J^f** Dnm^e PnfM
Figure 3-9: WATBAL modelled flow for diversion weir (right) from 1982 to 1994
S«n\|Mt«d Sow M H0N bark fvtnicr w»r
Figure 3-10: WATBAL modelled flow for divcnton weir (right) from 1995 to 2005
The mew innuil flow generated with WATBAL ts 12
a regional approach as outlined above The limitation o consider the physical characteristics of the catchment upirc^ catchment area A comparison of the long term average regional approach and WATBAL software is gisen on
^ ows in the wet season compared to the simplified regi
fa «•»„. Hows p.'semed - fa
1 ana-Bcles hydropower stations would need to be ^pcr p°
u |h „ nel,h«
wclf only the
a
^iBAL under predicts
roach and vice versa during the
, releases from the
■
4s ^hU’irt r Rr
.
tr Hcuuncrs (2)
65
11 May 11'■E"T
66
13 Maj H
L’b E4 SfOla Water Rcwurcw (2)Mtm/tr, ,f I*, <*• fa**t*f A’«* **'* &'*•*' P'**!
4
design flood estimation
4 / Rtin fall Frequency Analysis
Design floods of return penods up to a 1100 mr
flows along rhe Upper Beles nver for destgn of the drver, is used to estimate the design rainfall depths for n-r.
, „
U fre*
The resulting rainfall frequency curves arc shown on Figure 4 I and Figure 4-2 and Figure 4-3 for the Pawe, Dangila and Gorgon rain gauges, respectively The three plots of rainfall frequency curves show that, foe short return periods (Le < 1:10 yr), all the distributions show a similar fit However, for return periods between 1:50 and 1:200 rears there is greater separanon between the different distributions
Figure 4-t: Rainfall frequency analysis for Pawe
■
I
69
15 May-11hn fw (1'iddcs, I9”6) then ARFs of 0 72 and 0 50 are estimated respectively
Afc.Qn
t'b F’4 &01a Wafer Resource* (2)
72However. these methods are general formulae for a given region and are not specific to the UppCr Bclc* catchment. The areal distribution of storms and the pattern of their movement over the I pp Beles catchment remain unknown as the run gauge network is loo sparse to
cr
quantify’ this However, by comparing the ratio between the mean raintail ind maximum rainfall for all storms (>25 mm of average rainfall’ between neighbouring gauges then some characteristic of the behaviour of storms in or near to the catchment can be made. These ratios for each rain gauge pur arc tabulated below in Table 4-7 have been estimated is follows:
R rTWTin " X (nux precipitation / mean daily precipitation', / N R rma “ Max (max. daily precipitation / mean daily precipitation)
Table 4-7: Ratio* between maximum daih, rainfall / mean rainfall (>25 mm)
Rain gauge*
Distance of gauges (km)
N'
P mean (mm)
P max (mm)
Pawr - Dangjla
50
200
0.72
0.99
Pawc - Mandura
22
120
0.71
0-98
Dangila Mandura
48
85
0.71
1.0
Dangila - Kunzila
72
72
0.73
0.96
Kunzila Gorgon
52
31
0.69
099
•V 11 number of dip with rainfall average between siatxn > 25 mm
These results indicate that similar characteristic storms are experienced at these ram gauges and after considering all approaches an ARF of 0.75 is adopted assuming a 12 hr storm event for a catchment area of 865 km* to the right bank diversion weir The final design 12 hr rainfall depths ffor a catchment area of 865 km-’) after the ARF is applied are presented tn Table 4-8.
Tahir 4-8: Final
rainfall depths for Upper Beks catchment
12 hr rainfall depth (nun)
Station
T= 12 yr
T= 1:10 yr
T=l:50yr
T=fcl00yr
Upper Bries
45
65
82
88
The temporal distributed 12 hr rainfall using the alternative block method (Chow el al 1988) is given in 1 able 4-9 and shown on Figure 4-4.
R
tesoutres (2;
73
13 May 11FfM Prmhw/h- KrpHi 9f Eihiyj. Sbwfn oflTdkr c*- E"ip ktiufiJH Nik Irrjfijiwr, at J Draw# Prtpl
Table 4-9: RainfaU hyetographs for a range of return periods (min)
Figure 4-4: Design storm hyetograph for Upper Beks catchment (L100 yr)
12 hs Dvsipn storm - T-100 year*
Upper Betas catchment
— ----------------------------------------------------------- —
I 200
I..
H 100
..
nrri TTTTT1 H
1__________________ —-
1
■—------------------------- -^1
-U-lJXrXT.TOO3
I’b ‘-4 SrVla \Kircr Rwwrrc* (2)
■M
13 .May1*
i .:»/j
Ffhf
ofEr^ia, Mwtn tflFafir Enfg
^.i0 VXr
Dna^ Pr^
Probable Maximum Precipitation (PMP)
A dam is designed co safely discharge rhe maximum possible flood without nsk of failure. An estimate of the probable maximum flood (PMF; is therefore required to estimate the spillway wndth of a dam to safely discharge a flood without overtopping and endangering the dam. The PMF flood is estimated based on probable maximum precipitation (PMP) which is the theoretical maximum precipitation that a given watershed can experience.
The PMP value represents an envelope of maximised intensity -duration values obtained from all types of storms PMP is a theoretical maximum precipitation (hat a given watershed can experience The World Meteorological Organisation (V["MO, 1986) defines the PMP as
’thfontiL'dii) the pfaiut irpth offfredfitation for a pren duration that it phyrtcttib f^utbk ottrapvtn ft^r ston* arta at aparticular goprafthwl hafto* at a certain tune of they* ar The procedures for estimating the PMP include; (i; meteorologic*] methods, and (li) statistical methods
The meteorological methods comprise those based on severest storms observed and those that simulate extreme conditions by means of storm models This method is data intensive and requires good knowledge of the climatic and weathrr condition in a region The statistical method is rhe more commonly used technique and is based on the use of the general frequency equation (Chow, 1964. 1988) and allows a rapid estimation of the PMP when rainfall daia are available.
When selecting a method to use. it is important to consider the meteorological conditions of the region, the catchment size, the quantin' and quality of the available climate data, as well as rhe characteristics and number of observed storms. When long records of rainfall are absent and other climatic data arc limited, the general consensus is to use the statistical method
Among the most accepted statistical method is the one developed by Hirschfield (1961) which is often referred to as WMO statuneal method, where the PMP or Pm is given by:
Pn 1 and Sn 1 and arc the mean and standard devianon respectively excluding the highest maxima value (Pl) from the rainfall senes The Km value nr frequency' factor is dependent on the average maximum rainfall, and the rainfall duration. Km values have been evaluated bv Hirschfield (1961) by enveloping Km values of observed extremes, where Km is given by:
A, « „
Hirschfield (1961) initially proposed a value of 15 as the maximum frequency’ factor in any
’•^nation, but later suggested that this value varies inversely with the ma gm rude of the annual rnaximuin mean rainfall. In different parts of the world many authors proposed different K v Alues or upper curves reb ting K with annual maximum mean precipitations (daily). Ongoing Search by Mnges (2009) has looked to re-estimate the PMP for rhe Abbay River basin in Ethiopia. He estimates an upper limit for the Km value of 13 for the region of the Abbay Basin
r Kesciirrcj 12)
75
13-Mav-11Minutr, 'JV^
Elhof^x Nik l^trox e Beta over ortho,tn, Mops (2009) pvrrs . 24 hr PMP ,,> rh. p,*,^ 400 mm for rhr regron rmbmcmg rhe Upper Beier river urchmeor. However. Mn(s, rj^ research m proper, so . Km v Joe of 1S h.s been adopted or Ous study
In this study, the WMO statistical method is used to estimate the 24 hour PMP based on the
maximum annual daily rainfall from the Pawe, and the nun gauge at Dangila and Gorpta^
rain gauges have years until missing daily data during the wet season. Tn case of years W(h i
months with missing data or I month missing data m the wet season data arc not included
When 24 hr PMP is estimated using daily maxima data, an observation period adjustment
'dock’ adjustment factor is applied to the rainfall depth to correct for the difference between
daily and 24 hour observations. In the absence of adequate local information, a clock adjust factor of 13% proposed by I lirschfield (1961 and 1965) was adopted.
The WMO statistical method requires a senes of adjustments and these include: (i) adjustmenr
for the effect of an outlier in the mean
(ii) adjustment for rhe effect of an outlier ui tk
standard deviation (Sxjj), and (iii) length of record adjustment X« and a length of record adjustment S*. The values for these adjustments are expressed as percentages in Table 4-10.
Tabic 4*10: Adjustments for outliers and length of record for mean and standard
deviation
Adjustment
Pawe
(1987-2008)
Dangila
(1988-2005)
Gorgora
(1972-2006)
1.04
LOO
0.98
S-5t
_
Xo
1.10
1.10
LIO
1.03
1.03
1.01
s„
1.08
LOB
1.05
l’hc estimated PMP depths based on daily maxima data for the Pawe, Dangila and Gorgon gauges arc given in Tabic 4-11 A 'clock’ adjustment of 1 13 is applied to the daily PMP depth’ to transform daily values to a 24 hr PMP (Table 4 12). Maximum areal rainfall decreases as th' area increases therefore an areal reducnon factor (ARP) is applied to the 24 hr PMP values In graphs published by the W orld Meteorological Organization (1983). for a 24 hours event and i catchment area to the dam site of 590 km’, an ARP of 0.92 is obtained. Others formulanons have been used in East Africa including hidden (1974) gning a ARI’ of 0.75. whereas Fiddes (1976) gives a ARI’ of 0.83 W ithout more specific information for Ethiopia an ARF of 0-9 B used for a catchment with an area of 590 km’. Table 4 13 show, 24 hr PMP adjusted for a 0 9
ARF
Table 4-11: PMP daily (mm) ___________________________ ___
PMP daily (mm)
Pawe
(1987-2008)
Dangila
(1988-2005)
Gorgora
(1972-2006)
498
331
229
Ul» IM SiOU Water Resources (2)
76
13 Muy -11N'* rm^on '*< Dnr^r Pn^
4-12: 24 hour PMP (mm)
PMP daily (nun)
Pawe
(1987-2008)
Dangila
(1988-2005)
Gorge ra
(1972-2006)
563
374
259
Table 4-13: Areal 24 hour PMP (mm)
PMP daily (mm)
Pure
(1987-20M)
Dangili
(1988-2005)
Gorgorj
(1972-2006)
Average
.506
336
233
359
4,4
The mean value for ihr three rain gauge giving a value of 359 mm is taken as the areal 24 hr PMP for the Upper Bries river catchment. This value m based on dally rainfall data with missing data vans excluded, This 24 hr PMP depth is tn dose agreement with rhe 24 hr PMP depth report for this region by Mogts (2009) in the order of 330 to 360 mm This provides
confidence m the 24hr PMP depth estimated for this study.
Temporal distribution of the PMP
Because there is no readily available information of the rainfall hourly distribuoon when extreme storm events occur, the 24 hr PMP values tabulated above were half-hourly distributed by using the following equation;
P = M^T
Where P is rainfall depth, T is rainfall duration and M is a constant. Using the known PMP (P) value of 359 mm and their durations tn the equation, the M value is determined for each one of the PMP durations Then the accumulated rainfall value for each hour at the time of the PMP occurrence is determined, by using the appropriate M value and the required T. Taking the differences between adjacent hours it was possible to obtain the half hourly rainfall distribution during the two PMP events. The final step was to arrange the hourly senes for each PMP by using the AltematingBlock Method (Chow et if 1988).
Table 4-14 gives sub hourly distribution of the 24 hr PMP applied io the Upper Belos rrver catchment
p 4Srf)t
un Rrtourra {2)
77
IVMayJld™™-- Rf** * A,'’u'fT n‘"tr
f:/Z*rt 20
359
Design flood hydrographs
Rainfall runoff modelling is used to transform the a for a range of return period floods The hvdro_ 7^
'° dto,gn flood hydroP,phs
in HEC-HMS verston 3.2 > lydrolopc Model’s RCn"a,ed USU1« riln™ ™noff ro‘xitl’
developed and matntaxned by the HydroJogtc K
JIEC-IIMS software js
Engineering and is used for hydrological and hv^k"1^ C”'’'' CS C°TS °l
selected as it is a sophnucated and versatile hvdrol 1
“"g
HEC-HMS is
widely through the world and on many dam siudie^r 77'lhne P*C,Uge “d h>5 been USC<) as ArcSVtAT is limited in methods to generate flows and u | *" E,blop“ Software such
reservoirs, whereas SHE software although sophisticated d which is difficult in a data sparse region.
'° t'pf“ent dlms *nd
* r«;uirc a lot of parametensaaon
HEC-HMS software is designed to simulate the surface runoff resui
representing the catchment as a system of interconnected componen ’°m
represents a sub catchment, a channel reach or a reservoir, simulating the I dJ°mpOncnt processes through mathematical relationships as a function of a set of specifi
results of the modelling proerss are the flow hydrographs. Calibration
°
1 a ^e(cf5
,s possible when
lib F4SrOla Water Resource* ,'Z
ISXUy-H* Erhnpit, Miiwty •/ V^rr E^
*d Dranjff Pf^r
saffiaent d.M at an appropriate ttrne step « available Without hourly data possible for the response time of the overs that mtersect the project area. " " “
Tl t c
dndoped by M
“* m"h°d0l°*
S™ (SCS). f„ M
hvd^.ph .**, fcdopri by CM (lw„
of flood .m. m eh.„„l
“ Cu- Nutnber (CN)
J
,
' “*
„ Mo,!^.^
2
This methodology uses CN to estimate catchment retention. CN values are estimated based on the Ministry of Water Resources ETHIO-GIS digital sod map, as well as FAO land use and
land cover data were obtained from different topographic maps and field observations. This approach is widely used in estimating effective rainfall and design hydrographs
Specific catchment characteristics are needed to generate flood hydrographs tn HEC-HMS rainfall-runoff models Sub-catchments arc created to account for the spatial variability of the hydrological process Catchment characteristics are determined from the DEM acquired from SRTM (Shuttle Radir Thematic Mission) data with a resolution of 90 m Catchment characteristic determined from the DEM include:
• Catchment boundaries,
2
• Catchment area (km );
• Length of the longest watercourse (km); and
• Catchment average slope (m/m).
Each catchment is schema used into sub-catchments based on their drainage network On the Upper Bcles river Muskingum and Cungc hydrological routing is used to phase the tnburanes hydrographs together and then propagate the flood wave downstream
Model Schemangttion for Upper Belt* River
The HEC-HMS model schemausauon of the Upper Bcles nver and Its tributaries upstream o the nght bank diversion weir is shown Figure 4-5 The physical catchment characteris derived for these sub catchments is given in Table 4-15Yttterai Df^raft. Rjp»Wr.« Efhrefva, MiiWty W'atir c> Ethitfxar. Nik anti Dne^gt prwcrfSub-cacchmrnt label*
Area
(km^)
Length
(km)
—------- -
Height
difference
(■)
CN
(H)
Tc Kirpich (hr)
Tc travel time
(h«)
Tc Braniby
- Williams
2jf)
Wei 1
1226
19.9
790
78
23
35
5.7
We1 2
68 1
18.7
720
76
*> •>
33
5.7
Wei .3
52 9
12.2
720
76
1.4
1.9
3.S
We 1,4
91.5
20.6
660
75
2.6
4.0
6.3
We 1,5
3.1
3.9
170
75
06
1.0
1.6
We 1,6
70.9
189
740
75
2.2
3.3
5.7
We 1.7
366
167
810
76
19
X7
5.2
Wel 8
52.4
155
730
75
1 8
2.6
4.7
Wei 9
51.9
116
680
75
13
1.8
3.4
We I 10
29.3
7.2
550
74
0.8
1.1
XI
Wel tl
134
5.3
490
74
06
0.8
1.6
We2 l
105.7
17.6
1260
75
1.7
23
46
We2,2
166.3
25.3
1290
74
X5
38
66
Total
864.7
Ub IM SrOla Wafer K cm Hirers (Z)
81
13 May 11FnM
•/ Ertefw. Wuffn ^lTafer dr E
rJtefw Nik Imptot jd Dwqt /W
4.7 Estimation of time of lag Tl and time of concentration T<
Tunc lag Ti or the time from centre of excess rainfall to time of peak of h d foDows: °^ph is
^=0.61
Three methods are available for calculation in the time of concentration Tf these include th Bransbv William formula, Kirpich formula, and the expression for the travel time dncJo ji the Soil Conservation Service (SCS) of USA.
The Bransbv William time of concentration T formula is given as:
c
T = 14.61^'!^
2
; where 1. is the length of the longest watercourse (km), A is the catchmrnf area (km ), S is the catchment average slope H/L fm/tn). and 11 is (he difference in devadon between the outlet point and the maximum watershed divide (m).
The Kirpich time of concentration (T ) formula is given as:
c
T = 0.00032L0”J^*’
where, L is the length of the longer watercourse (m). S is the watershed slope (m/n>).
The T. can also be calculated using the expression for the travel time developed by the Sod Conservation Service (SCS) of USA as following.
T' ~ I ** + t M
where, /^is the sum of travel nine in sheet flow segments over the watershed land surf*<* is noma ted using the following
_0.007(N )“
L
“■ (p”,T)
«We. I t. the flow length. P, u the 2-year or 24 hour ramfall depth. $ is the slope, and N 3 the overland flow roughness The sum of of travel in .hallow flow segments 3
Where, V is the average velocity of the unpaved surface or sheet
following
flow is estimated using rhe
t’b F4 SrOJs Uitrr Rctourcn (2l
82
3‘.. w‘ Etfafw. Miltft/V ¥ U‘"" L’"P
iz = 16.1345.r
FimllVi die 5lim W1VC^Ttmc in Cannel segments AamwIS pven by rhe following:
L
VfhefCj L is the channel length and \ is the average velocity based on thr Manning's equation.
Generali?, the Kirpich formula tends to give lower values compared with the Brans by VTdliam which uses die catchment area as additional parameter Application of simplified general equations such as Kirpich for determining T results in too short of a time of concentration
c
particularly when the average basin slope vines significantly from the mean channel slope as in steep topography in areas in the upper catchments Therefore, the design nme of concentration T is taken as the mean of the three esomarcs.
c
j g Endm^OoD
peak flov
The design rime of concentration T, is then tued in the calculation of peak discharge Q (nV A)
p
given as:
_ 0.208^
^ 0,5D + 0.6T
_
; where id is rhe excess raintail depth (mm)t A is catchment area (km2) and D is the duration of excess rainfall (hr),
The Soil Conservation Service (SCS) Curve Number (CN) model estimates rainfall excess depth rj (mm) as a function of cumulative precipitation, soil cover, land use. and anircedrnt moisture The depth of runoff resulting from a required return period rainfall drpth of duration corresponding to the rime of concentration T is estimated by:
e
_(P0.2Sf
P + 0.8S
• where, S is the potential retention (mm) and P is design rainfall amount of duration T£ corresponding to T years return period (mm).
1 he potential retention S (mm) is ri m a red and watershed characteristics are related Lhiuugh an ^ternicdiare parameter, the curve number (CN) as:
Runoff occurs ooh- when the accumulated rainfall depth exceeds the initial abiuactiori L The *S have developed an empirical relationship between initial abstraction ind potential
retention S, where:
Wf.
3tCr Resound f2)
13-Nby 11
S3M I”**" ** r>nc«^r Mf
/.=0-25
The CN for i witenhcd is estimated as a function of land use, sod type, and antecedent
watershed moisture, using tables published by the SCS m Technical Report 55 and ERA
(2001). The CN for the sub-catchments in the Upper Beks river catchments have been
estimated based on the Ministry of Water Resources ETHIO-GIS digital soil map, as 15
FAO land use and land cover data obtained from different topographic maps and field observations. Estimilcd CN values from hydrological soil groups that are found in the Uppe Beks project area arc determined CN used for all the main rivers, tributaries and smaller courses are given in Tabk 4-15.
