
38.0000
10.10
0.0134 3
0.0191
69.77
15
40.0000
22.0
34 0000
10.70
0.01543
0.0113
62.42
30
38.0000
22.0
52.0000
11.10
0.01343
0.0082
58.75
60
36.0000
22.0
10.0000
11.40
0.01343
0.0059
55 08
250
30.5000
22.5
25.0000
12.20
0.01325
0.0029
45.90
1440
29.0000
20.0
22.0000
12.70
0.01374
0.0013
40)9ri ,PT Wit m
fr-’i^
iy>
X \LZ/
,\'ilc Irrigation and Drainage Project Halcrow
Dam Site
t:
[x>
uon ■
* pit. No
^):0|W-‘-30
, (IPDPS. Layer -A
To:jI *an of
Waterworks Design and Supervision Enterprise Laboratory
Service
Soil t Material Testing Section
Sim. No.
Sim. Type: Disturbed
Tat Type Hydrometer) ui th out sol'n) Date: 26/05/10
60
A/or/ of Sitw(g)
Im of hm
Rfi joity
Man of
Rr/. tool
PffWtfa#
Retard
Cj^fttiatw
9 j Rrfjifitd
Ptrwtlay
Panw
"a^o
2
551.1
551.1
000
0.000
0.00
10000
1.18
5)8.9
5)9.4
0.49
0.895
0.90
99.10
'^r
0.6
516.7
5189
2.22
4.057
4.95
95.05
0.3
488.2
489.9
1.72
3.143
8.10
91.90
.Vi 100
0.15
481.9
482.4
0.53
0.969
9.06
90.94
.VuW
0.075
459.2
459.8
0.60
1.096
1016\
89.84
425.5
425.5
0.00
0.000
0.00\
0.00
r.
/j
Attita/
T'tftpoaiare
CarrtiltJ
Efftttot
CatfiaMt
•—" Gnu*
Perrerttf
Tare
HytirMHter
Rtaatr.^
HydrwMrr
Reo/ty
Dtpih
fart
K
liter
Contbtud
2
25.0000
21.0
25.0000
1220
0.01349
0.0333
45.90
5
20.0000
21.0
20.0000
13.00
0.01349
00218
16.72
15
16.0000
21.0
160000
13.70
0.01349
0.0129
29.38
W
110000
21.0
13.0000
14.20
0.01349
0.0093
23.87
60
10.5000
21.0
10.1000
14.60
0.01349
0.0067
19.28
^250
7.0000
21.5
7.0000
15.20
0.0/MH
0.0033
12.85
.J44O
4.0000
21.o\
4.0000
15.60
0.013491
0.0014
7.34
Grain Sae tXalrlbutfoo Curw.BS
—non FLW
+ttc pnni-fd
Al07rt-+
MZz7 rinJW hVA
Water Works Design and
, Supervision Enterprise Laboratory
j
Service
Soil & Material Testing Section
Project : Nile Irrigation and Drainage Project
Client: HaJcrow
Location : Dam Site T.Pil No. UBDP5, Laycr-A
Dcptli(m) ; 0.00 1.50
Sam. No .