The Clark hydrograph method requires the estimation of the parameters time of concenuincxi T and the storage coefficient *R’. The T< is estimated using 3 formulae: (i) Kirpich method, fa;
c
the expression for the travel time developed by the Soil Conservation Service (SCS) of USA and Cm) the Bransby Williams method. The design T is taken as the average of the three
5
t
estimates
Estimates for the R storage coefficient are made using 2 approaches: (i) from the recession luri of hydrographs observed at the Mun Beks gauge station (6005); (ii) from R values obtained in the literature Eleven hydrographs were selected for analysis with flow peaks ranging from 515 m'/s to 1986 tri /*. This analysis estimates an average time of travel of the flood wave (K) of!-' hours and an average T, of 36 hours to the gauge station resulted in a R storage coefficient of 0.9 (T./K). A value of 0.9 is consistent with values reported in the wider literature. AU 1 r
for storage coefficients R for sub-catchments upstream of the right bank diversion wen arc given in Tabk 4-16
Table 4-16: Adopted Tc and R
Sub-
cauhmcnt
label
Tc (hn)
R(b*r)
Wel.l
38
3.4
Wei .2
38
3.4
Wei ,3
23
20
Wei .4
4.3
3.9
We1_5
LI
1.0
Wcl.G
3.8
3.4
Wei J
32
29
Wei .8
3.0
27
We 1.9
22
20
Wei 10
13
1.2
I Wcl ll
1.0
0.9
1 We2 1
29 1 26
Wc2 2
43 1 3.9
I ’b 1-4 SfOta Water Roounrw ,2)
84
13-JKtay-llfi+JD*"***
Mwfoy y ITrtrr &
\f* Pna^dff Pn^r
The design ram fall hyetographs are fed »to the rainfall-ru^ff storm hyetograph is based on the estimated T< for each c t h
generated from rainfall-runoff models pass tnto routing reaehZTn hydrographs which propagates downstream. The propagatron of’^
d “"°on of
‘° ,Onn ’ 'tn*k
uses kinematic routing in the form of Muskingum anna94ff Nv**
4.10 Sensitivity uudysti of design Hows (natural condition?)
The design flous can van dependent on the antecedent soil conditions and rhe method used10 estimate the nmc to peak Ip. Sensitivity analysis has been performed on the estimation of the 1:100 year return period flood to firstly to investigate the influence of antecedent soil moisnift conditions on the magnitude of the peak flow, and secondarily the influence of die wav the T *
p
calculated ic. using the SCS method compared to the Clark method to estimate die unit hvdrograph.
The rainfall runoff modelling was repeated using the 1:100 year return period rainfall depth and Clark method but dunging the representation of the antecedent *oil moisruxr conditions in the HEC-HMS hydrological model This was achieved by altering the CN to a value ranging fax” 87 to 89 to represent antecedent wet conditions. An antecedent soil moisture ope II (average' was used in the rainfall runoff model A 1:100 year return period hydrograph was generated at the diversion weir site using wet conditions (type 111) for the sods before the rain commence The resulting peak flow is tabulated below. Table 4-18
Table 4-18: Diversion weir 1:100 year design flow for wet antecedent condirioos
1:100 year design How
Wei antecedent
condition*
Peak flow
(»>/.)
Peak time
(hr)
Volume (Mm’)
CN (type III)
------------ —-----------------------
1,520
11:15
49
R6
! ’h H SrOla Water Resources (2)
13 \r »-n
0y
•fr*trr f
r
Table 4-lfrl.l00 year
n,^ rtinfdl runoff modelling was repeated usmg the 1:100 year return penod rainfall depth
jnd SCS method rather than using the Clark method to estimate the unit hydrograph in so
Xmg th' to Tp ind gIVen "
T = — +0.6T
’2
Where D duration and T< is the tune of concentration, given by the catchment lag Ti^, the time difference between the centre of mass of a rain storm and the peak of the unit hydrograph
where
T, = 0.6T t
The resulting 1:100 year flow peak for the diversion weir resulting from using the SCS method to estimate the T and unit hydrograph is given in Table 4-19.
flow for diversion weir SCS method
1:100 year design flows
T F method
Peak flow
(mVs)
Peak time
(hr)
1
Volume (Mm )
SCS unit hydrograph
1,126
10.45
__________
282
The 1:100 year design peak estimated using the SCS method to estimate the unit hydrograph is about 29% higher compared the peak of 870m'/s obtained using the Clark method The peak estimated using wet antecedent sod moisture conditions (type III) gives a peak flow which is about 75% higher compared to the peak estimated using the Clark method. Hus analysis a useful to understand the sensitivity of peak flow estimation when using un-calibrated models.
Comparison of design flow (natund conditions) from other methods
The 1 100 year design estimate at the diversion war based on the above approach is compared to flows estimated using the regional equation proposed in the BCEOM Abbay over Master
2
pho (1999) for catchment less than 10,000 km , where
Qmu ioo = 47.8 A0339
13-Miy 11
87f rJru/ LVww’XJ. Rtfak; af E'fapM. Afrctfn ITgfrr c*-
Fj*wCu9 Xi> D’at^e Prwrtf
for 1:100 vcar flood
1:100 year design peak flow
(m’/t)
B
< «0M.W,
Location
Area (km*)
Max flow
T= 1:100 yrs
Storage site
593
416
I Diversion Weir
(right)
880
476
Main Beks it badge
3,431
755
GilgdBde,
675
435
—
Peak flood flows estimited using the regional approach is considerably lower compared to those estimated from the rain fall runoff modelling
Estimated flows arc also compared with design flows estimated from flood frequency anafotf from gauged data which are then transposed to the locations of diversion weir and proposed storage site upstream. I able 4-21 shows the statistical summan of the annual maximum flows
for 6c Main Beks river at 6c bndge (St 6005) and Gilgc! Bcles near Mandura (St 6
•f -
figure 4-7: Frequency analyais ofannuaJ maximum flood for Mam Bclc. *r bodgr
Frequency anatyila ■ annual maximum flowa Main Bales at bridge
Figure 4-8: Frequency- analysis of annual maximum flood for Gilgd Beks near Mandura Frequency analysis - annual maximumflows
I3-Ahr.il
[ c»xiru.-5 (2\hJnfr*!*
MtKJfn ^ff&Eatrp
!1^mCu» NA
nJ Druitt Pw*f
Hex short return periods (<10 yean) all the distributions show a srmihr bchavio penods greater than 1:10 yean the GEV distribution gave a better fit (Table ^22/°'
Table 4-:
1.
(lows from
>• analysis
Mais Belen at
bridge (1962-
2005)
Main Belea at
bridge (19S2-
2005)
Gilgcl Betei nr
Mandura (1982
-2005)
Q2 yean
568
692
191
Q10 vean
1,165
1.230
33!
Q50ycan
1.920
1.837
468
QlOOyean
2J27
2.140
530
The relationship between maximum flows and the catchment area arc shown tn Tabic 4-23
Main Betel at
bridge (1962 -
bridge
Gilgel Belen
nr Maodura
QlO/Ara
3
im /i knr,
QI 00/Ami
7
j (mVi/km )
2005)
034
068
(1982-2005)
0.36
0.62
(1982 - 2005 )
0 49
0.79
Normally, these relationships increased as the area of the catchment decreased although other factors like catchment slope or soils type can also affect this relationship. As a first appro**1 applying the average of these relationships to area for the location of the proposed stOn^ao»^ectionandh>iiraubc
.
results are tabulated tn 1 able 4-24.
L7» 1*4 S<0li Water Rrstrurrcj (2)
90
13 May-Hfl p„e 4-92Hv^U£'2"KP[l ^J^^
fi
r ~~ “
a—«n rw ^Rnti
vean (Oilaril condWon,.
------------ ~—--------------------------------- __4
Figure 4-10: Maximum levels at Diversion Weir cross section for T=li2, fcl0> L50 and
'Jb .
f
4Sr°M’a!tTR Source* Ch
IKMnll
91Xilr
Kr«ie. y Mtwrfrr & Etfrp f>*w«^r P*!*1
Table 4-24:
Return
period
Design flow
(«’/»)
Min.
channel
elevation
(masl)
lie results at cross section of the diversion weir
Velocity of
channel
(m • »)
Water
surface
elevation
(mail)
if (natural
Top widit
(m)
Frtw
2
196
1.230
UU.73
3.50
486
5.86
57.1 2530
10
456
1.230
1,23536
50
742
1.230
1.236.70
JO4_
149.4
100
870
1.230
1.237.26
6.25 no
31.89
3 5 95
38.17
.070
3°£
041
4.U Maximum design Oowt at the diversion weir
The operation rules outlined by the Lahmeyer study (2000) for the diversion to the Tina Befa hydropower station were updated by Salini and Pietrangell (2006) The diversion to the Tana Beks power plant is bised on a design discharge of 160 m'/s and a plant factor of 048, equivalent to an average discharge of 7? m’/s. There arc 4 turbines, under normal operation there will be 1, 2,3 or 4 turbines in operation. The fourth turbine is only used as a spare, dunqt maintenance, or is used as an additional turbine when lake levels are high when the Chara-Cha wetr is at risk of spilling
Tlie operating rules adopted in design report of Salmi and Pietrangell (2006) arc simple A minimum operational level of 1.784.0 mail is adopted and an average turbine discharge of m'/s was assumed for a wide range of lake levels (Le. >1784.3 but <1787.0 masl). The discharge bom the tuibmes arc increased to 160 m’/s at high lake level (i e >1787.0 masf but operations are stopped at low lake levels. The regulated outflow to the Abbay river is fixed at 1 m’/s Similar operational rule, have been suggested bv the SMEC (2008) study where a nummum operational level of 1784.75 masl » recommended bur also uses an average turbine discharge of 77 m3/s whh discharge from the turbines increasing to 160 m’/s at high lake le^ to present spillage over the Chara-Chara war The SMEC study *2008) suggests the regulated outflow from to the Abbay over could be fixed for some months at 10 m’/s
Dunng the wet season, floods m the Upper Beles riser could comrade with high lake level* above 1.787.0 masl. During such times discharge from the turbines of 160 m’/s could be released downstream into the Jehan. river. . ma or tnbutary of the Upper Beles river, and be
(
coincident with a flood peak generated from the natural catchment upstream of the storage dam and (right bank) drversson weir. A. a wont case, the maximum d«wn flood peaks to be expected at the storage site and the dmenion weir „e tabulaied in Table 4-25 bclosv based flow, in Table 4-17. For a less extreme case Table 4-26 presents the maximum design to be expected a. the storage sue and the drveruon war d the average dtscharge, from the
of 77 m /. are couxsdent wuh a large flood genera.ed ,n
Ub F-4 SrOla Wjrrr Revwjrcr* (2)
92
! 3-Shy-1 ’px**'
1 JI _ --- -
Site
Catchment
Area
km
( *)
Design flow
T-1:2vr»
Design flow
(mV.)
T=l:10yr»
Design flow
(mV«)
T=1:50 yrs
Drtqpj flow
(“’/•)
T=L100yr»
Storage Mte
590
501
485
687
780
Diversion
Weir (right)
865
356
616
902
1030
Tab lc 4-26: Dcaign peak flo
ws (future co
edition with 1
i) dropower releaaes of 77 m
’/•)
Site
Catchment
Area
^knv)
Design flow
T=iaym
Design flow
(o»7.)
T=l:10 yra
Design flow
(nP/a)
T=E50yrs
Design flow
(■»*/•)
T=l:100yra
Stonge site
590
218
402
604
697
Diversion
Weir (nght)
865
273
533
819
947
Design Hows for sizing cross dninsge structure scross msin csosb
The design peak floods were also estimated for 10 major streams intersecting the nght bank main canal and 19 major streams intersecting the left canal. Figure 4-11. The streams intersecting the left bank canal drain from the steep slopes of the escarpment and arc likely to cross beneath the proposed alignment for the left bank main canaL The list of main stream which are intersected and their upstream sub-catchment characteristics are tabulated in I able 4-27 along with flood flows Flood flow estimates are needed to design required cross drainage structure so that the flood flows pass across the main canals without causing damage to them The design peaks for different return periods have been estimated using the SCS method, using a mean value for the Tc value, and design rainfall depths as described previously. Field measurements of flow in these streams would improve the certainty in flows estimated.
BMay-11
mF-rJra/
E/Mpuw Nmf
Mntrtrt V jjrr <** ^»*T
!>***' f*^i
_.» Jt r. Main canal, and Catchment Schematiaation Figure 4-11: Stream, interaecring the Vpper Brie. Right and Lef
«in*3«
.4vhmb
(F+JD'"*’1*'
^u, ,W *V*< ^^rwt^r P/Bmr
Abmrfn oftTj/fr C* E*^
Taibk ^-27: Characteristic of catchments of major streams intersecting the right and left
R^Urccs (2)
lJ-Mn-11
95LA/ATER balance modelling, operational rules and w irrigation development in the beles river
CATCHMENT
iotfoducOOD
I^ke Tina, the source of the Abbay (Blue Nik) river, is a valuable water resource, but is ccologicaHy fragile As part of the Ethiopian Government's strategy to main the Millennium Development Goals Lake Tana and the adjacent Beks river basins have been identified as one of the countries five growth corridors. The long term vision of the Ethiopian Government is to inns form the local economy from a subsistence, predominantly agricultural one which makes limited use of the abundant water resources to an economy based on the development of water resources that contribute to growth in multiple sectors. The result will be acceleration in regional growth and a reduction in poverty Although water resources are presently abundant tn the Lake Tana basin improved management of this finite resource is critical if sustainable growth in agricultural productivity, energy production, livelihoods, health and a reduction tn poverty is to be realised. Effective water resource development will maximise social and economic benefits whilst minimising environmental damage to Lake Tana and the Abbay over and avoiding detriment to local communities (McCartney ct al.. 2009).
Already there is considerable ongoing and planned water resource development in the Tana and Beles basins with the development of irrigation and hydropower schemes Increased agricultural production will come from planned irrigation development of about 123,000 ha in the I-akc Tina basin and about 116,000 ha in Beles catchment improving the regions food security and providing more employment in the agn industry sectors. The recent inauguration of the Tana- Beles hydropower scheme on 14,b May 2010 has already increased the countries energy production generating about 217 MAX’ of energy (installed capacity of 460 MW). Water ls supplied to the I ana Belts hydropower station from water released from I -ike Tana through a tunnel. Release from the Tana-Beles hydropower station is expected to supply enough water to luppon a significant area of irrigation in the Beles river catchment.
There are many, often competing, water demand and water user sectors in the Tana Beks basins, these include irrigated agnculrure, energy production, fisheries, navigation, env >ronmcnt, water supply and tourism all with different demands and requirements (SMEC.
^8)- I f accelerated economic growth in the Tana-Beles basin is to be realised then effective Panning, management and regulation of water resource developments is essential to present conflict between competing water users and sectors. Careful management of natural resources
n also optimise the benefits to all competing sectors Confbet can be reduced and benefits nuxm^cd if decision makers involve stakeholders in thru decision for allocation of water
Ourccs between competing needs (McCartney and Awulachrw. 2006).
p
"'Utnabie, well managed and regulated water resource development is equally important to ale * ^Ur,^lcr degradation of Lake Tana, its surrounding shoreline wetlands, and downstream
"°R ,EC Abb*y nvu Climate change is expected to exacerbate compeunoo between water
« the availability of water resources becomes more uncertain as the climate becomes pi ° Varuble As future water resources dwindle and water stress more likely, effective
,U "8 management of water resources ts even more essential otherwise future climaxbrdra/d
Alwtn rflTatrr & harp
/ Jtajrww Xdr J9J l>na«onal development is planned m the Lake Tan. basm becaure of the relative
abundance of water resources. Presently, there u connderable ong0CIg M(J
wa ,„
resource development for a number of irrigation schemes on overs that feed uito Lake Tana Pus totals about 77.000 ha of ungable land Other propo5cd
pumped from Lake Tana Most of these ungauon schemes xre „ Megech Ofj Ocm()u pliUl
9H
I b F4 SfOl* Waler Resource* (2)
13 Shy 11E-W**
on the northern shoreline of I-ake lani Pumping will support approximately 46.000 ha of Option development. A summary of the proposed irrigation schemes in the Tina bum presented in fable 5-1.
Table 5-1: riauMu- »
Irrigauon Scheme
—
Irrigation
area (ha)
Dam
required
Hydropower
capacity
.m
Reserrotr
Volume
(Mm’)
Pumping of Lake
Tana
C/imokfed (2010)
kow
--------------------- « ------------------------------------------------------------------------------------------------------------ RdmP Programme for 20,000 ba net irrigation (under conatrucboo)
_________
7,100 Yes
None I n iv. -
Ribb
19,925
Yes None
233
No
MeRCch (Serbia] _
ENIDP Programme foi
5.254
80.000 ha net i
None
*
Yes
Mreech I'Robit)
____________ Lake Tana Sub-hatin Dama (various stages of development)
6.532
____
rrigation (feasibility acudy stage)*!
None J Yes
lemma
7.786
Yes
2
P3
No
Gtlgd Abbav 11 & 2i
11.508
Yes
5
563
No
Megech (Gravity)
16,660
No
Gumara 13.776
Yes
Yes
2 181
4 307
No
Other (NW,NE, SW)
(hher (X'W.NI . SVC 17.327 No
None
• 1 Yes
Nora (• |) L'ppcr R<-|<-v for about 60,000 ha and Ncgao Dam fnt ib«»uf 12,000 ha it also part nt the MCC0 ha programme.
Irrigation schemes are also planned in the Upper Belts (this study) and Lower Beks, (he former triying on releases from the Tana-Beles hydropower scheme as water is diverted to rhe Bclcs catchment from Lake Tana through a tunnel, Estimates of irrigable area m the Lower Beks are in the region of 85.CMX) ha with a planned dam at Dangur on the Main Belts over.
Hidropower is also an important development in the Tana-Beles basuu io supply clertnaty to
^c Ethiopian national grid to help meet the countries growing demand The Chara Chara weir 15 to operate Lake Tana. This weir regulates the lake outflow to supply a more constant duchuge downstream at the Tis Abbay hydropower plants The inter transfer of water from
Ue Tana to the Bdes catchment via a tunnel has now begun generating clectnatr and the ttinsfened water will be diverted for lmganon Descriptions of the Chara Chara weir.
Vdnipower stations at Tis Abbay, and the Tana-Bcles schemes, important tn the water balance modeling, foUow
13-Miy-n
(2j
99PrwwnA K/fate. •/ ErMta Al/artfp •/ Fxr c* Larjj
!.-*•<«• Ail /ne^« */
l^f
. I f Tk CMnbC Aru »rtr
Clun Chin «U rtguhtts»t« storage in Lake Tana by controlling ll5 outflow to
Xbbav nv«condom of the Chan-Chara war was completed tn May 1996 wd
tf£ubtn outflow to provide a more constant supply of water to the 11, Abb.y I and fl
31ow« plants located about 35 km downstream of the weir In.Ually the war onk 2
„dul nte, each with * apaaty of 70m’/s lite war was operated to regulated outfit t0
improve power production at Tis Abbay 1 which was built in 1964. Ftve new gates war cvnstruaed and become operational m January 2001 increasing the abdity to regulate lake Tft outflows- This improved regulauon ww accompanied by construction of a second power
moon at Tis Abbay 11 which also became operational m 2001
The Chara-Chara war regulates the lake storage over a 3 m range from 1.784 mas! to 1, 87 mas! where the active storage is about 9,100 Mm which is about 2.4 times the average annual outflow (McCartney et aL, 2009) 'rhe minimum operational level of the Chara-Chara war is currently 1,784 masL The war also has a spillway with a aesl (spill) level of 1,787 masL The leave storage of Lake Tana will decrease if the minimum operational level for the lake « changed from 1,784.0 to 1,784.75 mas! to safeguard navigation as recommended by SMEC (2008) At full supply level the total outflow through the gates is 490m /s (Salmi and Pietrangeli, 2006). Changes to the seasonal pattern of Lake Tana levels and its outflow caused by the operation of the Chara-Chara weir arc described below in Section 5 4.
7
5
3
5 J J Tu AMay J and Tu Abbay 11 bydroponrr plant!
The Tis Abbay I and II hydropower plants arc located 35 km south of Lake Tiru s outlet at Bahir Dar The Chara-Chara war is operated to regulate flow in the Abbay river to both c Abbay 1 and Tis Abbay 11 power plants Additional flow is added to the Abbay river frofn catchments between the wcu and the diversion at die Th Abbay hydropower plants fhe intervening catchment has an area of approximately 1,094 knr The main tributary H Andas’1 river with a catchment area to its gauge station of 573 km Water is diverted from the Abbi>
:
nver fust upstream of the Tis Issat Falls into a header channel and the natural head loss at d* falls is used to generate dectnrity. The hydropower plant at Tis Abbay 1 has an installed capaaty of 11 MW and Tis Abbay II has an installed capacity of 72 MW. Together the two plants produce about 434 GWh of electnaty per annum (SMEC, 2008)
L J. 3 Tana -Mu fydrvpcw hbentt
The Tana Bcles hydropower plant located in the Beles nver catchment is part of a mulu purpose 50 year development plan for the Tana Belts basins The Tana-BeJes hydropower scheme was inaugurated on 14* May 2010 and is now operational and involves the divert*00 0 water from lake Tana through an 11 km long and 7Jm dumetrr runnel mto the adjacent w*^ de fiaent BeJes catchment Hvdropowcr u generated by using the natural head difference of 31 Im across the escarpment between Lake Tana and the Bcles river Water from the turn*1 feeds a verticil penstock shaft connected to a powerhouse with 4 turbines with a total in*t*^ capaaty of 460 MW. The hydropower plant is operated with an average plant factor of 4# The average discharge through the tunnel is 77 m’/s with discharge peaking at 160 m’/s
lake levels.
L’b F4 SfOh Water (2)
100
I3-May41P -"V
The nm of the Tana-Belcs Scheme is to divert on avenge about 2.985 Mm' per annum 6am
j Jse Tana to the Belo nver basin through the Tana Beles hydropower plant generating 2JI0 G«h of electricity, assuming existing development conditions in the lake Tana basin and a nununutn operation level of 1,784.0 masL 1 lowever. dn enion of water to the Beles catchment ull) decline to 2,493 Mm' per annum and generate 1.90' GWh of electnaty once full water resource development in the Lake Tana basin is complete and if the minimum operation level o f | 784.75 masl for lake Tana is adopted as recommended by SMF.C (2008). With the commissioning of the Tana Beles hydropower protect the Tis Abbay I and Tis Abbiv II hydropower plants are expected to be used as standby generating plants
[Xschargr from the power plant is released through a 71 km tailrace tunnel to the Jehana ma 2 tributary of the Enat Beles nver. For several kilometres downstream of the tailrace, on the Jehana River, five weirs (with footbridges) have been constructed to dissipate energy of turbulent flows as mitigation against environmental damage (lahmeyer. 2000). Figure 5-1. This inter basin transfer of w ater from Lake Tana will transform the Bdcs nver from a seasonal to a perennial nver With the operation of the Tana-Beles hydropower scheme about 65-70* a of the natural outflow of Lake Tana will be diverted to the Beles catchment to generate dectncitv and supply waler downstream for irrigation developments. A summary of the division of flow between the Abbay and Beles rivers and hydropower generation for dif ferent operational rule* and minimum operation levels for Lake Tana are discussed further below.
r
level und outflow
ords of water levels of Lake Tana arc important for the operation ol the Tana Bdc.
d^pewer scheme and form the basis for the operational rules outlined b\ Salmi and * tr’ngdi (2006), adapted bv SMEC (2008) and reassessed in this study. Uke levels fiuctuate
ch,, ycM from yeaf yeaf
m Flgure s.2. me regulation of Lake Tana
>. C>Ur# Chata war for power production it Tis Abbiv I »nd II his m 1 n
C Pattern reducing its seasonality but causing mud, greater inter-annual v-anab^ lgUte 5'2) After 1995 rhe year on year fluctuations have -creased sigmficandv. Smet 19%
IkMay 11
(2)
101I rirru' ZArwwrjO.
Ij+nfm XtJr
AlwfiJ if ITtfrr d“
f>nr« comrol the waler levels m l jk(. Tlnj re)(af<;j (Q Abba'
River, and diversion of water from the like to the idj.cen. Ikle, catchment The arm of opennon rules » to maarrnrse the benefits to the different, often conflicting water user st<^
uithout impacting adversely on the environment. The rule, attempt ,o m„inu f ljlk
,
e storage «'
rhe end of the wet season as . buffer for the comtng dry year Thu B achieved by preventing spilbge over the Char. Chara wen but should be done to opnmrae dcctnc.ty generation.
(’b 1‘4 SXJlaUiicr Rc^n/ncn f2)
frrtm)without exacerbating flooding dong the lake shoreline or without restricting flow, to the Abbiv over so that environmental requirements are not met
. - z /^/ operational
- Xafiw and Pittranfili (2006)
T,
J
fhe operation rules outlined by the Lahmeyer study (2000) for diversions to the Tina Bdes hydropower station were updated by Salim and Pietrangeli (2006) There art 4 turbines, under normal opera Don there will be 1. 2, 3 or 4 turbines in operation. The fourth turbine is only used u a spare, during maintenance, or is used as an additional turbine when lake levels arc high when the Chara-Chara weir is about to spiH At very low lake levels diversion of water to the turbines may be stopped to prevent the lake’s water level falling below the minimum operational level causing difficulties with lake navigation and impacting on the environment. Salmi and Pietrangeli (2006) adopted a minimum level for Lake Tana of 1,784 0 masL
The operating rules adopted in the design report of Salim and Pietrangeli (2006) are simple. A minimum operational level of 1,784 0 masl is adopted and an average turbine discharge of 77mVs was assumed for a wide range of lake levels (i.e. >1,784 3 but <1,787.0 masl). The discharge from the turbines are increased to 160 m Vs al high lake level (Le. >1,787.0 masl) but opcraoons are stopped at low lake levels The regulated outflow to the Ab bay over is fixed at 17
m’/s.
f.f-2 Lake operational rule - J'A/EC (2008)
Similar operational rules were suggested by the SMEC (2008) study where a minimum operational level of 1,784.75 masl is recommended bur also uses an avenge turbine discharge of " 7m /s with discharge from the turbines increasing to l60mVs at high lake level to prevent spillage over the Chara-Chara weir The SMEC study (2008) suggests the regulated outflow from to the Abbay river could be fixed for some months to 10 m /s (Le March to June) with higher flows in other months. SMEC (2008) recommended a higher minimum operanon level of 1,784 5 masl to prevent serious navigation problems by shipping on I-akc Tana, which most notably occurred in 2003 The operational rules are as follows (SMEC 2008):
1 Minimum operating level of lake Tana to be 1,784.75 masl,
2 Average of 77m'/s to be released through the Belts power plant over a wide range of lake levels,
3. Discharges will be increased to 160 mVs at high lake levels, and
*3 Discharges will be stopped when ever the lake level declines to 1,784,75 masl.
Cumpinson of simulation results between the operation rules of Salini and Pietrangeli (2006) *nd of SMEC (for a minimum operaoon level of 1,784 0 mwl) shows dectnoty production “’creased by more than 10% and spillage over the Chara-Chara weir was reduced by almost
’
r 'b *n
■ ISC
■tn He
"M-ljc
■10
■4040
040
■0
lun
Oct Nov Dee Jan 7eb Mir *Pr ***
rhe lower curves are simply shifted up io produce operational rules for the higher inmimun)
7
operational level of 1,9 5.75 masl as recommended, this curve is recreated on Figure 5- .
I’he rules curves will be affected by the levels of future water resource development tn the Tana basin in particular irrigation schemes using storage on rivers that inflow into the lake .At lake levels decline with the development of major irrigation schemes tn the Lake J ana bum the allowable dnenwm of water to the Belcs catchment is reduced
Figure 5-7: Operation rule using minimum LaIce level® of 1784.75 mad (SMEC,
SMC operational rule for Lake Tana (min 1784.75 masl)
Ftow
«*»«•
tfjl 'I
17U00
i7i7 n
171730
1717.1$
a
l20^C
1717 00
17M 75
*
•0
17MS0
17MJS
40
PM 00
1715 75
171S5O
1715 H
I 715 00
1714 75
l’b JM SrOU * ^r**r,,rc< * ®yv
Mjmr/ry
(** fi/frr^'
l ^fu> N* *"/Pw*’y P^ift/
J f j !^ih opwtioxti/rule ■ [ lai-rw- G/Rf) (2010)
fn this study the S.MEC (2008) lake operational rule curves w [units of flow releases adjusted accounting for change w sV “
a mUKd Jr prodwmon. and
Hafaow - GIRD operational ru!r w presented below m FicT '/ outfl<** Ihe modified
rhe recommended SMEC (2008) rule
RWT i’8, ind hai ’ 5,™hr pattern to
The rationale behind rhe Flakrow GIRD operational rule is tn provide more lake storage by rhe end of rhe wci season compared io other rule*, raising lake levels, and allowing greater releases from January tn April when irrigation demand in the Upper Belts command area ift highest and when there is greatest need for electricity as energy demands arc high and typically there is a shortage in national supply. This is achieved by the continued regulation ar Chara- Chara weir, and by building more lake storage bv releasing less water to the Tana- Bclc» sdiexnc compared to the recommended SMEC (2008) operational rule during (he wet season from Juh tn September providing a greater buffer for the coming year. Higher active lake storage allows mate water to be released for longer in the following dry season from January to April when irrigation demands arc at their highest. When modifying the operation rules curves careful consideration has been made tn optimise releases for irrigation and electricity production, but without restricting flows to the Abbay river so that environmental requirements ire not met nor exacerbating flooding along the lake shoreline or, al lake minima, dcsiccanon of shoreline
wetlands.
Figure 5-8: Hale row — GIRD operation rule using minimum Lake levels of 1784.75 mail
IJ-AUy-11
10?I tJm Pr^r-je. RfMt dEtiufn. Mtmirr) y'U~urr c7 llwrp
Ltfnfut Xiir I'r&SM tat Pra*rft Pnmt
5.6 Regulated outflow to Abbay river
The regulation of the like outflow flow was conceived to supply flow downstream f
electricity production at the Tis Abbay 1 and Tis Abba)' 11 hydropower plants On*. •
Chan-Chara weir attempts to avoid uncontrolled spillage over the weir’s spillway tn
maximise the lake storage by the end of the wet seasons for electricity production
following year. Salim and Pietrangeli (2006) assumed a constant regulated flow of 17
additional flow on the Abbay coming from unregulated flow during higher lake Icveh g,
season. SMEC (2008) preferred to avoid uncontrolled spdlagc and by storing more lakeu-a-J^
this could be released as regulated flows through out the year SMEC (2008) adopted i
minimum flow of 10 m’/» fie. 27 Mm’) from March to June and higher flows m other Wi
In this study the regulated releases to the Abbay nver arc based on a study by Bcllicr et il (1997) and an environmental impact assessment (ELA) conducted before the Chara-Chan u-e was constructed which recommended that flows in the reach with the Tis Issat Falls should lit in the range 10 - 60 nP/s. This is discussed further below. Regulated outflow recommended br McCartney et al (2009) based on a more ecological approach using the Desktop Reserve Model (DRM) was also tested.
5- 7 Approach to water balance m odelhng
The water balance model for the Like Tana-Belw Basin has been developed in WEAP software. Water Evaluation and Planning (WEAP) software was developed by the Stockholm Environment Institute (SEI) in Boston USA. WEAP is distinguished by its integrated »ppmid> t<> simulating water systems and by its policy onentauon. Operating on the basic principle ol” witer balance accounting, WEAP is applicable to single sub-basins or complex river system* (Yates ci al, 2004)
The WEAP model essentially performs a mass balance of flow sequentially down a over spt» making allowance for abstracuons and inflows Risers are divided into multi part reaches a order to simulation a over system A reach boundary is determined by points in the river wh'* there is a change ui flow as a consequence of a confluence with a tributary, or an abstraction return flow, or where there is a dam or a flow gauging structure (Yates el al, 2004)
Typically, the WEAP model is applied by configuring the system to simulate * rrceoi year, for which the water availability and demands can be confidently determined- I^c m< then used io simulate alternative scenarios (lc., reasonable futures based on “what if
v>
“baseli^
propositions) io assess the impact of different development and management options
• The
rmxlel optimizes water use tn the catchment using an iterative Linear Programming algonth whose objective is to maximize the water delivered to demand sites, according to a scC U" defined p nori ties (Yates el aL. 2004)
In this study the WEAP model is first used to investigate the existing water resource development of the Lake Tana basin and the impact of current water use on lake levels The model is then used to assess the impact of fiirure changes in water demand and water use future water resource development. Hus b done first through calibrating the model to the histone nver flows as the initial input to the model, then, more importantly, to the changed
Ub F4 Sd)1s Water Rrsnurrcs (2)
108
i>M*rbkc le%-els over time Subsequently, water demands are vaned with time depending on which
sccnario is being tested. The changes in lake level under these scenario conditions arc compared
with those of the 'base’ or existing condition of today.
The WEAP model is a dynamic, time senes model capable of assessing changes in umc as the
I jkc Tana basins develops. The model is used to examine the impacts on lake levels, outflows
to the Abbay over and releases for power production caused by future water resource
development. The water resource assessment examines the effects of operational rules of lake
Tana on releases to the Bdes catchment for electricity production and irrigation development,
and the implications for navigation oo lake Tana, and lake releases downstream to maintain environmental flow requirements along the Abbay nver.
The aim is to examine the operation rules for the Tana-Bdcs hydropower for delivering water
for irrigation whilst satisfying power generation but without reducing the lake levels of lake
Tana below a set minimum, and by meeting the minimum environmental flows release to the
Abbay nver.
3.8 Wafer bihmcc mode! of Lake Tana using WEAP software
A WEAP model was built for the purpose of estimating the water balance of the Lake Tana
Basin and its catchment The water balance model builds on the SNfEC (2008) study which has
made recommendations for the operation of the Lake Tana, the Tana-Beles hydropower
scheme, and regulation of the Chara-Chara wear. The model was used to evaluate the water
resources impact of specific devdopment interventions such as new’ irrigation and hydropower development based on different lake operation rules.
The first modelling step was to develop the upper catchment component which includes
rainfall^ evaporation and cv apo transpiration, leading to river flows. To accomplish this, monthly estimates of rainfall and evapotranspiration (ET ) throughout the I-ake Tana Basin were
O
dc\eloped from the existing meteorological network and records. From these are developed
estimates of nver flows, net evaporation from lakes and wetlands, crop water demands for
LrnKabon areas, evapotranspiration from natural vegrution, etc. A spatially generalised model of
monthly rainfall and evapotranspiration is generated through application of a geostatistical
mtcrpolation, as described below.
1 Spatially averaged or areal rainfall is generated through application of a geostatistical ^terpolation (Le. co-knging) from observed point monthly rainfall available from 2 r rain gauges tn and around (he Tana-BeJcs catchment
2- Spatially averaged temperature is generated also through application of a geos tans ocaT interpobuon using co-knging Areal temperature is used in the esumanon of ET using
O
•he Thonithwaite method, and adjusted so that this ET u equivalent to the EX,
O
«tunated uslng the Penman-Montuth equation at climate stations in the Tana Bdes
has tn.
'-1»F
♦Sot
tJ-Msr-H
109l&iH RfH 9t Mmsfn
I :h^n Xii /*q(uo^ L>^t^f Purr. J
E»*p
3. Like evaporation is aunuted using Thomthwaitc method usuir s temperature. Net evaporation uis calculated by subtracting for cafh >'r'T*d
0 1’
rainfall estimated to have fallen over Lake Tana Net lake evapor^^"’ "' input to the alter balance model
U uted M an
Deoils of the application of a 'gcostidsoair interpolation using co-krigmg to determine monthly area) rainfall and evaporation, and their use in rainfall runoff models to generate catchment flows, and net lake evaporation arc desenbed below.
£1 f zhra/ nmfall m krtfq
Spatially averaged or areal rainfall is generated through application of a geostatisncal* interpolation (i.e spatial statistics) as described in Section 2.8. Arc-GlS based co kngingwis employed to establish rainfall isohyet maps. 'Hie monthly gndded surfaces of rainfall for the Tana-Beks catchment were produced at a resolution of 90 m from 1980 to 2006. Areal rainE
:
7
was extractcd from each monthly gndded surface for each of the I river sub-catchment is wd as for the irrigation project areas. Figure 2-13 shows the annual average rainfall calculated usaw co kriging techniques for the Lake Tana-Beks basin and Figure 2-14 for the L’pper Beles command area Monthly areal rainfall for each river sub’Catchment is given tn Annex H2
*** Arral tvapofrniuptrvtto*
RAINRUN> ^
e
TICC cvlPoP° heucaJ grass surface with specific characters tin
XX x r— °f ° a> ^‘-‘ ‘-'-rr -
n
defiamt of »,ler
h-umetw or
onmnol
K™'”"8, com
el ,hadlnS ,hc P')Und ’nd “
P*« y
.
C can be determined either by direct measurement using1 m wwg d.mjiolog^ d.ta, the latter method. vwv from
1”^ ■dtt-n.lap, „ e.»pfa eombmaaeat
«, p „„d
h
For the water balance modelling the ETO was eaumated firstly using the I>Cn^
Monteith
equation at 6 climate stations measuring temperature, wind speed, sunshine
Class I). However, ihc distribution of climate stauons is noi sufficient to estimate over sub-catchmenii. Instead the ET.. was estimated using the rhornthwait applk ® only requires temperature Spatially averaged temperature was generated
a 'gcostaustical* interpolation using co-kriging and observed temperature at
1 00
hum>dj. u. T- ~
“
t **«d
• ” u*tng the,> sp,_______ atially ave„........... raged____________________ temperature was gen* _ ,„OT.ed to"gh .ppb=°~ ol• in.erpohoon using co-kriging .nd observed temperature .< climate strno
IJMiytl
’"'“'•••ou.ewra
111/■•in' IWnftr sfErirfw. »- ITwr- f“ Earp
l^xfut A'«* /"g*** <■/ P-v«r /‘nr.r
surrounding the Ute. Net evaporation was calculated by subtracting for each rainfall estimated to have fallen over Lake Tana. Net lake evaporation is used *** water balance model and is tabulated below in Table 5-4.
"
using Penmnn-Monteith
and
i
Method
J-
Fed
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Z II
Annual
t PM (nun)
138
149
182
177
164
137
94
94
136
156
140
131
1697
T (mm)
133
139
164
175
162
133
117
123
133
140
131
123
. t Eittutn (rim SMKC study <20081
3
Tana
Location
Jan
Fed
Mat
Apr
May
Jun
Jul
Aug
Lake Tans
121.4
1183
1284
120.9
69.0
-57.0
224 6
-2100
5.8 5 Tons.tmxndfaler lnlfra,iKIU
day layer below the hk makin
" d «*• T«. i.
..
„ „o
c
unhkely (SMEC 2008) J iddi *
n
surrounding auuifrrx an/j
lake No evidence of rruxtn
o
fkL
I-a *c rana characterised by an 80 m thxi rnoxcincnt of water from any underlying aquifer
B 1 *ow *lvn^ **«h bed slope (ranging from 0.01% to 0.09%), with the Lake deepest pan of the lake occurring *' elevation of 1.772 masl. some 14 m below the average water level of 1.786 mask The natu^ outflow sill level of the lake before the construction of die Chara-Chari weir was L785
The sill level of the present Chara-Chara weir is 1 m lower at 1,784 mas! because of sedimcntanon However, it is important to consider that only the 'active storage” above thr ' level of the Chara-Chara weir (1,784 masl) u important is important tn the water balance m‘ J as storage below this level represents “dead storage". More recently. Essayas (2007) cond<*'f a bathymetric survey of Lake Tana using sonar and GPS but was done as a validation cxerO^ to assess different methods This study uses the elevation area and elevation-storage relationships prepared for Lake Tana by Pietrangeli study (1990) to represent the lake in «** t water balance model as a reservoir. The elevation-area-storage relationships used in (hr water balance model are represented in the following equations:
Cb F4SfO!a Mater Resource* (2)
112
13 Mar ”Where;
A= 46,0282 H -79.18234
H= 0.02173 A + 1,7203
A= 0 015337 V > 2,932 49
V=3,001 H - 5353 836
11=0 00033 V+ 1.784 01
V=65.2018 A - 191303.625
2
A = lake area (km )
H = elevation (mas!)
7
V = volume of the lake above l 84 mail (Mm')
57 Mode! set up
The WEAP model is the actual water balance component. It includes the over flows, abstractions from those rivers, other forms of losses such as evaporation and evapotranspiration and seepage from rivers mto groundwater, and a representation of Lake Tana. The schematisation of the WEAP model of Lake Tina is presided on Errori Not a valid bookmark self-reference. The VCEAP model setup is described below
5.9A Lab Tana
Lake Tana is part of die model which can change in level. volume and area as it gains water from over flows and rainfall and loses water through abstractions, evaporation. seepage and outflows Lake Tana forms the basis of the calibration and of the assessment of impacts from changes in water use in the Lake Tana Basin as a result of lmgaoon and hydropower. Lake Tana u modelled as a reservoir with bathymetry of Lake Tana provided from Pietrangeh (1990). The relationship between elevation and volume is defined in the reservoir unit as shown m Table
^*5. In the reservoir urut the initial storage of Lake Tana is set a 29,159.8 Mm' and the total capacity of the lake storage is set at a volume of 33,858 5 Mm The net open water evaporation °l Lake I ma is calculated using lake evaporation, estimated using the Thocnthwaite method,
areal rainfall interpolated from observed point ra tn fall data (Annex 11). The seasonal ananon of areal rainfall and net lake evaporation are shown in Table 5-6.