Sam. Type : Disturbed
Test Type Double I iydrometer Date: 26/05/10
Grain Size Distribution Curve.BS
10000
* 90 00
c 80 00
c 7000
6000
50 00
c 40 00
S 30 00
£ 20 00
WOO
0 00
10
01
0 01 0 001 0 0001
Grain Zize
mm
Gravel
Sand
Silt
Clay
Tejfed by :__ _ CJwkid by_
*
A>- r_
_" Tr. jrcJtt wtt* j
rue rtnt-K nu
% Water Works Design and Supervision Enterprise Laboratory
Service
So// & Materiel Testing Section
Nile I mgs non and Drainage Protect
r^1
Sam. No •
_
.^on: P^
c
H dcrow S,,e
rftu
I’BDPL Bulk Sample Whole Depth : 0.00-3.00
Toto/mat j
Sam. Type: Disturbed Test Type: Hydrometer
Date: 26/0S/10
Jfrt*
Sieve
|jyp
_
Mass of 4 5unfa)
ojj of neve
Man of
KeS. joii
Permito#
ReLumd
CmtimOx
% Rrtouted
PmfffUft
Pisnn^
551.1
551.1
000
0.000
0.00
100.00
5a M
1.18
538.9
538.9
0.04
0.069
0.07
99.93
0.6
516.7
516.9
022
0.382
0.45
99 55
Vi 50
0.3
488.:
490.4
2.16
3.755
4.20
95.80
Vi too
0.15
481.9
487.6
5.74
9.972
14.18
85.82
M.W
0.075
1592
464.9
5.70
9.905
24.08
75.92
425.5
425.5
0.00
0.000
0.00
0.00
Hydrometer Analyut
Gwfr 0/ tot/ 2.84
Tut Ttfapmisn, dq.t 22
Styxa
Time
'vm
Aetna/
HyJnsveter
Reddug
Tatprafart
Cameled
HjdniHttr Reaain^
Effect™
Depth
/ Wgf»/f,_
Sim. No •.
Sim Type : Disturbed Test Type : Hydrornriet Due: 26/05/10
60
fjpr
J/rw
MdJJ oj
SuwfyJ
fair of rret-t
R/r jaJfy
Mart of
Re/, uh/ (&)
Retaifttd
fjrfflwir/jrr
% Rtfujia/
Pfftfnfotf Pajjrn^
>___
2
551.1
35f.i
0.00
0.000
0.00
100.00
tJ
■Vr FZ
,w/ _
tJi
538.9
540.8
1.88
3.730
3.73
96.27
n i nJ _ Aa 50
0.6
516.7
524.1
7.42
14.722
18.45
8JJ5
0.3
488.2
494.4
6.24
12.381
30.83
69.17
t/W
0J5
481.9
483.6
1.68
3,333
34.17
6fSj'
7j2W
0.075
459.2
460.4
1.24
2 460
36.63
63.37
MT
425.5
425.5
0.00
0000
000
GM
Hydrometer Analyiii
1
i)tf£ Cwt/j of toil
2.72
TerfTfrnpmtm, dt^c
22
Twr
AOim/
I [)(irurrft!€>
RAMfrg
Tefip/uiw
fy-c
Comcted
, / lydrvmtftr
RrtfJfrg
kflwtivt
Dfpt/i
fem)
Cwffuttitf
K
Crain
Sr^t
fww
Permittee
Friwr
Combined
2
33.0000
22.0
27.0000
If 90
001307
00319
52.75
5
32.0000
22.0
26.0000
12.00
0.01307
0.0202
50.80
/5
30.0000
22.0
24.0000
12.40
0.01307
0.0119
46.89
30
28.5000
22.0
22.5000
12.60
0.01307
0.0085
43.96
__ 60
27.5000
22.0
21.5000
12.80
0.01307
0.0060
42.00
_ 24.5000
22.5
19.0000
15.20
L JUQ _
0.01290
0.0030
37.12
2 f. 0000
20.0
14.0000
14.00
0.01337
0.0013
27.35
Grain Sh* Distribution Curve,BSnm-i
«TTC ttCJH- PHRA-fA
Mxr r-utJW hVA
Water Works Design and
, iupervision Enterprise Laboratory Service
So// & Materia/ Testing Section
Project :
(Client:
1-oca bon :
T.P11 No
Nile Irrigation and Drainage Project
Halcrow
Dani Site
UBDP5. layer-A