5X* hr** CM^C
reservoir unit elevation storage relationship
Likerimtioo (bmO
Volume (Mm’)
1.772
0
1,773
119
1.774
709
1,775
1903
1.776
3,497
l—
5353
1.778
7.425
1.779
9.688
1.780
12,120
1.781
14,695
1.782
17,401
1,783
20,227
1.784
23.147
1.785
26.135
1.786
29,175
1,787
32^73
1,788
55,444
1.789
38.686
1,790
42,001
Ub !‘4 SfOli U'jfrr JUwmfcei (2)
114iAl/wen c* E«r*p
I **vt Xur .’np2»* ™ «'*nr*<» Nnt
Tabk M:1 >Wr Tina reservoir unit rainfall and net evaporation
Moo th
Rainfall
(—)
tNet like Evap.
(mtn) Penman Monteith
Net lake Evap.
(mm)
(Thom th waite)
Ian
S3
137
Feb
S3
149
139
Mu
13.7
121
112
Apo)
273
94
99
Mas
711
33
39
lune
170.7
• 121
138
|uhr
3517
-220
-178 1
Al
3215
-196
199 '
1644
13
• 18
Oct
76.9
90
101
Nov
201
94
63
Dec
t cwir r»
6.0
131
——...si
9 92
S.9J
CAra-f./uru arrr
10
The water balance model simulate, the regulation of Lake Tana outflow by rhe Chan-O * uar avoiding unnecessary wet season spillage in an attempt to maximise storage in l-*^c at the end of the wet season as a buffer for coming dry years, but releasing enough w»ter downstream to satisfy the environmental requirements along the Abbay over The outflow from the lake outlet u modelled using a minimum flow requirement (MFR)- Before the operation of the Chara-Chara weu (Le. natural lake conditions) the MFR uses monthly term average outflows (Annex Jt), after the opera ton of Chara-Chara war (i.e. w»th bke regulation) the MIK uses monthly values recommended to meet environmental release 7?™™ °n the Abb,y m'“ 11 T“ wl,erfalJ 0 lumphrey ct aL. 1997. Briber et al.
7) The observed lake outflow, gauged at Bahir Dir are given in Annex JZ
Modelled flow, upstream of the Tu I..., M „c com d ,o ,hc cnvlfonment*l requirementinudmed by McCartney e. d (2009. 2010) Zwxter balance model uses the recommended minimum operation level of 1,784.75 ma>1 m „rd„ fo „fc ird ^oo" <>" lake Tana and Io mininuse environmental unpaa,
Lab Tan itflm - rmtfallmoff
The WRAP model for 1 jkr Tana Bum i* m
catchments These represent the streams for eaZf^ 72 7'*^*’“
.
f
confluence with s larger scream or over gauge eventual £
' mcn,S at P°Ul1 ° *.
flo
mro the lake. Esnnu.es of monthly flowTaTdJ idl
,he mjul nvcn th”
locatjons, are required as inputs to the water rcsources^d
gaugcd °f
from 1980 to 2006 Th» penod .. comadent w> „
lh
co-knging techniques (Annex Hl); poor to this period too
° V” 26 >W h“'°n< P7,
Cl1CUht*°" 7»rr
available to have confidence tn rainfall estimate. RAINRI txi ° Icrvtt,on 11 rlin
VCeert. J 994 and 1996) are used to producbe
Iflnr 1 trtrszs
•
.
r> “,f*U-ninoff models (V»n ^cf 1 time senes of rrver flow data The RAlNRl^
l’b F4 S8). The Statistical measures R and R between observed and simulate monthly flow for the $ gauge
:
catchments are tabulated in 'Fable 5-9 The monthly modelled flows far each sub-catchment are given m Annex KI The WEAP model is run at a monthly time step
Table 5-7: RAINR1FN parameters for gauge and ungauged mbcatchmeof (SC 1-9)
River tub
catchment
(SC)
West
Tana
Drima
Upper
Megech
Lower
Megech
Gum am
Giro
Upper
Ribb
Ribb («•««*)
Lower
Ribb
SC No
1
2
3
4
5
6
7
8
9
Gauged
No
No
Yea
No
No
No
No
Yea
No
Factor
0.30
0.30
030
030
0.30
0.90
090
0.90
0.30
SROI
0.05
0.05
0.05
0.05
0.05
0.20
0.20
020
0.05
Kc
0.50
0.50
0.50
0.50
0.50
1.15
1.15
1.15
0.50
L’ZTW
160 160
160
160
160 50
50
50
160
L'ZFW
20 20
20
20
20
40
40
* 20
KI
0.60 0.60
0.60
0.60
0.60 035
035
035
060
K2
030 1 030
030
0.30
030 0.15
0.15
0.15
030
r*hl* 5-8: RAINRL’N parameters for gauge and ungauged ■ubcatchmentt (SC 10-17)
River tub
catchment
Upper
Gum era
Gum era (r» R )
uc
Lower
Gum era
Geldan
Koga
Jemm.
Upper
Gilgel
Abbay
Lower
Gilgel
.SC No.
10
11
12
13
14
15 16
17
^uged
Factor
No
Yea
No
No
No
No Yea
No
0.50
0.50
0 50
0.60
0.60
0.10
0.10
0.10
SROI
Kc
Jim
0.05
0.05
0.05
020
0.20
0.05
0.05
0.05
0.60
0.60
0.60
0.70
0.70
0.60
0.60
0.60
55
55
55
110
110
120
120
120
JiZFW
20
20
20
40
40
40
40
40
0.45
0 45
0.45
035
055
0.50
030
030
JC2
0.25
.
0.25
025
0.60
060
0.10
0.10
Olio
|J-Mm II
’*10 'rhe irrigation demands arc based on those presented in previous studies including the Abbay Master plan (BCEOM. 1999) and those requirements presented z the SMEC (2008) study. Irrigioon schemes represented tn the WRAP model are set as dercid or abstriction units Demand units that represent gravity irrigation schemes abstract witer la Lmpnon directly from a storage reservoir, whereas for the pump schemes demand units abstract water for irrigation directly from Lake Tana The storage capacities for dams planned for the gravity irrigation schemes arc provided in Table 5-11. No operational rules uck sc their reservoirs' operation The assumed net evaporation and seepage for cadi dam arc tabulated in Table 5-12 The monthly net evaporation for each reservoir is given tn Arme
Dams provide water for irrigation and flood protection but only the Mcgcch dam P^ waier supply. The WEAP model considers water supply for Gondcr town providing^ about 265 Mm’ per month; a total of 31.5 Mm’ per annum. Thr future demand for ’ water supply will be supplied from the Mcgcch reservoir (BCEOM, 1999) rhe deman representing ihe Gender town water abstracts water directly from the Mcgcch resets
l*b P4 SfOli Waler Rewurrei (2)
1IK
iJ-Mr”capacity of exi.ting and planned reaervoin in Tana bawn
Storage capacity
jUnr^
fobb_ _ -----------
Gum**1
Jemma________
GikdAbbmr
Table 5-12 Net Evaporation and seepage for retervotri
Initial Storage
Momh
Megech
Rabb
Gumara
_
Jemma
Gilgel Abbrr
Net
crap.
(mtn)
Seep
(mm)
Net
trap.
(mm)
Seep
Net
evap.
(mm)
Seep
(mm)
________
Net evap. (mmh
________
Seep
(tnm)
Net
erap. (mm)
Seep jmmj
Net
trap,
(mm)
Seep 2mm2
Ian
113
028 116 025 118
0.57
136 024
117
j.---------- Feb
054
145
0.28
03
119
027
124
027 126
06
137 025
124
0.56
March
166
037
125
033
135
033
1M|
0.71
132 03
132
066
April
138
035
106
03!
116 035
116
0.75
84 032
109
0.71
Mat
90
033
69
032
71 033
34
0.7
•13
029
5
0.66
June
•55
0.26
•53
02?
-47
028
-115
037
-158
024
-170
034
Jub
-231
02
-291
022
-284
0.25 -298
05
•309
021
-320
0.47
-IS
-216
021
-247
023 253
0.25
-228
0.53
•218
0.22
261
03
JS£
48
027
-55
0.27
•72
02?
-76
037
-too
024
134
0.54
Oct
54
029
42
0.28
39
029 8
061
■36
025
-14
037
.Nov
D«
J
119
028
88
0.26
77
0.26
84
056
57
024
73
033
127
026
98
026
100
024
106
033
126
0.22
102
03
The water balance model also includes for the inter the adjacent Beles catchment incorporating lake water through the tunnel to the Beles catchment unit. However, satisfying this demand is restnet incorporating operating rules based on the preceding
from LakeTuu 10
fa ofwltefd^enaon of Lake Tana
represented as • **•**.
r !JXwa.
Ta* (** / »rp
f jfefw Xat W fSr«<» N*f
Srfxtt fmn&i hru
Pnontr* ixr required within irrigation, ind water supply demand, as well as fOr flow requirement unfit. Ihc model uses these pnonty levels when allocating
demand Mtetw it vkiD deliver water to all the level 1 nnontv sites and if ■»».-
f
«.
..
'
■ rcfnjuns tn the
mW, it uiD then dclnvr water to the remaining pnontv levels according to availabtl
ascending numerical order Pnontx^s are important during a period of water shortage demand* from higher priorities arc satisfied before lower pnormes arc considered If
are the same, shortages will be equally shared,
Within a given unit a pnonty level it given a value of either 1 or 2 The priority levels sdoptc tn the 1-akr Tana WEAP model ire summarised tn Table 5-13. Ixvel 1 is the highest dermne pnonry for water in the system and is assigned to municipal users i c. water supply sites Ths means that WEAP will try to satisfy all the demands at this level before any other level of pnonry demand Imgation demands arc also assigned pnonty levels of 1 A pnonty level of la also assigned to satisfy releases for clcctncity generation through the inter-basin transfer of water from lake Tana to Belri nver. Releases from Lake Tana to the Abbay river to meet dx environmental flow requirements is also given a priority of 1. Pnonty level of 2 is assigned fnt Lake Tana
Table 5-13: Priorm level for Lake Tana WEAP Model
Demand tvpe
P na’riB
Priorin level
Water Supply
1
Imgauon schemes (Graving
1
Imganon scheme* (Pump)
1
Inter haun transfer of Tiru Basin scheme
I
Minimum Abbai flow requirement flake out flow i
1
lake Tana
2
<=^^Oo f^
00 ler/l^aCfAfoife/
'X’EAP^ glUS^ m" fl°U‘ “ L°kC T,nJ B*'“1 Provldcs « mMn* b>’ utucl* lhe
ku mC/
b* embraced How records in the Tana-BeJes basins are of
no’ arc therefore done to lake levels. The main purpose of the cab brao°n
' *** Of lhc
1980 u yiOe,1
model to accurately mimic lake behaviour.
lO CM^>r>U —°del to observed over flows and lake levels n fhe observed lake level record shows typical narural
* V P*nods of extreme dry years in rhe early io mid 1970’s and early 1980‘s, snd *
wet perxd in the j q«jq* j£j
s
in j lt uJeaJ for calibration purposes
u-M^yJl
I b F 4 S*01« Waler Rrxnxrer (7)
120rt VrW*-* ^
rhe performance of the model calibration was assessed. both qualitatively lie., mud inspect™
- 5irmlhtrd and observed time senes) and quantitatively using statnmed mmurn mdudm^
2
correlation coefficient (r) and the coefficient of detrrnunarmn (r ).
figure 3-11 »ho« the close companion achieved between observed lake leveb and those soiudared by the wafer balance model for the years 1980 - 2006. a pennd of natural lake level variation Statistical measures are lugh with R of 0 86 and R of 074 for lake levels fhese
:
values indicate good model performance
Ctood agreement between simulated and observed monthly flow and lake levels over a long period of record provides more confidence in the WEAP moders ability to represent rhe complex hydrological interactions that determine the Tana Beles basins water balance rhe calibration of WEAP model involved, because of some uncertainty with the inflows in particular from the ungauged catchments, lake evaporation, loss of lake volume during inundation of lake shoreline plains, therefore some adjustments to the inflows estimated using RAINRUN were made to better match the observed lake levels (Annex Mt)
Figure 5-11: Calibration for Iuake Tana from I960 - 1995 (natural)
th rC5l^ f
rs
rom u^tcr balance model simulation are used to determine the irra of imganon
r 20 be developed in the Belts catchment from hydropower releases before storage is
C ° Beles river. The WEAP modd is configured co amulaie the existing “baseline"
n
. ncs> f°r wBkh the water availability and demands can be confidently determined The used to simulate alternative scenarios based on “what if’ propositions to assess
^^ .CT Afferent future resource development and management opoons of Lake I ana Water 3 na’Beles hydropower scheme. Alternative scenarios ire developed tor full future hvd CS°UlCc development (F*D) in the Lake Tana basin with and without the Tana-Beles
I0 ?"*cr scheme of>c
„^
n
M odc|
5c cnano arc also developed for different operational role curves and minimum
s
(2j
Inch for Lake Tana A summary of the model sccnanos developer are tabulated
lWto H
121FM IBaap
I jMpwt Xk Ir^pS* l"hrf
bckm- in Table S-14 For cadi model scenario the impact on Lake Tana h d
releases to BeJes and Abbay riven arc explored. Modelled hydropower release t
arc then used to determine the imgablc area that can be developed before dam^ • Enat Beks is required for each operational rule for Lake Tana
Each WEAP model scenario is run with the minimum flow requirement (NfFR) such tha- minimum maintenance flow for environmental requirements in the Abbay nver upstrea^^
Tn hut Falls as recommended in the El A conducted for the Tana-Bdes transfer scheme»
met (see below) The WEAP modd is also tested using the environmental flow requireme: recommended on the Abbay river at 1$ Issat Falls by McCartney ct al. (2009) based on the mode! sernino S3. The scenarios ire run for the years 1980 to 2006 a period of 27 years
For each scenario, ihe WEAP modd was used to predict the impacts on lake levels ind lake area for each month of the 26 years simulated, the amount of electricity generated and firm releases to the Abbay and Belts rivers on a monthly and on an annual basis. In each senunn the time senes of lake water levels was analysed to determine in how many months over the. stan of simulation, the mean lake levd exceeded the minimum specified (required for navigation)
Table S-14: Model scenarios
Descripdoo
Full irrigation
development FD)
Tana-Bdes hvdrxjpo^’er
SO
SI
S2-A
Scenario
S2-B
S2-C.J
operating
Tana-Bdes operation rale (OR)
None
SMEC
SMEC
'revised)
|hkro'»‘
gird
»1 &
&
Minimum lake level in OR (null)
None
None
1.784.0
1,784.75
Cham Chara weir
operation
Cnrrgutated
Regulated
Chara Chan weu flow requirement
’MMF
’\TF
Abbay nun outflow
(m s)
None
v
10
________________ ___________________________________
'VncmtnJM operant* i> mdepcndeni of UU Ind opcratM* with a rekwc of 160 m'/i thnnighoot the dry flrm requirrmrnr (MIK) for unregulated opennoc of the dun Char* wnr 11 the mean monthly
'
rfhe MIK for the regulated operxnam * A variable
(VHP) la^j wcu
^tl>rr et at 1997)
Cb F4 SrOla Water Rranurre* (2)
122
IJ-MO "y
Mcrtfeftityr
tT Vutfimcot^ ™ AA&jry fhrrr
For each model scenario the lake outflow b regulated by the Chara Chara wax. Regulated downstream Ho^ have to satisfy environmental flow requirements downstream of the Like curler and preserve the flows over rhe Th Issat Falls for aesthetic reasons as the falls are an important couri« attraction in Ethiopia. An environmental impact assessment (E1A) was undertaken by Bellicr ct aL (1997) before rhe Chara-Chara unr became operational recommending flows over die falls should remain between 10 -60 nP/t u tabulated in Tabic
5_j S bur these were based mostly on the aesthrtical lmpacn of different flows over the falls (McCartney et al. 2009), 'Pic ElA results indicate that tn maintain the trunumim ecological hincfioning in rhe reach with contains the falls requires an annual allocation of 995 Mm’.
The SMEC study (2008) used a Global Environmental Flow Calculator to assess the implication of a reduction of natural lake outflows and a regulated outflow after rhe Tana-BcJes Scheme becomes operational The flow pattern in that Abbay at Tis Issal falls is deemed by the calculator to he ’seriously’ modified reducing biodiversity in (he river dramatically McCartney ct J (2009) have used a more ecological based approach io determine environmental flow requirements in the Abbay river reach containing the Tis Issal falls using a Desktop Reserve Model (DRM) This study estimated that to maintain the basic ecological functioning of this reach an annual allocation of 826 Mm' is required, and no monthly allocation, even in dry years, should be less than about 3 “m /s (Lc.lQ Mm'}. However these estimates take no account of flows needed to maintain the aesthetics of the waterfall during popular (ourist months (McCartney ct aL 2009, 2LI10). For all model scenarios a variable environmental flow requirement based on those recommended by Briber ct aL (199") axe used. Tabic 5-15.
l
l^blc 5-15: Recommended minimum environmental flowi over the Tia I Mat Falla
Jan
Feb
Mar
Apr
May
Jun
Auje
Sep
Oct
Nino)
----- S2A SXEC (min 17M mad)
----- S1 Tana Bair FO
----- S28 SMEC (min 17M.75 masi)
~ S3 HdcnM(rnin 1714 75 mad)
— S4 Lhccrar oied __________ - -
Ub F4 SrOla Water Resource.* (2!
124
13^f^r o/irufrrt^f:^
t
raj
The operation rules and minimum lake level selected for its opera don also did are the period of time uhen the monthly lake levels exceed 1 ,”85 mad required by shipping for safe navigation of Lake Tana I 'nder existing conditions lake levels hardly ever drop he low this level remaining above 1/85 masl for 98% of the rime (Figure 5-14 and Figure 5-15). L oder full development there are longer periods of lime when monthly lakr kvcb sue below’ 1,785 mis I but this differs depending on which operational rule and minimum operation Like levd is adopted The mean annual Lake level is 1/786.1 masl under existing conditions. with a maximum lake level of 1,786 8 masf and a minimum level of 1 / 85.5 mail.
Zgbjc 5-16: Simulated Lake Tana water level for model scenarios
Scenario
Full irrigation development
TD.__________
Tana Bcki opera tiny rule .OR
Ntin. Lake level in OR
I-Turing
None
None
'['ana basin
FD
‘None
None
S2-A
Tana basin FD
SMEC
1784
Tina basin
FD
Tam basin
FD
f lakrrnv Uncontrolled
None
Mean level (mad)_______________
1786.1
FB5.5
17853
Mom nun level .mad)____________ _Mean max level (masl)
Min kvcl_of nmc scries (masl)
1785.5
1785.0
1784.6
1786.8
F86.2
1785.9
1784.4
F83.B
17836
level of rimt yeries rosl
17873
17873
17HT0
52-B
Tana bann
FD
SMEC
1784.75
1785.6
1785.0
F86 3
1784 2
F872
1785”
1785-0
1786-4
17843
17873
1784.6
1785,8
1783.8
J 786.7
»rime mean water level
98% |
^^’li 'll’
Ji,..
13 Xlav ll
125R<.M.
Nti Imjflfrae Draw# Profit
Table 5-17: Change in Lake Tana waler levd
Scenario
so
SI
S2-A
hill irrigation devdopmen’ (FD)
Existing
Tana basin
I’D
Tana basin
FD
S2-B
1 ana basin
FD
1 *na baitr.
FD
*
Tina Belcs operating rule (OR)
None
None
SNHyC
SMEC
Hale row
Mm lake level in OR
None
None
F84
r 84.75
1784.75
Lake Tana
Mean level (mas!)
0
-0.54
-081
0.45
-0.38
Mean mm level mi'')
0
0.48
-0.87
0.49
0.47
Mean max level (mad)
0
■0.58
0.85
-0.49
039
Mm level of time senes (masl)
0
-0.60
0.82
-021
0.07
Max level of time senes masl;
0
•0.19
0.48
0.28
-0.2!
(a) Scenario S2-A
If the Tana-Betas scheme is operated using the SMEC rule curve and a minimum operation level for Lake Tana of 1,784 masl, then under a full development scenario (S2-A) the man annual lake level falls by 0.81 m from 1,786 1 masl to 1/85.3 masl (Table 5-16 and Table Mq Lake levels exceeding 1,785 masl just 52% of die time (Figure 5 15) The mean lake area*
reduced from 3,097 km to 3,039 km a loss of 58 km which is about 2% of its
2
:2
fo11^arrl1
5 18 As would be expected, the greatest impact occurs during periods of dry years mo.t significant Iv from years 23 and 24 of die simulation. During these periods lake le\ el15 ul 0.82 m lower than existing levels in the dry season declining from 1,784 4 to 1. W-6 flU* the extreme dry years of 23 and 24 lake levels rarely remain above 1.785 masl in any ^nth
Dunng the dncit years the surface area of the lake is reduced by as much as 153 km fa*
:
0
mean annual minimum lake area of 3,054 km to 2,902 km . This is likely to have a neg«
2
2
nvC
impact on lake navigation, exacerbating detriment to the lake’s ecology in particular shored wetlands and near shore ecosystems.