Dcpth(m) 0 00-0.85
Sieve
Total most 0/ samble. r
n------- -—1 z
Sam No :
Sam Type : Disturbed Test Type ‘ Hydrometer
Date 26/05/10
60
Xtasj of
RfZ. soil (PJ
Perven rage Retained
Aa 16
No 30
No 50
Ao 100
Ao 200
: .n
Apetifh C,raviy oj jqiI
2 1.18
0.6 0.3
Staff of Steueff)___
551.1 538.9 516.7 488.2
0.00 0000
1 97
3.29
2.38
0.15 481.9
3.297
5.505
3.983
0.075
lasj of sieve Ret .fot/(r)
551.1 540,9
520.0
490.6
482.8
460.1
0.99 1.489
459,2
425.5
0.88
1.473
Gnmulativt % Retained
0.00 J. 30
88(f 12.78 14.27 15.75
0.00 0.000 0.00
Hydrometer Analysis
Elapsed
2.60 Tenprature
ty.c
22.0
22.0
22.0
22.0
22.0
22.5
Conwed Hydrometer
Readin. 41.5000 40. 5QQQ 39 0000 37.5000 37.0000 35 0000
ISl1 1
( ^efficient K
00/353 00135f 0 0/353 001353 0.01353
dey.c
7; wr
Actual
H ydrvmeter
fwr/r J
Reading
47.5000
46.5000
45.0000
43.5000
4J. 0000
40.5000
Effective Depth fem <
9.50
9.60
9.90
10.10 10.20
39.5000
20.0 32.5000 11.00 0.01386
Grain Size Distribution Curve,BS
10.60 0.01337
Grain Siqt (rnm
0 0295 0.0187 0.0/10 0.0079 0.0056 0 0028 0.0012
Percentage
Pa/jjirg
100.00 96 70
91.20
87.22
85.73
84.25 0.00
22________ Ptnentage
Finer Tombinta
70.26 68.57
66.01
63.49
62.64
59.26 55.03
&
c
a>
e
0)
CL
/ es/ed try : Checked Ennf’l
ww
wiH
x '-/y
Waterworks Design and Supervision Enterprise Laboratory
Service
So// 4 Material Testing Section
Tpjiec’; O”1
y.Pit.Nf
pcpitifm
Nile Irrigation and Brainage Project [ laicrow
Dam Site
L'BDl’5, Layer-B 1.50-150
Total man
Sum. No r
Sarn. Type : Disturbed Test Type ■ Hydrometer Date: 25/05/10
50
J’rrX
No
Si fir
OfW ’ •*'
Mast rf
Sicw(tf
•fdiJ fl/ jrrvf Rd .hh/%1
Mat? of
Rm. josi
Pmnfa^e
Cjrwivitfrt r
% Rdamed
I Pfnfatajt Pdfftft
2
&.i
55 Lf
OM
0.000
0.00
100.00
7.7#
5383
5 40.2
1.29
2764
2.76
9724
~XtJ0
0.6
5 It J
5203
537
7649
10.41
89.59
\n50
03
488.2
490.7
2.48
5314
15.73
8427
’ x» 100
0,15
481.9
483J
1 19
2.550
18.28
81.72
X»200
0.075
4592
460.2
1.01
2164
20.44
79.56
425.5
4253
0.00
0000
000
0.00
Hydrometer Analysis
2
■firry/jOT, d^Rr
EupjcJ
Tmc
3d vol
1 i ydrwrf&j- Rnxdrjv|
Tt^pralMn
Comtlcd
1 lytlnwrfte?
Rradin.
Efatinf
DtpiA
Cotflifif*/
K
G/axfl
J7^r
PrrvrMqge 1
J juwr
-
Cpfnbirwd
X
72.(X7OG
21.5
J6OO00
10.20
0.01353
0.0306
78.05
5
40.0000
21.5
34.0000
10.70
0.01353
0.0198
73.71
l J.L
37M0Q
21.5
31.0000
1120
0.0/353
OOH 7
6721
MJW0
21.5
28.5000
11.60
0.01353
0.0084
61,79
60
32 5000
213
26.5000
1590
001353
0.0060
57,45
2$0
29.5000
22.0
23 5000
12.40
0.01353
0.0G30
50 95
_ 1440^
25.0000
21.0
183000
1320
0.01369
00013
4011
Grain S<<* Distribution Clmv»,BS
I
E
£
3
c
4.
100 00
BQ 00
80 00
70 OD 00 0C 5OQQ
40.00
30 00
20 00
10.00
0.00
1CpmH
*TTTC
A101fr+
rAX/7 WUM? h^A
Tel 251 -116 - 18 55 16/61 45 01 Fax 251 -116-61 53 71/61 08 98
e-mail w.w.d.s e@ethio.net et
Project : Nile Irrigation and Drainage Project
Client: Halcrow
Location : Dam Site
Test Pit: UBDP1, Bulk Sample Whole Depth
Depth(m): 0.00-3.00
Water Works Design and Supervision Enterprise Laboratory
Service
So// Tare dry
31 660
28 440
28 570
30770
Wt of waler
6 830
5.650
5 890
6 890
Tare
16410
16 290
16 230
16 610
wt of dry soil
15 250
12 150
12 340
14 160
Waler content %
44.787
46 502
47 731
48658
PL
PL
Conteiner No
39*
G-6
Wt of sample + Tare wet
2 8 840
29.120
Wt Of sample ♦ Tare dry
26 170
26 350
Wt of waler
2.670
2.770
Tare
16 350
16 290
wt of dry soil
9 820
10 060
Water content %
27.189
27 535
27 36]
Flow curve
Results
LL= 73 88% PL= 27.36% PI = 46 52%. *TTTC
i
(hit
Tel 251 - 116- 1855 16/61 4501 FaM 261- 116 61 53 71/61 08 98
Waterworks Design and Supervision Enterprise
Laboratory Service
Soil & Material Testing Section
P O Box 2561
Addn Abate
project C*n>' Location
T«tW
,-mall w.w.d ».««ethlo n.tet
Nile Irrigation and Drainage Project Halcrow
Dam Site UBOP4.Layer-B
Depth (mV
l- 1 80-2 00
Ethiopia
Sample No
Sample type Distorted Test type Atlerbeg bmit Dale 27705710
( q|j|O AND PLASTIC LIMIT
D £TERWN*ti0NS
j»IA ANO COMPUTATION SKET
'Type Di toil
LL
LL
LL
LL
Ccrtetw No
V
3
J
P5
Mo of Blews
34.0
280
22.0
16 0
Wlof w cl® •Tire wet
rr
37720
37 200
37 340
37410
Wo» liH-olt • Tare dry
30.820
30 470
30 500
30 350
Mot water
6 900
6 730
6 840
7 060
Trr
16.640
16 990
16860
16 290
&0* dry tod
14 180
13 480
13640
14 060
|V»er content %
48660
49 926
50147
50213
PL
PL
|Con(einef No
M12
c
Mol umpie* Tare wet
29 440
30 820
VoiMnoe ♦ Tare dry
26 640
27 600
Mol water
2 800
3220
’>e
16280
16 400
W Cl dry jot
10360
11 200
'A’Jfer content %
27 027
28 750
27 89
Results LL= 49.90% PL= 27 89% Pl= 2201%fan rtPT vims *tttc
rM.c
Project Client Location Test Pit Depth (m)
rtDJW h<£A
Tel 251 - 116 - 18 55 16/61 45 01
Fax 251 - 116 61 53 71/61 08 98
e-mail w.w.d.s.egethio.netet
Nile Irrigation and Drainage Project Hale row
Dam She UBDP3,Layer-B 0.85-2 00
Water Works Design and Supervision Enterprise
Laboratory Service Soil A Material Testing Section
P O Box 2561
Addis Ababa
Ethiopia
Sample No
Sample type Disturbed Test type Atterberg Limit Date 27/05/10
LIQUID AND MASTIC LIMIT
determinations
DATA AND COMPUTATION SHEET
Type of tesl
LL
LL
LL
ll I
Contemer No
A9
23’
23
A18
No of Blows
36 0
300
24 0
180
Wt of sample > T are wot
35.710
34 060 1
35 270
36.330
Wt.of sample ♦ Tare dry
28420
27 400
27 820
28.620
Wt of water
7 290
6 660
7 450
7 710
Tare
16 440
16 540
16.110
16.730
wtof dry soil
11.980
10 860
11.710
11 890