Ub 14 SrOla Wm-r Kc*^urrr» (2)
12b
1PW
II<>JEt*"t*J. Mt/Uftry
Stk ifn&t™ *** lywap Pf^ta
mean lake are*
__________
3.09
3.0M
3.039
-43 (-1 4%j
_-58 (1.9%)
3,061
36 . 12%)
5,069
3.024
♦29 (-0.9*4)
-73 (2.4%)
(b)
Scenario S2-B
2
The above results confirm the recommendations by SMEC (2008) to adopt a higher minimum operation level of 1 ,"84 75 masl to sate guard shipping on Ijikr Tana and reduce impacts on Lake Tana and its environs. If the Tana-Bcles scheme is operated using this operation rule, under a full development scenario (52-B) the mean lake level declines by 0.45 m to 1,785.6 mas! (Table 5-16 and Table 5-17). I^ke levels remains above 1,785 masl for 85% of the nme. Figure 5-15. The mean lake area declines from 3,097 km ro 3,061 km a reduction of 36 km or 1 2% of the total lake area, Table 5-18 In the severe dry year of 24 a minimum water level of 1,784.2 masl is reached which is 0 21 m lower compared to the existing condition Dunng severe dry periods the lake area declines up to 101 km-' from the mean annual minimum lake area of 3,054 km to 2,953 km Because the diversion of waler is restricted sooner at Iowa lake lev els
2
2
::
monthly long term average lake levels arc considerable higher compared when a minimum operation level of 1,784 masl is adopted.
(c) Scenarios S3
If the Halcrow operation rule is used to operate the diversion of water from Lake Tana to the hydropower station in the Beks catchment, under full development (S3) the mean lake level falls bv only 0.38 m to a water level of 1,785.7 masl (Table 516 and Table 5-17). The mean
2
2
annual lake area decreases by 29 km to 3.069 km a change of less than 1%. I-akc water levels mam high, exceeding 1,785 masl for 89% of the time period (Figure 5-15). Because lake levels
^cced this level for the majority of the tunc shipping on Lake Tana would be disrupted less In ) fear °f 24 a minimum water level of 1,784.3 masl is reached which is 0.07 m
r compared ro the exiting condition. In some years the surface area of the lake will be
'
to 2,961 km2 following particular severe prolonged dry periods.
Simulated lake levels over the 27 year tune senes arc con
•«*» the SMEC using the same minimum operation
^ktcntlv marguullv “,nH
shown for the long term average lake levels (Figun: .
sUnc rf5ult „
Halcrow . GIRD
from Jan1111) 10
tulc achieves higher flow releases dunng the drv se**°n„ JJows a greater ,fel 1108,0011 *°
May compared to the SMF.C roles (2008). This essenceilly developed before storage is required, and
necessary compared to requirements based on operational rules This is discussed furtlier below
* capiaty w
If the
(2009)
u$Ulg th
fC ^Ulrcincnts sxVirc^ to meet those reported by McCartney ct aJ
c £>RA1 approach, under full de\-elopmcnt, then the mean annual lake level hFt^rji Dt^rj^ fyM tf'EfMp* Afwrfn of IF^ & E"f&
Elbtipit* Nik Imftfm a*J Dnunjf< Prvjrit
slightly raised to 1.785.8 mis) which is 0.33 m lower compared to the existing condition
levels are fractionilly improved compared to those estimated using environmental fl(kU requirements based on the ElA study undertaken by Bdlier er al (1997). Under full
development lake water levels remain above 1,785 masl for 90% of the time penod a
comparison of results for each scenario for S3 using the two distinctly different envuo^^
flow requirements arc tabulated below in 1 able 5-19.
Correct operation of the inter-basin transfer of Lake Tana water to the adjacent Bclcs
catchment is essential to maximize active lake storage at the end of the wet season for use fori following dry vear. If the Tana-Bclcs hydropower scheme is operated on a demand for
electricity basis only, without managing lake storage, then serious impacts on 1 jkc lana ionp term water levels occur (Figure 5-14).
Table 5-19: Lake Tana water level using Halcrow - GIRD rule (S3) with environmental
requirements on Abb ay river based on ELA an d D R M values.
Scenario
S3
S3
S3
.. 53 - J
Full irrigation development
(FD)
lana liatin
FD
Tana basin
FD
Tana basin
FD
7 ana basin
_FP . J
Tana Belts operating rule ((>R
Haler ou’ A
GIRD
1 laicrow A
GIRD
Hakrow A
GIRD
1 ialcrow A
Gntp__
.Min lake level tn OR
1784.75
P84.75
PM.75
I7M 5- -
Environmental flows on Abbey met ar Tis Issai
ElA
(Rellier et
1997)
DR.M
(McCartney
et aL 2009)
ElA
(Bcllier er
1997)
1JR3J
(McCirtney et al. 3009/
Lake Tana
— — -
Mean level (mail
1785.7
1785.8
0.38
0.33
.Mean mm level mail}
1785.0
1785.1
-0.47
-042
Mean max level masl)
P86.4
1786 4
0.39
-0-36
Mm level of rime senes (mail;
17843
1784.4
-0.07
aoi
.Max level of nmc senes (masl;
1787.3
F87.3
0.21
oil
• e time mean water level exceeds 1.785 masl
89%
90%
-
(d) Scenario 54
Uncontrolled flow releases to the hydropower scheme of 160 m'/s (ix. 4 turbines) during 1 dry season results m a dramatic fall in the mean annual lake level by 1.0 m (Table 5-17) P u the dnest years in year 23 and 24 minimum Lake levels fall below 1/84 masl to a mining P 1,783.75 mas! which is 0 64 m below the existing time series minimum lake level of M*V -
when shipping was severely disrupted lhe mean annual lake area is depleted by 73 km’tc’ 3.024 km . In the fall development scenano with uncontrolled releases lake levels exceed L mas! just 45% of the time (Table 5-16). Navigation problems would remain an annual rHrcurrrncc as lake levels hardlv exceed du* level in any year from January to |unc (Figure
If the Tana Beks hvdropower scheme i* operated on a demand for electricity basis onty’ is potential for serious environmental impacts on Lake lana and difficulties for shipping i>°
2
t’h |*'4 5iOla Water Jtaoutres (2)
128__Mrt increases annual energy production by 8% but results indicate that lake levels would
Climate change has not been considered in this study but« likely to have an adverse effect on
r ^c water resource availability and irrigation demands in the fana-Beles basins, exacerbating th Jccline in water levels of I-ake Tana, and reducing its surface area further, and increasing us vulnertbilitv to environmental, social and economic damage-
Comparison of Lake Tana drawn-down with McCamey et al (2010)
study
McCartney et al (2010) have also developed a water balance model of Lake Tana Io evaluation of current and future wa ter resources development m rhe Tudce Tana Basin- McCartney et aL (2010) shows simitar lake level draw down if the full development scenano (EDS) in the Lake Tana catchment is implemented (without VFT) compared to Scenano S2-B (SMEC 2008) and Scenario 3 (Hakrow de GIRD), whereby the mean annual water level will be lowered by 0.44 m. But in the FDS with Tana Beles operating, even without the VEF releases, water levels exceed 1.785 masl just 78° * of the time Also, McCartney et al (2010) shows greater drawn down of water levels in FDS when using VEF releases to the Abbay compared to results presented in Scenario S2-B (SMEC 2008) and Scenario 3 (Halcrow r cw Eanp
Ev««ria« .Ait Z'nt^r* tW PnaMpr P*w.r
Scenario
SO
SI
S2-A S2-B
-L.&3^
Th lull falli flow-’
i jinrvamentaJ flow rrsfwrrTTxnf (E1A}' (Alm’/rr)
995
995
995 995
FrinmnmcntiJ flow mjiaratnt DRMyAlm’/vr)
862
862
862 J
862 I
TetiF (Alm’/rr)
4.042
3,841
1.451 I 1 443 I
Mean
337
Max flew (Alm’)
969
Atm flow -Alm"__________
______46
320
948
37
121 1
2'6 1
120 [
276
31 30 1
___ —
________ °62
_______ 1,448
121 t
*-T '7x 0
in
’ Ife- M t o chm„, )jf g65
~
,
3 Sernano with 1 ana Beta opening flow is rhe regulated outflow from Chara-<_"hara war ai Andina nver with Ta Abay 1 A IIII EP ttanon assumed is standby only (i.c. not operating) ID--------- • «
' Het ummendrd rrnmmmrotal flw af Tu lust by Bdbet n al J 997)
> - * 4 RrcTtnmcndcd cnvtnjnmcaral fltrun ar Tu litar by McCartney ci al (2009)
5 Indudmg flow fnwn mtmming catchment
(d) Scenario S3
1/0
(1,031 km ) including the tributary r»f rhe Andasn river
3
NXTien the Hakruw - GIRD rule curve is used to operate die diversion of water from Lak Tio io the hydropower station in the Bclcs catchment, under full development (S3) the amount oi lake water is diverted to Bdcs catchment is about 2,312 Mm’/yr. The Chara-Chara war provides a regulated outflow totalling 980 Mm’/yr on the Abbay river accreting to 1.448
Mm /yr above the waterfall, still above the threshold for environmental maintenance flw-
T.. I —
When the model scenario S3 is chinged to satisfy’ environmental released ba. DRM rather than chose based on the ElAs, more water is diverted from catchment, about 2,428 Mm’/n annually 'Ous is because less is released to th annual allowance to meet environmental flows is 862 Mm’/yr about 13 <» 1C5S Mm’/yr allowance recommended by the El A (Table 5-21). Under this scenario Mm’/yr of water is rdeased downsueam to the Abbav river by the Chara Char* total annual flow in the reach upstream of Tis Issii Falls of 1,321 MmVyr, the pgpj the lower allowance of 862 Mm’/yi estimated using DRM at the falls However, t ^jjy esumaies make no allowance io provide flows in the right season to maintain «cS pleasing flows over the falls popular with tounsts (McCartney cl al 2009).
. p those
o
\bbay a$
I’b F4 SvOla Water Ftewjurrea (2)
132
JJ-W41;4
^ l'r***a *** Pwa
5 2 |. Comparison of Abbay and Belea riven uwng Hakruw - GIRD rule* (S3) with
T*
different environmental requirement! baaed on EIA and DRM on Abbey
river
If.k •-
1 Recommended environmental flVyx and the total annual flow received at the falls declines to
Abbay fIVc f ^^ough the environmental flow requirement is met oo an annual basis on the
as only n u
cnlcna of the minimum monthly maintenance flow of 27 Mm1 is not rn can be delivered
IVMayll
•unci <2)
133I •***> Df9*rrt. K/fM, tjhipM. .\lxtfr) tif IFttfrr c £f»r*p
u
X4 /-yo^r* rfW Pnr*naJ flows pattern in the reach of the Abbay immediately upstream of T
is sbou-n un Figure 5-16 Simulated rto« arc based on lake outflow from model *
(lc. Ilakrow - GIRD rule) and with allowance for minimum environmental
by Briber et al (1997) The results show that the environmental requirements are 8 model icturio S3 (DRM)
Til JM**
.
'
FUcanmertto erwm«ta tar rtquwrwO ton EM DflAI rt modetai few TH b Ml Frfi **»T**
Beta tfP opentaf (S3) w#i W F ORM Tb /tavy -1 i IX p ********
L’b 1-4 SfOb Wjtcr R ru Hirer k (T;
134.
•'' '
, v rr
’ > •fratrr d- twj
X«* -v,>
Dn "^
< f4
Ttnt-Bek* hydropowrr rcJennat
The seasonal pattern of flow releases from the Tana-Bdes hvd
determining the area of irrigation that can be develop ' °P " ’tation is tmporu
OU
nt for
catchment before storage on the Belcs river is required
" '** 1PPCT
hydropower releases during short periods of higher demand
’“P^ment
Januarv to April, when shortfalls in supply f trr^oon 120 mVl). llui pi„cm of
»
mirrored when the minimum Uke level of 1.784 75 ma,1 fLc. S2 B) „ J
.
diverted from Like I aru, benefiting Ukc Icvcli Th.. u i
but less *
r
.
. ^ ^^nver receives hvdmpowerrd^
92% of the time, and these arc above 77 np/s for 770/ f 4% of the time, Figure 5-19.
‘
° * ante, wnh flow > 120m’A I*
i/« iitft
f
156
I fb M SrOh Wiltr Rewurrf (2)
IJ M»» J1Ifh d
Scenario S3
77 m*/5 rC^Cascs llc based on the Hakrow GIRD rule cuno (ie. S3) a flow of above
°Peritio U.
* or r^e majority of the dry season, despite adopting the higher minimum
Figure 5 2u 1»?S4.75 rnasl, Figure 5-18. As a results lake levels arc preserved snll further, and March ^°UCV Cr’ ^° releases are a fraction below 77mVs during the months of February
w
BeU. • R
n
ro • 4 rn'/s when irrigation demands rend to peak Flow is released to rhe
with
s nv
rc [
cr 890 .
mc Qnic WIt
r
3
7
h the average flow of 77 m /s bang exceeded J% of the time,
Cleaf|.
tooths fr R
r
a k°' 120 m'/$ for 9% of the rime, Figure 5-19.
c
tO SMEC ndes (te. S2-A and S2-B), the Hakrow - GIRD rule (lc53) lna lly higher hydropower long term avenge releases dunng the dry season
GJRD rui^1 tO w^en trnganon and electricity demand art highest. The Hakrow therefOlc^ *U°W’S a 8™tCf ‘forage m Lake Tim dunng the «t seasons nsing lake levels
Peak. \
X}l ° W“« n,Orc w»tcr to be released dunng the dty season when unganon demands en 'he Halcrow - GIRD operational rule is used in combination with allowances
13-NtavH
......Meaty rf’ITgfrr <•*• h»np
l.rwfu’w Xzi Irr^f^g Pnrt *
u
to the Belcs at no expense to lake levels (Figure 5-18 and Table 5-22). Flow release
of the time and are above 77m Vs for 79% of the time.
(c) Scenario S4
If the releases are based on electnciry demand only, and attempt to maximise releases of 160m'/i during the dry season, then a releases of 160m'/s can only be sustained for M’.offr
° tCUr^>
time, and ooh- until mid January before lake levels drop considerable curtailing such rcfa<* Tabic 5-22. Flows above *7m'/s occur just 48% of die time because lake levels fall dranuuoj only remaining above 1,785 mas] for 45% of the time.
Hydropower releases. Beles natural flows and lake levels for each modelled scenario (S2 to ST/ are shown below on Figure 5-20.
b F4 Srfh U'jtrr Resource’ (2)
138139
UMir-H>
/•****
/ /*w<*w« Xtb !"*>**• /* l>ra^ prmf
r' u jtn cw /;•*£?
5,17 T^ru-Bcles hydwpo*rf generation
The um of the Ethiopian Electricity and Power Corporation (EEPCO) b todiven apprvumateh 1985 Mm’ annually through the funnel to generate 2,310 GWh/yevof clectncitv under existing conditions (SMEC 2008). Firm energy prcxluction is estimated Jf 1.866 GUh/xear (SMEC. 2008) Both the 7b Abbay power stations will be mothballed onh used for *tind by (emergency) generation or when lake levels arc ven high.
Not surpnsingh as lmgauon development and dam construction progresses in the upstra* Tana bum clectnciry generation at the new Tana-Beles hydropower plant is expected to nd* as water levels in Lake Tana decreases, reducing total lake outflows to rhe Bries carchmcnt
The extent of any reduction of infer-basin transfer of water from I ake I ana under full imgauon development will be determined by the adopted operational rules for the ranj-Belo Scheme.
WT*en using rv
a minimum operation level of 1/84 nu»l with the SMEC rule, about 2,375 Mm’rf
10,1001 generating 1,860
GWh/ycar of dee trial)' When the mirunxr:
l i an-
IO
^crc i
s a reduction of electricity prtxlucnon by 3*«®
CIW3 rule
’ **
if the SMEC rule is substituted with the lhh~
The annual production of electricity, during the wet and dry season, under full irrigation development. for each model scenario is given in Table 5-23 The pcrccnragc changes in clectnan production compared to the SMEC rule using the minimum operation les'cl off & masl arc tabulated in Table 5-24.
Table 5-23: Tana-Be les hydropower cncrpy production tGWh)
Scenario
S2-A
S2-B S3 __
bull irrigation development (FD)
Tana Bclc* operating rule (OR)
Tana ba tin
ED
Tana basin
FD
1 Tana Irasin T
FD___
SMEC
1
Min lake level in ()R
1.784
Environmental flow on Abbav at Tts Jtsai
eia
SMEC 1 Hale row &
1 GIRD
1.784.75 ' 1.784.75 EIA | EIA
Tana basin
fP Hafcro*
1.78475,
Tana Bciea hydropower production
\nnua! energy pr<-epj (GWh Energy production (Jan Jun) GVCty
1.860
1.805 1
1.808 1
212
206 1
206 1
1,057
995 1 1.160 !_
803
887
810 1 648 ' 830 1 945
Energy pr< xiiKDon (thonagr Mar - Jun G\Xh)
602
563 ( 627\[
t'b I 4 5«01a Water Re*ourrc« ?
140yt,K!rrrj W*"
' He**’ DrJ'^ Pn,r't
Table 5-24: Difference in Tana-Bek, hvdropow„ „rn r
, „.
scenario S2-A (SMECrule 1784 m ,|
at
C °,n,>"td 10 '""del
Scenario
S2-A
S2-B
S3
1 S3
54
MlC^‘*' T '
tk raen
Tana basin
FD
Tana basin
FD
Tana basin
FD
Tana baun
FD
Taaa baun
FD
T^BelnopennngruJeCOR)
SMEC
SMEC
Halcruw A
GIRD
1 lakruw &
GIRD
Inc rx: trailed
\(m hke le'xl n OR — —--------------------
1,784
1.78455
158455
1 ’84.75
None
^-romenuJ flow on Abbey at Til hut
HA
E1A
E1A
DRM
EIA
T.SJ Brie* fcdropowcr production
1 AflfwJ eneno producnon (%)
0
3%
3%
+2
IneffT production (dn seaion (kt Apr) •%
0
6%
♦10%
*14
*37%
EnecRv production wvt season Jun - Sep) (%)
0
♦1%
-19%
15%
•W%
Frznti production (Jan-Jun; 5 •
0
6%
*7%
♦ to*.
-28%
Eflcr^v production (ihortagr Mar -Jun %
0
-7%
>4% 1
*6%
66%
The intent of the I laicrow GIRD operational rule is to divert more water for lmgation during the dry season, especially dunng times of peak demand (Le. January to April) by scoring more water in I jike Tana in the wet seasons and timing releases to comade with this period, whilst at the tame time attempting to preserve lake levels and generate electricity. Dus partem is reflected in (he long term average clcctncity production which shows a 10% increase dunng the dry season when compared with the SMEC operational rule (S2-A) In the months irom January to June, a period of high irrigation demand, there is a "% increase m energy’ production. Elcctncity can be considered more valuable dunng times of shortage during the dry season. Dunng this penod of the dn season, when the 1 laicrow operation rule is adopted, there is a 4 o increase in decenary production. I lowcvcr, later in the year during the wet season, when
outflow to the Belos catchment is restricted in order to maximise lake storage for the toDowing year, there is a 19% reduction in energy production-1 lowcvcr, it is understood that shortages in dcctridty aic less common nationally dunng the wet season because other stations in the
country would be available to meet demand dunng this penod
ombinanon with environmental Notably, if the I laic row - GIRD operational rule is used . cl (2009) then clectncny
flow requirement on the Abbay over recommended by M production increases further. Because the annual outflow to
is available to be diverted to the adjacent Bclcs catchment An a ln «wscd by 2% compared to the SMEC opcratxinal role (S
re»»on, with a 6’ o increases from Much to June assuming
less, mote water
t,
Junng the dry
„ jn elopmeni.
‘mgaaon development And storage recrement w study (see below) examines whether reservoir ’,o
Upper Beles projeef
ire *
^‘hs) when shortfalls in supply for irrigation occur
^rumum opcratsonal level, or when the power station is ^^urdancc with operating rules.