Water content %
60 851
61 326
63621
64 844
PL
PL
Contemer No
92
C7
Wt.of sample * Tare wet
28.390
28 480
Wt of sample ♦ T are dry
25 540
25.560
Wt of water
2.850
2 920
Tare
16.270
16 560
wt.of dry soil
9 270
9000
Water content %
30.744
32.444
31 59|
Flow curve
65 000
-
64 000
Resul
ts
c
63 000
LL=
62 75%
o
£
PL=
31.59%
62.000
pi =
31 16%
• 61 000
o
3 60 000
100
Tested By Checked By_ Approved By
a
25
100 0
No of Blows
1r oT ri-S’T WH ♦TTTG JTCJH 'Uld-td A707A.+
wim/w xxiz>
Tel 251 - 116- 16 55 16/61 45 01 Fax 251 - 116 - 61 53 71/61 08 98
• mail w.w.d s egethio n«t.et prajecf Nile Irrigation and Drainage Project dent Halcrow
Location Dam Site
Test Pit UBDP5,Layer-B Depth (m) 1 50-2 50
jOUIDAND PLASTIC LIMIT DETERMINATIONS
DATA ANO COMPUTATION SHEET
Water Works Design and Supervision Enterprise
Laboratory Service
Soil & Material Testing Section
P O Box 2561
Addis Ababa
Ethiopia
Sample No
Sample type Disturbed Test type Atterberg Limit Date 27/05/10
T»pe ol lest
LL
LL
LL L-ll.
•CorJerei No.
Gl
TG
42
A20
Mo ol Blows
34.0
28 0
220
16 0
•vtofsarr^e ♦ Tare wet
35 460
35690
37 080
33 920
At of sample ♦ Tan? d»y
28860
28.970
29 780
27 480
Iwiofweter
6.600
6 720
7 300
6 440
—
16 120
16280
16 480
15 930
ft. of dry sod
12.740
12 690
13.300
11.550
Water content %
51 805
52 955
54 887
55 758
Pl
PL
Conremv No
39’
J
Wt or sample ♦ Tare wet
30 450
30.790
WLof sample • Tan dry
27 320
27.460
iWlot water
3 130
3 330
lire
16.330
16 350
dry sot
10 990
11 110
j>'«er content %
28 480
29.973
2923|
Flow curve
Results
LL= 53 60% PL= 29 23%
PI = 24 37%POPi pvt* Jtm ? HTTTC
1
j?cJH
HfiMf ma
Tel 251 - 116-18 55 16X51 45 01 Fax 251 - 116-61 5371/61 08 98
e-mail w.w.d.s.e@ethlo.net.et
Project Nile Irrigation and Drainage Project Client: Halcrow
Location . Dam Site
Test Pit UBDP4,Layer-A Depth (m) 0 00-1 80
LIQUID AND PLASTIC LIMIT DETERMINATIONS
DATA AND COMPUTATION SHEET
Waterworks Design and Supervision Enterprise
Laboratory Service Soil & Material Testing Section
P.O.Box 2561
Addis Ababa
Ethiopia
Sample No
Sample type Disturbed Test type Atterberg Limit Date : 31/05/10
Type of test
LL
LL
LL
LL
Container No
B-8
B-11
E
C9
No of Blows
36 0
30 0
24.0
180
W. of sample + Tare wet
36 880
35 720
37 340
35.960
Wt of sample ♦ Tare dry
29 300
28 530
29 490
28 570
Wlof water
7 580
7.190
7 850
7 390
Tare
15 920
16 170
16 290
16 570
wLof dry soil
13 380
12 360
13200
12.000
Waler content %
56 652
58.172
59 470
61 583
PL
PL
Container No
2
N
W of sample + Tare wel
30 160
29 800
Wt of sample ♦ T are dry
26 570
26.520
Wt of waler
3 590
3.280
Tarn
16 100
16.740
wtof dry soil
10470
9 780
Waler content %
34 288
33 538
33 91 I
Flow curve
Results
LL= 59.07% PL= 33 91% PI = 25 16%
10 0
Tested By Checked By Approved By
25
No of Blows
100 0
j—
/X/Z^z.