, t o, dose to
„ planned or m
C **rcr» (2)
IJ.MjvII
141I f' Arj.'
MiUftn rflTCtrr & Etfrg
Efafin Kut l^a^a 4* *iI hvMjr /5wnf
Jtrypidon Dudes for Upper Beks
The total water demand? for the (surface) irrigation development have been estimate CROPVVAT (version 8) Pour water demand options arc considered each associate
different mix of sugar estate, small/ medium commercial farms and smallholder nuiu^j. Being a relatively “tbtrftf' crop the proportion of sugarcane is particularly important T>Uc farmers in the proiect area for their sustained livelihoods as well as small areas for small / medium commercial farm mixed cropping-' The breakdown of die command area by category for this option is presented below in Table 5-25.
Table 5-25: Upper Be lei ii
areas for left
Major Farm Category
Total irrigated area (ha)
Right bank (ha)
Large commercial sugar estate
39.9R1 (62.6%)
23.098
Smallholder farms
22.872 (35.8%)
8.411
Small/medium commerce] farms
1.018(1.6%)
0
Total (excL Hyau)
63,871 (100%)
31.509
Hwru commercial sugar estate*
20, (XK)
Total (tncl. Hyma)
83,871
Note the 3D.O0U net imp** an* lw I lyma « assumed. Actual net implitn area m F lyma nm*» w
Opaon D is included to represent the maximum demand possible in the proper area result from 100% sugarcane cropping with smallholders either relocated outcrop the 0' depending on the livelihood on sugarcane cropping, ciihcr as estate employees or outcrops
. pi iii
• Refer SR02H. frngatcJ Agnculturr Ac Agro ccorrnmic dcvelopmmi plan rang f.< JcumpthHi rif jwkJ (modrlk’d) devrlnpmmf npm*»«
lb H StOU Wafer Resource* (2?
142M tWy Po* equivalent 62% of the total annual divenion from Lake Tana via the tunnel to (he Boles citcl,fnC * 5-27). However, this is in terms of “total annual resource availability” More imp°r<* comparison of monthly irrigation demand ind water supply.
Table 5-27: Annual irrigation demand (Option C) for 85,000 ha and Lake Tana °
Belew catchment
s g5t000M
fl>
--
Ope radon of rules
Imitation Option C (high)
Model
•cenano
Tana-Bekw
Ope rational
rale
Minimum
operation
of lake
(mul)
Irrigation
area
(h«)
Annual
irrigation
demand
(Mm )
HEPdh"^
1
Annual
outflow from
Tana-Belew
HEP (Mm0
S2 A
SMEC
1.784
85,000
1.440
2475
S2B
SMEC
1,784.75 85.000
1.440
2.305
S3
flak row
1.78475 85,000
1.440
2.312
Ji
Ub F4 SrOta U ster Ke* «urce< (2)
144M,n,ny * E*"»
X<*
PnrKt
The water received at the right bank diversion weir on Bek, river (865 km-') is
monthly basis for the pc nod 1980 to 2005 using simulated hydropower rdeLTplu, the emanating from the upstream natural catchment The allow, the surplus arxl defiat balance m available water to meet monthly irngatxm demands for different levels of development in the Upper BcJes project and for different irrigation dunes (Opt™ A3 and Q to be determZed
A. the area of tmgadon » increased a level of development is reached when month, of surplus water availability are repheed with months of defiat, after which storage on the Enat Bele, over is required to supplement flow, received from lake Tana to meet tmganon demand, As the area of tmgauon increase, the volume of this defiat will increase. The accumuhnve volume of monthly defiat determines the ‘live’ storage required
Irrigation demand (Opuon C - high), available flow, the surplus and defiat balance of available water at the right bank diversion wear on Bdes over (865 km-} for a low. medium and a high level of imgation development are shown firstly on f igure 5-22 with hydropower release, based on adopting the Halcrow - GIRD operational rule (S3), and secondly on figure 5-23 with hydropower releases using the SMEC operational rule (S2-B) both assuming of 1,784 75 nusl as the minimum operational level for Lake Tana
lVMay-n
4 kcMmiac. (2)
145I X* **
tippt* 5-22: Irrigation demand (Option C - high), available flow, and «urp)Ul
at right bank diversion weir for low, medium and high irrigation a*, (Halcrow - GIRD rule S3)
Upper Betel flow at right bank drveraion weir (865 km )
2
mgaOori area 25,000 ha
2
Upper Betel flow at right bank diversion weir (865 km ) irrigation area 65.000 ha
I Fb !«4 SrOli U'jtcr Rrworcrr (2)
H6figure 5-23: Irrigation demand (Option C - high), avwlaMe flow, md ,urph,. Md defici| at right bank diversion weir for low, medium and high irrigation area (SMEC rote S2-B)
1
Upper Betes flow at right bank drvernon weir (865 km )
•mgabon area 25.000 ha
8
£
i _j How at dlwrvKNi weir (NaburW) =J AwllaMe Bow si dMnlon wif
-»*- Surplus A Deficit
— ■ dam and
J
Upper Betas flow at right bank dtverston weir (865 km ) Irrigation area 65.000 ha
Flow el d^Mkori (Naurai) C=3 AwMWjIs Bow at dhwnton weir
I_
Surplus & (Mot
------ VMWsr dwwd
Upper Rates How at nght bank diversion weir (865 km )
2
imgation area 85 000 ha
iVSbr-n
147li&fu. Stewfn w*f
Gariy. for a Luge area of lmgibon (more than about 65-70.000 ha) there
in the Enit Ikies ris er dunng three deficit months from February to April,
0
rttjutrrd to meet imgauon demands. 'Die deficit in these months is greater whj "*
at the drsenxtn weir is based on hydropower releases using the SMEC opera 7 ”rKe^
than using the Halcrow - GIRD operational rule (S3).
Table 5-28 and
Table 5-29 abow the area of irrigation development that is possible before storage is
and when stooge is needed the volume of live storage, and the associated height of dim, required io meet irrigation demand Tabic 5 28 is based on hydropower releases if the lUlcm
• GIRD operational rule (S3) is adopted and
Table 5-29 if the SMEC operational rule is adopted (S2-B).
Table 5-28 and Table 5-29 indicate that storage is only required in the Enat Beles river for irrigation development areas exceeding about 65-70.000 ha (SMEC rules) and about 5.000 h (Halcrow - GIRD rules) for Options A, B and C.
Storage is required for Option D (Maximum estimate) for irrigation development area exceeding 50.000 ha (SMEC rule) and about 65.000 ha (Halcrow - GIRD rules). Option D
epresents the maximum demand possible in the project area resulting from 1 (MJ* • sugirca* but 15 not envisaged is . viable scenano nor U it recommended
Table S-28 dearly shows if the Halcrow - GIRD operaoonal rule is adopted a larger area of
■rogation can be desdoped before storage on the Enat Boles nver is needed compared to the SMEC operational rule is adopted More water u available for diversion to the conviurd area when the Halcrow operation rule u adopted because under these rules lugher flows are released between ihe months of January to April when tmgauon demands peak.
”**
1*b PM SrOla Water Rr*
Mm*
Mm*
m
15,000
204
0
0
230
0
0
252
0
0
289
0
0
25.000
340
0
0
383
0
0
419
U
0
482
0
0
50.000
680
0
0
766
0
U
836
0
0
965
5
18
1 60.000
816
0
0
919
0
0
1.007
u
0
1.158
39
38
1 65.000
884
0
0
996
0
0
1.091
9
22
I.2M
56
44
70.000
952
12
24
1072
8
21
1.174
29
34
1.351
98
54
1 75.000
1020
35
37
1149
39
38
l >58
67
47
1.447
142
62
1 KO.(XK)
1088
60
45
1226
75
49
1.341
104
56
1554
186
69
H5.0O0
1156
84
51
1302
110
57
1.426
142
62
1.640
239
7ft
1 90.000
1224
116
58
1379
146
63
1 1 i
IMS
69
1.730
305
84
Uh !*• StOU U iter RewmrccB (2)
13 Mat IIEtntfun N’«i *•* I^'***' f^m'1
Deads of the monthly long tern average surplus and deficit balance from Jmuary loj accumulative volume of live’ storage for a range of irrigation areas for low, mahum
irrigation dudes are provided in Annex N1 for flow releases based on the HaJerow G]Rb operational rule, and in Annex N2 based on the SMEC operational rule (1,784 7j
Where water deliveries in the Beles river at the diversion fall short of requirements for,
month crop impact is relatively minor However if water deliveries fall shoo of require^
for two or more consecutive months extensive crop failure can be expected. Annex Nltj
Annex N2 provide Mure rates for vinous areas of irrigation development
Figure 5-24 and Figure 5-25 show the relationship between irrigation area, live storage apao and dam height for the Halcrow and SMEC operational rules respectively. Findings fromdx soils Ac land suitability mapping indicate that a gross area of 65-70,000 ha of land suitable for irrigated agncuJrurr tn the Upper Beles project area. This is about 50% of the total project rs of about 136,000 ha. However much of the suitable land is concentrated in the Derebajr and Werk .Meda plains leaving extensive areas, particularly on rhe left bank, where the proporooo r( lmgablc land lo gross area is less than 30-35%. In such locations irrigation development out not be viable- Assuming the net irngablc area does not exceed about 65,000ha then (assuming the SMEC or preferably Halcrow operating rules were applied) no storage on the Enat Beles over is required even with high-end irrigation duties.
Uh JM SaOla Water Rrwurcrt (2)
150rje
,'-”v
r
Figure 5-24: Totalirrigation demand, Kve» ttomge, dam height (Hakrow - GIRD rule) Mak row Ruto-OpVon A
Irrigation Area. M
f kncabon Demand —^UwSlorao* ----------- Dam Hptfit I
Hale row Rule- Option B
Hilcrow Rufo- OpBon C
lW ^rR
I KM* 11
' R«ourc«(2)
151* r|r'" ** *”
r
B
Ht-rw X* /"»«*• V™**
Hi I crow Rule- Option 0
Irrigation Area. ha
I - ~ - knqalion Demand —J Live Stored
_________
HyqhtJ
("b !•< SfOla Wafer Rcviurre* (2)
152..
tfPJbif*.
rjf,r Ef"V
Fiprr* 5-25; Tmil imp,,en demand, live’ ■tongr, and dam height (SMEC mkj SMEC fad* (1714.75 mart ) - Opion A
trrigjrtlan Ar**, hl I t— krogt ion Demand C33? LM Sloraoe
SMEC Rulo (1714.75 mirt) - Option B
-—DamHejahTlW**' RfM. *
.M/ittfn rf'ITjf/r c*" Eftr#
Ijfafm .Vii
/a/ f>n*af* Pn^f
I’b H SrOla U >!rr Kctnurcc* (2)
IM1
Maintenance /planr failure* of the Tana-Bdcs hydropower plant such is tunnel collapse , then ^jthour any storage in the Enat Bcles then: could be extensive crop failure m the command irc2 Provision of a storage dam on the Enat Bdcs would (partly) mingatr against this.
por example, for the envisaged Upper Bdcs (excluding Hyma) net irrigation area of 63.8’0 ha then live storage of 203 Mm’ fie dam option A with FSL of 1.405) is equivalent to a delta of
0 32 m and would meet dry season crop water requirements for about 5-6 weeks lh» would provide securin' to farmer* in event that upstream hydropower release* are not as expected for what ever reason
long term irrigation development envisages about 10-20,000 ha being developed in rhe adjacent Hyma nver catchment as well as about 85,000 ha in the Lower Bdcs. see Section 5.21. The justification and costs of the Enat Bdcs Stonge dam could perhaps, in part, be justified as pari of these later irrigation developments.
The estimates of storage requirements given in this Chapter are based on the long term average surplus and deficit balance for a given irrigation development area. Detailed reservoir simulation modelling is used to test scheme failure rate against a criterion of success based on the number of consecutive months when irrigation demands remains unmet tn order to more accurately determine storage requirements. This is discussed in the following Chapter 6.
Irrigation development in Lower Belen catchment
The BCEOM phase 3 Master plan Study estimated that about 85,000 ha could be irrigated in the Lower Bdcs catchment. The studv identified a suitable location for a dam on the Lower Bdes over it Dingur which is downstream of the confluence of the Enat Bdes river with the Udgcl Be les, see Figure 5-26. The Dangur dam location has an approximate upstream catchment area of 8,980 km . The dam would be a large dam developed for hydropower generating about 98 MW/year and have a storage capacity about 4.640 Mm’ to supply water for “ngatiun (BCEOM, 1999).
2
Untamed m the event of pUni (turbine, err} mnntoijncc
13-Miy-II
155hdrr*
l-jfaeui Xii /^uf*< at Pnr«
c»(2)
156
r j-Ah*Flow volume (Mrrf)
5-27: Beta® rivet flow at Dangur dam and contribution fitvm Upper Betas catchment (50 000 ha)
s
J’lgurr 5-28 show rhe long term average monthly flows for the Enat Betas river at Dangur
under natural conditions and with supplemented flow* received from up*trajn from surplus water delivered to rhe Upper Betas command area (ir. 50,000 ha) with live storage of 333 Mm'
at the upper Bdcs dam site.
Figure 5-28: Monthly Betas flow at Dangur dam with and without upstream Upper Betas Scheme operating for 50JXX) ha (Halcrow - GIRD rule)
Betas river al Dangur Dam
rtver a D&&J (tarn {i®* Anrtad tor 50. DCQhai
-2;
!M1« Tl
157/**•=.
f>MpMv ATi
af'E/tapra. Mrtufn ^'U j' /rr <*• /:*f»p
Partly .p*w.f
Tabic 5-30 shows the mean and minimum available flow at Dangur dunng lanuary lo , winJd be available for diversion to the command area in the ^crBelesThcEnatB^ at Dangur in this table are a combination of upstream natural flows and any surplus n, i* water from the Upper Bcles project area assuming firstly, a net irrigation area of SO.OOQi^ secvndlv. a net irrigation area of 80,000 ha , with a live storage of 333 Mm> (Gross 37g t Dim Site —
Table 5-30: Volume of Beles flow at Dangur dam site (Jan - Apr) with Upper Befei commanded to 50,000 ha and 80,000 ha and 333Mm of storage at Dam urr 2
:r
3
1
Beks How at Dangur dam site (Mm ) for Jan - Apr
rule
Beks
Irrigation
area (ha)
Natural
Option A
Option B
Op hoc C
Mean
Min
Mean
Min
Mean
Min
Mean
Mi
Hakrow
50.000
SMEC
50,000
19
19
10
10
120
S7
91
70
118
88
94
75
JO6 _
79
4J
47
Hakrow
SMEC
80.000
61
25
41
80.000
19
19
10
10
42
22
55
38
33
23
28
24
11
Table 5-30 shows that more water is delivered to the Dangur if the Hakrow - GIRD rule is
adopted compared to the SMEC rule in the dry season months of January to March Lew ”-B is delivered at Dangur for irngauon if the higher irrigation duties (Option Q arc used to
estima^ legation demand in the Upper Bcles command area Water delivered from upstru®
would reduce if the irrigation area was larger than 50.000 ha in Upper Bcles and if Hvnu «' developed.
The results suggest that about 110 Mm1 would be available for the critical month* .
n ri tllis VOlOtfi* Apnl. The required crop delta (at diversion point) would be about 0.9 m, ana
would be sufficient to lmgatc an area of about 12,000 ha, much less than rhe enviM Bcles development of 8S.000 ha
The envisaged Upper Bclc,
develop the ensisagcd Lower Bek. . I '
Canary
' hc nccd for 1 dim
c,ne M« of about 85,000 ha, as well as for generating
A companion of natural catchment area and stage-storage characteristics of the props’^ sites for Upper Bcles and for Louer Bcles (ar Dangur) is tabulated below, Table 5-3’ Damgur dam can store about sa times more water for a comparable dam height, and has » catchment area about 16 times larger, than the Upper Bcles dam site. The comparabie advantage of the Dangur dam site indicates that it « not economic of financially sensible r«» provide (significant) storage in Upper Bcles for the Louer Bcles irrigation scheme.
11> 14 SrOb U *frr Rcmkiccc* (2)
158.
‘f rat,r &
Dna*# fyF*
T Me Mt Ch«r»L"'"" * °
c
Dam
Dam Site Upper fcJ" Dim S*" 2
f of t'PP*r 4 I-Ower tkfc‘
Natural Catchment
1
Area (km )
Dam Height
(FSL-BL) teL
Grow Stonge
(M»»)
590
90
378
4>mSgeOption Q______________ 1 Eanp
l'r**i
>1,420 nusl whxh hw the potcntnl to be a spillway. One option would k f ,
0
imDwv to be set >t +1.420 nusl which would give a gross storage volume of
th»ZcooMdered Opoon C.Table 6-1 Hus is considered bkcly Io be dose to the
hmrt for a dam constructed at this location, unless the saddle itself is bunded
Option D it the dam site is a Diversion Weir / Dam which is capable of commanding i Left Bank (num canal FSL 1,355 mail at head) and storing 24 hrs of the hydropower fba (T7rn’/s), which equates to 6.6 Mm' The dam therefore has .MDL of 1,356 nusl (toenn^ the left bank canal) and a FSL of 1360 masl. Table 6-1.
Table 6-L Upper Belea dam options and characteriatica
Item
Units
Option
A/B
Option C
Option D
Rem arki
Full supply level (FSL)
masl
1.405
1,420
1,360
Gross reservoir storage
Mm'
230
378
20
Rnenw Arts at FSL
km2
8.4
11.6
1.7
—
Minimum area for
cnvtronmeni
km2
2.1
2-9
0.4*
25% of area II FSL
Minimum drawdown level
mas!
1,364
1.371
1,356
For environment *
Storage it .MDL
Mm’
27
45
14*
Reservoir Area at MDL
km-
2.1
3.0
1-2
(tperaoonaJ range
m
41
49
4
FSL • MDL __
Reservoir area fluctuation
km2
Seasonal (opoo^
63
8.6
0.5
Lrve storage
Mm’
203
333
6
Gross sror^e
■
Lrve storage is depth over
m
0.32
0 52
0.01
kogable
6,2
Purpose of Reservoir Wstcr Bakner
Reservoir water balance sunulaoon was earned out to: levels of
• Determine the required storage of a dam on Enit Belcs m er for d irrigation development,
• Determine the reservoir capacity and size (haght) of the dam. and
• Assist in formulation of operation (water release) rules / guidelines.
Reservoir simulation is used to assess the behaviour of the reservoir
level* °f
vi viababiilliitty of y of a d a damam an andd r reesseerrvoi voirr on on t thhee E Ennat at B BcclJcc* ove s riverr t to so suupppporort u.--------------------------------------
development in the Upper Belcs
catchment
project area and potentially in the adjacent Hyma (Dip
lib F4 SfOla U aier Rncmrtet (2)
1624
joih and land suitability survey for Upper Beles indicate a maximum imgable uea of up to >bout 65-70,000 ha , but a proportion of this is unlikely to be viable to develop as tn some xreas. pirticularh’ on the left bank, the proportion of suitable land to gross area is just 30-33%. The Hyma (Upper Dindir) command' takes off from the nght bank canal at Fendilu and may have an imgable area of about 20.000 ha.
If □pennon rules for basin transfers from Lake Tana to the Enat Beles arc adhered to then development of a net imgable area of 65-70.000 ha (SMEC rules) and about ’5,000 ha (Halcrow - GIRD rules) is possible without a dam. Flower, the provision of some storage for the Upper Beles (and I lyma) project area would provide assurance of suppl)’ for a few weeks in the dry season in extreme dry period or if diversions from 1-ake Tana are not as planned
Reservoir simulation involves the modelling of the water balance of the reservoir. The water balance model is used to examine the spillage (excess) and shortages (deficit) of water in the simulated record as well as unmet irrigation and ocher demands The penods / duntaons of unmet water demand is used as the criterion of success for estimating the optimal storage capacity Analysis is based on a flow stmulauon senes from 1980 - 2006 for the Beles nver at the location of Dam Site 2 and diversion to the left bank main canal fie. 590 km’ a
combination of Tana-Beles hydropower releases from the \VEAP model ind flow estimates from the natural catchment.
Water released from the dam would be diverted to the left bank main canal by a draw off tower or other arrangement, with the balance (including flow to be diverted downstream at the nght bank diversion weir) released back to the nver. Environmental flow consideradoos are therefore not considered at the dam / left bank diversion site. However consideration of environmental flows downstream of the nght bank diversion weir is required.
Failure cntem for use in the reservoir water balance simulations have been formulated to determine the maximum net irrigation area for vinous crop combinations. These failure catena
IJ-Mxy-HFriirrW R/paie. *
Alzaufn tf ITjtrr Cu E: arp
Etf*c*n Xdt l~^af*a aai l\aaq? Awer
Tabk 6-1 Failure events and Reservoir Simulation Criteria
Nr
FaDnre
Event
Description
I Monthly Water deliveries fall short of
Failures
optimum causing crop losses
dur to water stress ind loss in
potential yield.
Where water deliveries fall short
of retjuircment for a single
month in the dry season the
crop impact will be minor, and
can be mitigated bv operating
rules whereby priority for supply
is given to small holders over
the commercial sugar estate.
Measurement of Failure
_________ Event
A failure event occurs for
each (single ind consecutive)
month the reservoir is empty
(te. water level reaches rhe
minimum opera Ung level).
,Mr>ntWTfi^
both tuner
“bnletffa^
nupr
e.g.: If the reservoir is empty and severe crop
for a total of 62 single and /
or consecutive months over
44 yean (528 months), the
failure rate is 11.7%.
Finial
crop
failures
Water deliveries fall short of
optimum for two or more
consecutive months causing
extensive but moderate crop
losses due to water stress and
loss in potential yield, despite
mitigation measures including
reduction of irrigation supplies
pirticuladv to the commercial
sugu estate.
ocean
No cnteni hrfiKr
for montMv fakrafe
they inform trtorr
when minpcaj nt=
operation mens
JQ^bc insuptfd _
Partial crop fsih®31
, moderate*’*006
tnancui trnpx^
The santd*000*’**1
rhe failure**^
17%
Extensive
crop
tail urn
Water deliveries fall short of
optimum for three or more
consecutive months causing
extensive and severe crop losses
due to water stress and loss in
potential yield, despite
mmgauon measures including
reduction of irrigation supplies
pamculaxly to the commercial
sugar estate.
A partial crop failure event
occurs each time the
reservoir is empty (lc. water
level reaches the minimum
operating level) for two or
more consecutive months
eg: If the reservoir is empty
three times for 2-months or
more over 44 yean (dry
seasons), the failure tare if
6 8% _________________________
An extensive crop failure
event occurs each time the
reservoir is empty (i.c wafer
level reaches the minimum
operating level) for three or
more consecutive months.
eg.: If the reservoir is empty
two times for 3-months or
more over 44 yeare (dry
seasons), the failure rare is
4 5%
Af extensive crop^
have a severe
and hnanoal imp#*- affecutiff bveliho^ ? aUowahle fiuiuft f* 3 ten than for par'd
fadurri.
(b4
. failure «»»e
12%
Ub F4 SrOU tt'arrr Rr^a80 to 2006. This period demonstrates a pattern of typical natural variability with extreme dry/drought years and significant wet years. Inflow into the reservoir from the Bdes river upstream is represented by Q. The Belts river upstream of the proposed dam site is ungauged and natural monthly flows have been estimated as described in Chapter 2 with monthly flow releases from the hydropower nation prosided from the VC ILA P model simulations,
Spilling occurs if Si is larger than die reservoir capacity and shortage occurs if & is smaller than the dead storage (Le. storage volume set aside for sediment infilling). The actual rdcasc D from the dam downstream is ecjual to the target release, minus the shortage, plus any spillage The target release is the release rate from the reservoir required to meet irrigation and environmental demands
Other losses include the small, bur constant, leakage from beneath the reservoir into the bedrock (0.2 m /s). Losses and/or gains also occur from net evaporation represented by the rerm (P-Ea); where P is precipitation falling over the reservoir and E> u the open water evaporation from the reservoir Evaporation data for Pawe climate station was corrected for
J
U4ln
g a upen water coefficient of 1 1 to estimate Ea The surface area ot the reservoir A (km ) »
2
crisis red from the storage-area relationship for the dam site* Figure 6-2 The water level tn the restnoif I J changes with changing storage The storage-deva fieri relationship is shown on
igurc 6-1 The following equations describe this relationship:
Area = 0,27608 Water Uve/ = 9.529772
L> *■ M‘”J- (19M) Appfcd Hydrnhw (McGo-lW
1 ’Jr
:,4| urcci (2)
iJ-Miy-tl
165It***
Mnum af Fjrrr c* £anj|
Lrtfwi Nii /"vu>r« aW Pnr^r Aipftf
IKr Jim. reservoir. spiDwiy and water demand characteristics used in th are summimed tn Table 6-3.
C ^^otr
Table 6-3 Charartcriatica for Dam rite 2 reservoir and adopted water demand
Reservoir, spillway* and demand characteristics
Qima re:
Total annual rainfall
Im
Total annual evaporation
— —------------- ---
152-
Inflow:
Catchment area
5«c>
Total annual inflow*
329a Ms
Mean monthly inflow
2?3to
Reservoir:
Sediment volume (50 year design life)
15 to
Minimum operating level to preserve flora Ac fauna
73 to
Dead storage
21 to
Total Annual leakage beneath rcicrvoir
63 to
Sediment
.Mean annual volume of sediment influx
0.30 5te’
Total sediment influx
IS Mm*.
Spillway:
__ —
Na rural ground level above upstream toe of Dam
Option A/B
Option C 1320^
<> non DIM"
?
1
U) -l20jn
Spillway lengths (crest widths considered
Adopted Water demand-
__Nct imgahon area considered (commercial plus smallholder farms)
75.OUO - 90000 “
1,350®?-
Gross annual irrigation demand. Option A {low-end esrimare
Gross annual iinp’i demand < >pn"f. Bjmid-cnd estimate
Gross annual irrigation demand: ()pnon C (high-end estimate Total annual environmental demand d/s of diversion weir
]j70®®.
-- ---------’ jjM?'
2?cad ttortge
Frmn recreation, reservoir environment (and fishery) considerations the reservoir water I thould not tat] below the minimum operating (dead storage) level Ulis minimum opening level is set from considerations of
Lx peered sediment volume accumulation within the reservoir over the design h e
the dam. and
A minimum level to preserve environment flora and fauna (including fish) through the year, after allowing for sediment accumulation.
Table 6-4 shows the total sediment volume
Umsted at the dam site over a 50 year hie
fof fcportccl m (h
e
canned umhr dx
upended sedime.■ * •
fof t!lf tpF
Basin from the Mister Plan. A suspended srdim
Beks catchment.
t *b I *'4 SrOli Wafer Rei<»urcc« (2)
160
UAW-1'^4- Toul pediment volume at dam location! along the Upper Beks river uiing
T*bk
r«rim»te of impended lediment bid
SlMpeade ^•ine water demand cm not be met for 2 vein • f
5
c Mtcf reiches the nuoj»®
^ulinon wn
? , respect^
in the 27 J'4"
s
result P«veotu^ J
a
«’here ire extreme dry vein
drought y«n *
be needed
a «ena betng met with sensible stonge p«w»xm.» <^ *
The percentages of partial and extensne crop
oVCf the 2
li-Miyll
167Sii 1-1-** v^^r l^’
simulation period are presented in Table 6-5 and Table 6-6 for upstream f)oW Hakxvw and SMEC rules, respectively
Table 6-5: Scheme failure rates at Dam site 2 (Hakrow - GIRD operational rule Pm
moD
L’b IM SK*!i W«irr Rwourre* (21
168—t'*’-****
EM**'
Imf00”
Inir""0
option
Dead
Storage
(Mm’)
Reaervotr Storage
5
(Mm )
Monthly
failure
rale
M
Gwueaiiwf 2 months
failure rate r-)
Comecutht
3 month*
failure rate
(%)
SttCCCM
cntma
22
40
11%
11%
11%
Yea
0
0
89%
86%
11%
No
22
50
11%
11%
11%
Yea
22
175
11%
11%
11%
Ya
0
0
95%
95%
11%
No
22
70
11%
11%
11%
Yea
22
175
11%
11%
11%
Yes
0
0
95%
95%
11%
No
22
70
11%
11%
11%
Yea
22
175
11%
11%
11%
Yes
0
0
95%
95%
75%
No
22
70
95%
64%
11%
No
22
90
14%
11%
11%
Yea
22
175
11%
11%
11%
Yes
** RrV)UKcj (2)
169F .dm.
C*- Etip
Nw Inr^5*’ ^>r»c)
Reservoir
Storage
(Mm’)
Monthly
failure
Consecutive
2 months
failure rate
^°o>ecutiTe
months
failure rate
25.000
65,000
Uh F4 SfOh Water Rrwnjrco (2)
noimr600
•re*
(*>
Irrigsboo
opdoo
Dead Storage
1
(Mm )
Reservoir
Storage
1
(Mm )
Monthly
failure
rate
Q)
Consecutive
2 months
failure rate
r»)
Consecutive
failure me
(%)
Success
ratified
22
450
18%
14%
7%
Yes
B
C
22
175
32%
29%
29%
No
22
500
18%
14%
7%
Yes
22
175
32%
29%
26%
No
22
550
18%
14%
7%
Yes
A
0
175
32%
29%
25%
No
22
500
18%
14%
7%
Yea
B
0
175
32%
29%
25%
No
m.unn
22
550
18%
14%
7%
Yea
C
0
175
32%
29%
29%
No
22
600
18%
14%
7%
Ye.
(Note bold iodicafc< crncru u met;
Storage requirement on the Enat Belts river is summarised in fable 6-7 and Table 6-8 and shown on Figure 6-3 and Figure 6-4 If the I lalcrow • GIRD operational rule is adopted a larger area of irrigation can be developed before storage on the Belts river is needed compared to if the SMEC operational rule* (1'84.75 mas!) arc adopted, Table 6-7. Also, when storage is needed the requirements arc much less compared to those requirements based on the SMEC operational rule. Table 6 8.
Results indicate that no storage is required for an imganon area of 75,000 ha in the I pper Be les Hyma project area if the Halcrow - GIRD operational rule is adopted 1-arger storage is
required when the demand is estimated using the higher irrigation duties. The highest total fctoss reservoir storage on the Bries river required is 90 Mm' for 90,000 ha for Option C (high). For maximum demand Option D, storage is required for an irrigation area exceeding 60,000 ha *nd a total gross storage of 190 Mm' is required for 90,000 ha of 100% sugarcane
•f the SMEC rules (1784.75 mail) are used storage on the Enat Beks over is required ar 50.000 f° ‘rrigations demand options. At this level of imganon the storage requirement is about
r
1 5 Mm* OpUon C (high demand) Above 50.000 ha of imganon development the storage tenient increases rapidly as follows (for Option C: high end demand):
525 Mm' for 65.000 ha;
425 Mm* for 75 Qoo ha; and
550 M
m i for 85 000 ha
(Soo for ,hc rap,d “ae“ «
e
on, Re«,o smai1 n,turd °'chnien' “,hc dim $,tc
) «nd the average annual runofr is just 311 Mm - It is also worth noting that the (ZrUTn s,Orl8 « the dam site is hkelv to be about 300-4W Mm'. Storage requirements for
5
e
b dcmand) maximura storage abwc 63-°°°hl of l'ng’non
P°*nt, and 650 Mm' of storage is needed for 85,000ha
13-Mapll
171Frdma’ Dcwwrnft.
N/iir /rrigjftM J*/ Pr^pt>on»:
Grots
storage
Dam
height 1
Mm'
0
mI
0
0
0
40
75
0
0
39
49
57
1.5M
1.020
1,226
1302
1.379
to .
1.258
1,342
1,426
I.5W
„.
t.640
HO
150
64
1.730
190
70
pMEC
mtenM^Smol S2-B)
Ta
Irrigation
area
L
blc 6-8: Mor Irrir
Irrigation demand (Sept-Juaj
Mm*
age require
ation Oprior
Gross
storage
mcni iui
A
Dam
height
irri;
Irriga
Irrigation demand
(Sept-Jun)
lion Option
Graaa
storage
B
Dam
height
Irrigari Irrigation '
demand (Sept-Jun)
cm Option C
Gross
storage
Dam
height
Irnga Irrigation
demand (Sept-Jun)
non upuun
Groat
storage
Dam
height
uaa
15000
25.000
50,000
Mm*
m
Mm*
Mm1
m
Mm'
Mm'
m
Mm'
Mm1
tn
204
340
680
0
0
75
0
0
49
230
0
0
383
0
766
75
0
0
49
252
419
836
0
L_ 0
100
0
55
289
482
965
0
0
175
0
0
68
65.000
75,000
80.000
85,000
90.000
884
1,020
1.088
1,156
1224
MX)
83
88
93
996 300
___ 81
1.091 325
86
350
350
1,149 [ 400 V W
95
575
86
106
400
1226 r 425 r 95
101
625
110
o*>
7
1302 7 500 I 101
104
650
1- ’ 1 500 \ 101
1379 \ 550 1 104
1.258 1 425
1342 , 500
1.426 1 550
1310 | 600
108
1.254
1.447
1.554
1.640
1.730
750
111
118OraHJf*
6-3: Irrigaon Pemarxj lz i Ln* Storage
Cr (2)
BMiv-il
17.3N<* !"»*«« P***' /^"f
Haterow Rula- Option 0
IOC
•0
•0
70 6 60
50
40 I
30 20 10
0
Irrigation Area. ha
1 irTtaition Omind c_^2 Lhe Slorw —lPptl ^o'lO
VbH&Ohtt
•■Iff Rrwiqr^ £)
174^4- Irrigation demand, groM 'forage, and dam height (SMEC rule 1784.75 mul) SMEC Rule (1754.75 med )-Option A
| : Vimoatny Demark____________r~p tlW §tOTW —Pfn HWttZ) SMEC Rule (1714.75 maM) . Option B
irri0Mlon Area, he
i_—lasgugn Pffnaod — Li* Storne.-------------- :— P*™ !•*«£!—1 SMEC Ruf. (1714.78 matf) - Option C
IkMn-H
(2)
175t
ffU ~a"r
v . ImSM <•* !>*•<* /V^r
L’b l '4 SrOta U'arcr Rrwiurrc* (2)
176W /'^* " *-"*><•*
n
reservoir flood attenuation and outflow
Introduction
Hood routing of design floods through a reservoir 8 required to
the flood hydrograph and importantly to estimate the length of
designed such that the largest expected flood can pass without w endangrnng the structure. The spillway width (or length b chedied against overtopping using the PMF flood This desbn flJlT”
,n «u»Ooo of
' ’plflu'’T for » dam n
,hm
resersoir for a given spdhwy crest level. width of the spdka7and rU ™,“‘th'°UKh ,hc
ums cn neld the maximum wafer level above the rr«r f a ..
flood.
Estimation of Yr PMF
f th€ SptHu^ du™K the passage of the
°
anaMn
2
The PMF hydrograph is generated from the PMP (i.c. 365 mm) using the Clark method tn the rainfall runoff models in HEC-HMS hydrological model built for the Upper Bdes n cr baun at the location of Dam Site 2 (560 km ) rhe ’/a PMF is estimated as 50% of the PMF giving a flood peak flow of 1,938 mV* at Dam Site 2. The '/i PMF hydrograph is generated by taking 50% of the ordinates of PMF hydrograph m order to maintain the correct shape of the hydrograph but importantly the correct volume The % PMF* peaks and volume are given m
Tabic 7-1.
Table 7-1: Peak flow and volume for % PMF at Dam Site 2
Flood event
PMP duration (hr) Peak Flow
1
Peak Volume (Mm )
PMF
24
3.876
160
0.5 PMF
24
1.938
80
Mode! schcmatisation
A HEC-IIMS hydrological model is set up to represent W.
appropriate elevation storage curve for the resets on an
stotagc capacity. In the model the 7a PMF hydrograph is e
H passes through the reservoir it is attenuated an t
reservoir is considered full when the flood arm cs and th
crest level for a given reservoir storage- It is abo assumed
from dam arc considered negligible when compared with
For a range of spillway levels and dam storage cap
*et in order to obtain the relationship between reservoirs
by solving the continuity equation with an approximation i
i on the Beks over using the
, , .peafic
o
reservoir as the inflow, as
$pl jh„y The
level b set to the spill
ibstraetjons or releases
of the % PMP flood
outflow over the spillway
jjifcrencc:
-
A
-
_. . I' 0''
l is the mean inflow’ and O is the mean ou
m
m
equation as
change in storage during time step At. The outflow is cak
follows:
Whew, B u the »piWy ac« width (»*• Of Water or surge over spillway crcSt 'C%C
4 SrtJh\V „
at
qj
iVMsy H
177J
7 A Referroir ttten virion of 54 FWF
Hood attenuation analysis for the Vi PMF was earned out at Dam Site 2 for all < VB C and D. The results of the model simulations for each dam option ue^.
TablTU Table 7-2, and Table 7-3, respectively. The analysis provides the mawmum^ level and'solume reached in the reservoir as the flood wave passes through, and the outflow downstream The attenuated ’/> PMF is shown on Ftgurc 7-1 for each dam assuming a spillway length of 50 m.
Table 7-2: Reservoir attenuation of’/> PMF (24 hr PMP) for 230 Mm’ of storage fori rangcjfspiOwavwidtha (Dam option A/B)
'FAww-^7. Kjfak'. Mf9ufH ^VT^fr Cw fianjy
.W I )^r«4T /‘nrAf
ff t of 2 1 i* u^cd in this study. If the characteristics of the
300 m m •'iTthcnfarthcf consideration of flow attenuation would be r«p „j
u
Inflow
Initial
volume
(Mm’)
Spillway
crest level
(mail)
Spillway
width
(m)
Inflow
(«•»’/•)
Outflow
(m’/i)
Maximum
water level
(mail)
Maximum
stored
volume
(Mm )
r
qdn
h
a
’ j PMF
230
1.405
30
1.938
752
1.410.2
276 _
__ -
’ i P.MF
230
1.405
40
1,938
861
1,409.7
27£ .
4
%P.MF
230
1.405
50
1.9.38
949
J .4093
268
I
’/» PMF
230
1.405
60
1.938
1.025
1,409.0
2*1
c
% PMF
230
1.405
80
1.938
1.144
1,408.6
26ll
”,PMF
230
JJ
1.405
100
1.938
1,232
1,408.3
258
’ b PMF
230
y
1.405
120
1.938
1 3.2 [
,
1,408 0
_ JI - -
6
Vi PMF
230
1.405
150
1.938
1.399
1,407.7
.253 -
V. P.MF
230
1.405
200
1.938
1.504
1.407.3 ______
250 J-
Inflow
Table 7-J: Reservoir attenuation of ■/> PMF (24 hr PMP) for 378 Mm ’ of •lorsa*e fof *
spillway widths (Dam option C)
Initial
vohixne
e. .a.
Spillway
crest level
Spillway
width
Inflow
(nP/g)
Outflow
(m*/i)
Maximum
water level
(mail)
ito red
volume
% P.MI
i PMF
- M2?
1.420
1.938
1.938
1.938
1424.5
*/i PMF
14242
’ i PMF
’ j PMF
1.938
14238
1423.6
% PMF
14233
1422.9
> 4P5,F
•/> P.MF
1422.7
1.420
1.420
I ’b F4 SrOli U iter KcKmrcry (J)
|3-M*>W ?****' PfW^ Pratr>r
Tabte 7-* Rex*™' ««fn..arion of A PMF (24 hr PMP) for 20 Mm> of Morage for a w nf spiltwiiv width* (Dam option D)
———~" “1 '
IbUo*
(MinJ)
Spiitway
crest Icvd
(muQ
7
Spillway
width
(m)
“
Inflow
(«7-)
r~~ ■ |——--------------
Outflow
(■»¥■}
--------------------- - , ..
MsKtmunj
ware* level (rnatl)
_____________ _
MaxMitn.
tforrd
vo ham*
_______
Hrirhl 4wr ipvDw^y crn(
Irrel
tel
—‘
IJ60
30
1.938
t5JS
1,368.4
38
8.4
' J PMF _
’iPSg
; . PilF _
i mi IF
.■j rAlr | AW
, PVlF Plfk
1, j p,\rr
PMF
^5 J
20
],M0
40
1,938
1.635
13672
35
72
20
1.360
50
I.93B
1.701
13664
33
6.4
20
1JB0
60
1,938
1,748
IJ6x8
31
5-8
20
ljfio
80
1.938
1.B08
1364,9
29
4.9
20
1,360
LUO
I 938
1.841
1364.4
28
4 4
20
1360
120
1,938
1,865
13*3.8
27
3.8
20
1.360
150
1 938
1,685
1363.3
26
33
20'
1.360
200
1,938
1903
13627
25
25
■KCs (1;(
jvm j?n
175rd P'*'1
□rainage modulus
8
t introducdon
X Soils m the Upper Beks project area compose black day soils or verasols. pirbcuhrhr in the perebiy pl^i area (stage development areas IB pIng
less than 3.0%. A further 31.8% is gently sloping and undulating with slopes ] .
o
cumulative total of 121,770 ha (89.3%) has slopes less than 8.0%. However oth^ f >”
such as depth to bed rock result tn only about half the study area being suited to
igoculrurr
SJ Drainage modulus for sloping land
For sloping land the peak (design) drainage modulus may be calculated using the appn^ detailed in the Ethiopia Road Authorin’ Drainage Manual (ERA, 2001).