X* //
-
3f. v X
*
A.
I
••
z. i
n
X- * /♦
5*
,«rfBV
♦TTTC
jrctt Ifld-fd A707IH r^i: ru)JW hvA ' X i
Tel 251-716 18 55 16/61 45 01 Fax 251- 116 61 53 71/51 08 98
e-mall w.w.d.s egethlo neLet
Waterworks Design and Supervision Enterprise
Laboratory Service
Soil A Material Testing Section P.O.Box 2561
Addit Ababa
Ethiopia
Project Nile Irrigation and Drainage Project Ctert Halcrow
Location Dam Site
Test Pit . UBDP3.Layer-A Depth (m) 0 00-085
UXM) AND PLASTIC LIMIT
^TERMINATIONS
OVA ANO COMPUTATION SHEET
Sample No
Sample type Disturbed Test type Atteiberg Limit Dale 31/05/10
[ho* 3l test
IX
LL
u
LL—i
CoMtine* No
801
s
29‘
M
No d Siows
340
280
22 0
160
Wotwripe ♦ Tiie wet
35 530
35 680
35.160
35200
o’sample ♦ Tire dry
26.130
25920
25660
25610
W,ofwili'
9 400
9 760
9 500
9 590
Ilin
16 740
16390
16510
16 460
Of (fry SOi
9.390
9 530
9150
9.150
Wa'et content %
100.106
102 413
103.825
104 809
PL
PL
bontenei No
J
39’
Wt of lampie ♦ Tire wet
27.710
27950
Ntofiample * Tan dry
24 260
24 370
'•M of water
3.450
3.580
Tare
16 380
16.350
soi
7880
8 020
L Wate< content % 43 782
44 638
44.211
Flow curve
Results
LL- 102 55% PL= 44 21% Pl= 58 34%pmi rtPT AHin*; *tttc JtCJH MlfrH Wlfrf
Mxr
h^A
Tel 251 - 116-18 55 16«1 45 01
Fax 251 - 116 - 61 53 71/61 08 98
e-mail w.w.d a.elgethio.net.et
Project
Nile Irrigation and Drainage Project
Client
Halcrow
Location Dam Site
Test Pit UBDP2.Layer-B Depth (mJ- 0 10-0 40
LIQUID AND PLASTIC LIMIT DETERMINATIONS
DATA AND COMPUTATION SHEET
Water Works Design and Supervision Enterprise
Laboratory Service Soil & Material Testing Section
P.O.Box 2561
Addis Ababa
Ethiopia
Sample No
Sample type : Disturbed Test type Atterberg Limit Date 31/05/10
Type of lest
LL
LL
LL
LL
Conleoer No
C11
F18
ND
69
No of Blows
34 0
28 0
22 0
16 0
Wt of sample ♦ T are we!
34 030
33930
33 690
35 380
W of sample ♦ Tare dry
25910
25760
25490
26 430
Wlof water
8.120
8 170
8200
8 950
Tare
16230
16280
16 170
16.720
wt of dry SOd
9680
9480
9 320
9.710
Waler content %
83 884
86.181
87 983
92 173
PL
PL
Contemer No
C15
17
VM of sample ♦ Tare wel
28 100
28 220
Vfc.of sample • Tare dry
24 560
24 640
W of waler
3 540
3580
Tare
16 450
16 300
wt Ol dry sod
8 110
8.340
Water content %
43650
42926
43 2$0
Flow curve
I
c
o
u
e
3
z
93 000
92 000
91 000
90 000
89 000
88 000
87 000
56 000
85 000
84.000
83 000
Results
LL= 87 17°4 PL= 4329% PI = 4388%
100
25
1000fmf AWW HTTTE
Project Client Location Test Pit
Tel 251 - 116-18 55 16/61 45 01
Fan 251-116-81 5371/81 OS 93
•-mail w.w.d.i.etgethionet.et
Nite Irrigation and Drainage Project Hale row
Dam Site
UHDP51ayer-A
Depth jmj- O.DQ-1.S0
LIQUID AND PLASTIC LIMIT DETERMINATIONS
DATA AND COMPUTATION SHfctT
Water Works Design and Supervision Enterprise
Laboratory Service Soil & Materiat Testing Section
P.O.B0I 2561
Arfdrs Ababa
Ethiopia
Sampl* Mo
Sample type: Disturbed Test type Atlerberg Limit Date 311*05/10
1>pe of I«1
IL
LL
LL
LL
C-ontS'ina r Nd
M11
B-2
22
G14
No ol 8lcwt
34 0
20 0
22 0
16.0
Wl of $*rrfjle * T are wet
36 150
34 290
35 820
32.880
VW-fll sample + Tare dry
28 800
27.450
28.080
26200
VW_ol wife*
7 350
6.040
7 740
6680
Tire
16 890
16 750
16.270
16.150
wtal dry soil
11 920
10.700
11 610
10 050
Witar content %
61 661
63 925
65 538
66 468
PL
PL
CcKiteiner No
16’
61
W of sample » Tare wel
28.850
2B 190
V^ .of MHipte * Tw <1 ry
25.630
25.160
VW.of wales
3 220
3 030
Tam
16.380
16270
*1 o£dry sort
9.250
8 090
Waler content %
34 811
34 M3
34 45 I
Flow, curve
Results
LL=_63JM% PLte 34 45% PI = 29-49%
No of Blows
Tested By QJ
Checked
Approved B
IWW 'PTTC
MW-*
W ater \N ovka Design
Supervision Enterprise
Laboratory Service
Fm 251 - 116-61 53 71/61 08 98 e-mail w.w d s.eQothionet et
p O Box 2561
Consultancy Senses for BO.OOOha
Location: Negao
-------- ■ ^annooha Te»t Method: Hydrometer>cld nautralazalon, Oi,ln K.,
Amm_L ‘Mn’ K»*hl
Feas^ySfody----------
F^rORATORYNUMBER
2909/02 UBDP1
-------- Acela
.2910/02 2911/02
profile code
UBDP2 UBDP3 '
UBDP4
DEPTH (M)
0.1-04
Sand(%)
Silt (%)
Clay (%) Texture Class P -H O (1:2.5)
2
H
P -KCL( 1:2.5) EClms/cm)
h
(1:2.5)
Exch.Na(meq/100gm of soil) Exch.K(meq/100 gm of soil)) Exch.Ca(meq/100 gm of soil) Exch.Mg(meq/100 gm of soil) CEC(meq/100 am of soil) Organic Carbon(%)__________ Water Extract SO4'2 %_______ Acid Extract SO4 %_________ Exchangeable Sodium %(ESP) Bulk Density gm/ (cm) _______ Particle Density gm/ (cm)3 Available K (mg /kg soil)
Soluble Salta ( meq/l) 1:5 ext Na (meq/l)_________________ K (meq/l)_________________ Ca (meq/l)________________
!Mg (meq/l)________________
Sum of Cetions (meqllOOgm of soil)
CO? (meq/l)___________ Cl' (meq/l)
?CO? (meq/l)
SO? (meg/))
jumotAniona |meq/10Qgm of sol|)
RemarK:
Checked by
0.76
0.00024
2
3
Approved.by-—
*
t. t t.
<>1|V
-. ** y $•-
•v