The project area is located in rainfall region A2 as shown on Figure 8-1. Design nmfiflpE: Section 4 1 estimated from daily data is used as this more representative of the Upper Bda catchment compared to regional rainfall approximated from Intensity Duration Ftajucorr (IDF) curves provided by ERA (2001). The 24 hr rainfall depths for Upper Beks forincpi return periods are given in Table 8-2. The 24 hr rainfall intensity for these return periods ir? presented in Table 8-3. Rainfall intensities for differing storm durations for a range of MU periods are given in Table 8-4
Figure 8-h Rainfall region! (ERA. 2001)
4 ------- ---- --------------------- -
I
rlulH
X
V -.
\ ■/ CM0A\ '
l*b F4 SrOfi Water Resource* iZI
182T ,bkjJ 24 hr rainfall depth*
Upper Be**
24 hr depth (nun)
Return period frcq ucocy
Observed
2
67
5
L»
SO
100
84
* Hl
121
Bl
Tabic 8-3: 24 hr rainfall in tea airy for Upper Bclei catchment
24 hr rainfall intcrmty(tnrD/hr)
Upper Beier
Return period frequency
2
5
10
25
50
100
■ *■
Observed_____ _
2,8
33
4.0
4.6
5.0
53
: Rainfall intensity for Upper Beks catchment
Upper
Bck»
Rainfall mtenrify (tnm/lu)
1 Observed
Remra period (year*)
Don don
(hr)
Dura don
(min)
2
5
10
25
50
100
01
5
121"
153.4
P44
202.1
219.9
2380
02
10
1027
129.4
147 |
1705
185.4
2007
0.3
20
722
91.0
1033
119.9
130.4
141-3
03
30
563
71.0
80.7
933
1017
110,1
1
60
35 J
443
503
583
63.4
687
2
120
21.0
263
30.1
34.9
38.0
41.1
3
180
15.4
19.4
22.0
25.5
27.8
30.1
4
240
123
153
17.6
20.4
22-1
24,0
5
300
103
12.9
147
17.0
183
20.1
_ ____6
560
8.9
1L2
127
147
16.0
173
12
oLg
720
5.0
63
7.2
83
9.0
9.8
1440
2.8
3.5
4.0
46
50
53
l^ie rational method, corrected for soil type and slope, uses the following the following guidon from the ERA (2001);
j2 = 0.002786 G/
^htre Q
of mno( f
£ u the runoff coettia ent representing a rino
nuxjff to raWaU Thc recommend(;cl c Vl]u„ foI surfaces using hydrologic soil groupings
sl °pe ranges arc presented in Tabic 8-5. The mean of each range for the C values have been s 7'"1 for ^^crent slope and soil types For land slope <2% a C value of 018 is selected for
of o'?* D VCttiitols- whereas for gently tolling retrain for slopes between 2% and 6% a C value VlJ 3 15 USed for VPrnc soils. Slopes between 6% and 15% art predominantly red dap and a C
7" of 0.27 is seleefed for a Joi] y j a iVOTgc
m(cnilfy for a duration equal to the
Concentration, for a selected return penod (mm/hf). and z! is the catchment area (ha).
iQUrtt, (2)
13-Sky 1
1835
Eunv
(w-* R*** - <<*
Ijr^ Mr /"**»•
The Q teim in the formula » rhe adjustment for major storms > 10 yr. This B b^,
frequent. higher intensity storms have infiltration rates and other losses that propony i
a snuller effect on runoff These frequency factors applied to the rational formula *
tn Table 8-6 as recommended by the ER-A (2001).
Table 8-5: Runoff coefficients for pervious surfaces by selected hydrologic ‘oflgro^
and slope ranges (ERA 2001)
Soil Type
Terrain Type
A
B
C
H
Rat, <2%
0 04-0.09
0.07-0.12
0.11 0.16
Rolling, 2-6%
0.09 0.14
0.12-0.17
0.16 0.21
15%
0.18-0.22
0.24-0.30
0.300.40
0JM4
Table 8-6: Frequency fact ora for rational formula (ERA 2001)
Retuna period
(yean)
Cr
5
1
10
1
25
1.1
50
1.2
100
1.25
Table 8-7 Peak
flows for 1:5 year retun
a period
ERA region
E5 year How (1/t/ha)
Reg Al fc A2
Slope (•/,)
Duration (hr)
Du radon
(“»)
<2%»
2%-6%>
6%-15%2
0.1
5
74.6
960
115 1
02
10
62.9
80.9
. 97 1
0.3
20
443
56.9
68 3
0.5
30
34.5
444
. 53.3
1
GO
21.5
27.7
2
120
12.9
166
3
180
9.4
121
14 A
4
240
7.5
97
11 A
6
----------------------------
360
5.4
7.0
84
12
720
3.1
39
47
24
1440
1.7
2.2
• Vertuoh; • Red dayr
26
—£"---- 1
184
( b 1*4 .Wh VTtrrf Jkwwcef (2)tine a I 5 y “
c
ccnirn P€rlod' tbe flows for cich hwJ sloF* chjMi ire ubuhted
LX in Tiblc 8 7 Thc soili np< JF"4mcd for ,loPes <2% CLe M »™l 2M% Cle roUmg) H.cnls whereas for slopes above 6% (ic. steep) ire considered red divs,
ifc vrrusew.
For Uppc* B12%X and overland flow velocities vary depending on the steepness of the slope. The
velocity increases with slope steepness which reduces the time of coocmtritmfi m-cr the catchment- For the purpose of estimating concenrratKm tunes velocities were calculated for the different slope class, and a representative velocity was chosen for each class A 15 year rrrum period is suggested for the design of rhe new draws and smaller waterways and 1:25 rears for larger / natural drains and to delineating drainage comdors cither side of exiting narural drainage lines (streams and / or rivers). For these re rum periods the design flew for vinous drainage flows are calculated and tabulated in Table ft-8 and below m Tabic 8-9.
8-8:
modulus values for a
:5 vi
Nr
Drainage
Area (ha)
Average
Velocity (m/t)
Time of
concentration
(fart)
Rainfall
InienAify
(mm/hr)
Drainage
modulus
Ma
’Drainage Category 1 Flat (<2%)
1
50
03
13
39
18-94
Field /lerttiry
.2.
500
0.3
3.4
18
8.67
CoUcclor
3
1.000
03
63
11
531
4
3,000
0.3
8.5
9
4.45
Main
—- ------- ’Dramjxrr Category 2 Rolling (2-4%)
I
50
06
0.6
63
39 44
Field /ternary
500
0.6
1.7
32
19.94
Collector
1.000
0.6
3-1
19
1188
4
3,000
0.6
4.2
15
936
Main
*Drai
xuge Category 3 5
teep (6-15%)
1
____ 50
0.85
0.5
73
61-20
Field /tcrtnrr
500
3
0.85
1.2
41
3058
CofletTor
0 85
22
26
1888
r
* i
1.000
3jSo
Main
0.85
3.0
19
14.66
lc *Min:c> (2)
IVXhy-H
185F*fr*w'
Nr
«f /*,’*<« a Mitufp tf rlift c*" Zi>njj
Air /-xfufiw i*i E>na*qt Ph»nr
Table 8-9: Typical drainage modulus values for a range of slope tvn n
■■ *
Rainfall
Intensity
(mm/hr)
T
Drainage
Area (ha)
' L -jinAj venge Velocity (m/e)
f Tirnr TnifmI e of concentration
(hr*)
nsodulm
0/«/ha)
'Drainage Category 1 Flat (<2%)
1
50
03
13
51
27 45~
5nn
0.3
34
23
il56~~
3
1.000
0.3
63
14
^70 ’
4
3,000
0.3
8.5
12
644
Mr
'Drainage Category 2 Rolling (2-6%)
1
50
0.6
0.6
83
57.16
had -
*>
500
0.6
1.7
42
28.90
Crfe
3
1.000
0.6
3.1
25
1722
4
3.000
06 42
19
13.56
Mia
^Drainage Category 3 Steep (6-15%)
1
50
0 85
0.5
96
8871
Fell
2
500
0.85
1.2
54
4433
QAr-i
3
1.000
0.85
2,2
35
27.36
\bn
4
3,000
0.85
3.0
26
2U5
bor^/ue,,
c < ^C5lgn norm divided by th -
(Uope kls
considered, if it ifl.
j
nn y
Meda pl^ ]f
Fc >r UIpt * as per Bsuemlese a 24 h d that our storms
° cra8c ^CMgn drainage modulus is determined prm h Ration tune rhe flat land approach would only be
° PPer Bcles, for example in pans of the Derabay ind <«*
a return penod of 5 years
u ou
. jj appropriate
d
.
11 rc,Ufn P^nod of 1.5 years gives a rainfall depth of*
off within 24 hours 7^’° ™4 and the total storm volume is® be
n WcH
« ’ ninagc modulus of 9,72 l/s/ha
° «mg «n ,
d
t TOn 6ooij
«... up ,„ 5(w
Fm
*<
bc applied, Tiblc 8-10.
Table 8-10:
Area Reduction Fact on
Nr
1
Area ( h 4 )
I>ci» thxn SCO
2
3
500- 1,000
1.000-1,500
4
____ 5
6
1^500 - 2, SOO
2,500 - 5,000
5,000- 10,OOP
7 _________________ More than 10/500,______________ ________ ^fi/ Source .5gn rfW I'bnjp A»rJ
Figure
9-1: Halcrow- GIRD operation rule using minimum lake level, of 17M ?5
——--------- ———'
' ~ ~
Halcrow & GIRD operational rule for Lake Tana (min 1784 75 m*l)
%
*•*»•*♦-
17 SI 00
1717.7$
17I7SO
171725
1717 00
■ 12D
1716 75
1716 50
>K
1716 25
17I6OO
1715.75
1715.50
■0
1715 25
1715 00
17M75
Dec JiH Feb Mar Apr
the meant lhake eT lienvea-lBdd 1 es erh/^
Vt-hcn
for 85% of the rame, d ’ m f° operate the diversion of
atchmenc the mean
renutn h«h acecdln
levels „ nu^,
c
7
*' °P<^atcd using the SMEC operation rule (min. 1 84.75 nusf masl. Lake les’ds remains above 1,785 nusi ^ a*crow - GJRD opcranon rule is usedto
'° h>'dmP
oweT M ,,on in thc Bdo
»
"» '<> • water level of 1,785.7 masl lake «.erh« i.7«5 mail for 89% ofthc time period
f to *
for (ran> rt
‘ «td>ment if the emvonmcntal flow requirements reported bv McCartney et aJ
uwig the DRM appr.uch „c idoptfd
•W7) for the Abbay over
fetommcndcd lhe ElA (M«“
I mand ° ^
n
-
If flow releases from the hydropower station are uncontrolled, based on^ ' rurbiocs), annual lake levels decline dramatically by 1.0 m, and
the tunc Navigation would remain an annual problem as lake levels won < loci in any year from January to June
45*
■ G,"t> °pm~" -* •
w.
advantage,
rule (nun l^r’"
bv 7% from T
Jiniiar) to May compared to the SMEC rules (2008)- 7lu* 1
,CdurtK>n w eJe«"aty production of 3°/c comp*ted tnC,h production .nereis by 10“/. over the dry
January to June. Thu i» coruidcred likely io be a period when oth^
,y>w"
Ub M SrOI> Water Rnourui (2)
190
I
J^ , •ffMxT*'-
u
J--**1*
sources of hydro-power ««■ likely to be constrained by water shonagn and when electricity is most valuable.
2 Secondly, it allows a greater atea of imganon to be developed before storage on the
final Beles is required, and less Storage need be provided when it is needed, see tables below-
Modelling results indicate that for irrigation demand Options A, B. and C no ttonge ti required for a net irrigation area of about 75,000 ha if the Hikruw GIRD operation rule 3 adopted, after which storagr is required. A development of about 90,000 ha would require storage of 70- 100 Mm depending on crops grown and irrigation and conveyance effioendes, see Table 9-1 below (and Table 6-7 previously). For irrigation demand Option D (100% sugarcane), storage a required after development of about 60,000 ha.
Tabic 9-1: Storage requirement for different areas of irrigation for low, medium aod high
irrigation duties (Hal crow - GLRD operation rule 1,734.75 mas I)
1
Irrigation Option A
(Low)
Irrigation Option B
(Medium)
Imgahon Option C
(HW
Irrigation Option D
^Maximum)
Trngation
drra
(M
Graai
vtoragc
13
(Mm )
Dam
height
tmj
Gross storage
J
(Mnt )
Dam
height
(m)
1 Grow
storage
1
(Mm )
Dam
height
ftrt
Grow
•to rage
5
(Mm )
Dam
height
(«)
_ J 5.000
0
(J
0
0
0
0
25,000
0
0
0
0
0
0
0
0
0
0
50,000
0
0
0
0
0
0
0
0
65,000
-25.000 Ljso.qm
85.000
0
0
0
0
0
0
40
39
0
0
Q
0
0
0
75
49
28
54
0
0
30
35
no
57
40
39
40
39
50
42
150
64
70
48
70
48
90
13
190
70
f ’he SMEC rules (1784.75 ma si) are adopted then storage on the Enit Belts river » required r about >0,000 ha for all irrigations options, refer Table 6-8 previously .
sotnc agreement is obtained regarding operation of the Tana-Belrs hydropower station. p™dent to consider construction of a storage reservoir which would ensure irrigation
suppbo fot about a month aI ciop demands For example, for the envisaged Upper Bdcr
ac uding I lynu) Oe,
7 ^tn Uvt storage of 203 Mn>' dim option
unga0on lrca of 63 8 O ha
’ FSL of 1,405) is equivalent to a delta of 0.32 m and would meet dry season crop water
u UUemen^ for about 5-6 weeks. This would proside security to farmers in event that
V’fream hydropower fcJeases are not as expected for what ever reason. However this ux>uld be pensive and probably unnecessary expense.
lerm legation development envisages about 10-20,000 hr being developed m the that J *ly?* La[chnic"' in addition to 63,871 ha tn Upper Beles- Also it is understood
ut 85,000 ha could be developed in the Lower Beles, see Section 5J1.
(2)
Ij-Mir II
191•//>»<»* * AfatMfn tf ITj/rr Cv
*
[■Jtofm Ai> /nt-0* D*w« much cheaper than for the Enat Beles dam. This indicates that the Upper BcJes dam should only be sized to ensure irrigation within Upper Bdes Ac I fyma. and specifically for the left bad command As the total Upper Beles and Hyma irrigation area is unlikely to be more thin ibo*
S 85.000 ha then a small dam / diversion weir, high enough to command the Upper Bdo Bank Main Canal, may well be appropriate*
the result, from thc *
7
5
2
2 °’°) sh°» th^thtm " ,n<>dcIllng m th» *»«»>• and others (SMEC 2009. « o‘JTT?* °f *' d'^' <• decline in witer level, is Ukdi to h*«
Refer HCEOM Rq*nd supply of water for the Upper Belts Scheme. Careful management of the energy and
ugauon, sectors are needed to gun the benefit of a future increase ill food production bur hour a significant cost in terms of assured electricity production. The economical benefits of
greater food security against reduced reliability of electricity should be assessed Tradeoffs
impace on the ecology of the lake. particularly in the brtoraj zone, and remit m the deskcstKJQ of thc *cdand* surrounding the hlu- shore The near there vegeuboa such „ the
reed, important for Negede people (Lt canoes for trading. household utcods). n apected to suffer from further drawn of dry season lake levels. .Already, heal people cumphm that many of papyrus ^ds have dried out and Urge areas have died (McCartney et >1 2OJQ). Increased device a non of reed beds is likely to result tn the loss of fish breeding habitats
^p^ctfng on the livelihood of many people who depend on fishing (mm I jke Tina Dedmuig
fch blocks is already having adverse impacts on commercial fisheries established on I-ake Tana (McCarmn e* 2010) Since the livelihoods and welfare of many people arc directly
betwr^n
competing needs will have to be made to avoid conflict between competing
*
*
^cultural and energy sectors at the same time avoiding adverse soda! and environmental
<>r* f-^kc I ana and Abbiy river. For instance, simply dosing the Tts Abbay power
^’tlOns on Abbay river will not safeguard lake level decline; i common stakeholder perception
UcCartney et aL 2010)
th' °ff eX15tS t>ctween la!(r ecosystem and the ecosptem of the upper Abbay Rrver
Ae Tis
Issat Fl]ll
of |al[; ouinow5 by the Cha^t-Chara war has sigmfleanth
SCaSOD °°ws and significantly decreased wet season flows in flic upper Abbay , CoCr Hb6 chln«e m the flow regime and reduction in inter annual vanaiwns in (lmn luve
fioih1k*t’blC CColoK’cal
It i» important that the regulated downstream flows released
c C ha .Chara weir satisfy the cns-irrsnmental flow- requittmisiB downstream of the lake
ta
IVMnr H
191,\'i> /-. thiopu, 30
November - 02 December 2006) W9-K*
McCartney .\1 p downstream on the Cha ,.ri."
f
* >U '
Est “nating environmental flow requironw-'
” 8 Qinmn 2009)
s
” **“ r’n the B,uc Ni
le River Hydrological Processes. 2J. J"’1
j*" UtUfc resources develon ’ A*ul*chcw. S. B 2010. Evaluation of currtf'
B
Intemauorui U llcr M
Mo 8«.S. A.2009.ju^vj
* "“> Presented p2pcT „
p-
ngHj StudJio flQOHi t
Uke Tana Basin, Ethiopia Colombo, Sit Moment In,mute 39p Rfscareh R J34J.
° f PMP conceP' •« estimating PMP«
3,cr Resources workshop, 30tli Janu>^*"
°t,WOjTWaBcJcjp
Stt ,ky ‘ Esiayjj W’JK j
«timate pricUcc m p .
■ «<» Abaynch, L 2009 A brief review of spillway design
P *Per Presented nt
c 'Unjitry f\jj-f 0
iht ‘ ’"d Elsewhere, WV "
. Water Works Design and Supervision
o
- ^oign af|O aupcrvuj
USSR I964
M Und d
ln W.
“ WOrksh°P-30
R
' —soothe Blue Nile B.sm.Ethiopu
* k I’4 StOIj U jtcr Rcuiurtrv <2)
196*“ «,d P^ngd. 2005 L.ke T™
200s)
Sl hw .nd H'uwch 2006 Bd« mpp, Ixvd , Dwign j
SMEC Intcrnaa™* 2008. F lydrotopcal Srudy of the Tana-Beks Sub-Bobu.
WTC tlrrv 74wh
1
Ethiopia Ministry of Water Resource* and National Meteorological Agency. June 200”.
Van der Weert, R.» 1994. Hydrological conditions m Indonesia, Delft Hydraulic*
WMO. 1973 Manual for estimation of probable maximum precipitation World Meteorological Organization.
WMO, 1986. .Manual for estimation of probable maximum precipitation. World Meteorological Organization
Yafei, D and Strezpek, K 1994. Comparison of models for climate change assessment of over bum runoff WT-94-46, HA SA. Luxemburg, Austria.
Ymw. D. 1996. WATBAL: An integrated water balance model for climate impact asscumcnt of nver basin runoff. Tnr J. of Water Resources Development, 12. (2) 121-139
Yitca, D., 1997. Approaches to continental scale runoff for integrated assessment models. J. of Hydrology, 201.289-310.
197
1>\bT ItKfMf d E&qu. SbtutT) tfV
tokf* Xii /npf* **
h^taANNEXES
description____________ ______________
ZJ
*nnexa_
YtONTHLYk DAILY RAINFALL
_
MONTHLY RAINFALL DATA FOR paut statton
VOCEXA2_.
I
MONTI ILY ILUNFAU._p.\TA FOR CHAGSl_STA HON
MONTHLY R.AINF.UX DATA FOR XL\NDURA station
MONTI n.¥.RAINFALL DATA FOR D^GITA STATION
MONTHLY RAINFALL FOR GORGORA STATION
daily rainfall DATA F( )R pawe STATIC IN
DAILY RAINF.ILL DATA FOR SLANDURA STATU ]N
DA ILY RAINFALL PA I A FOR DANGIlA STATION
DAILY A'JNFALL DATA FOR CORPORA STATION ________________________ _ DAILY RAINFALL DATA FOR KUNZ1LA STATTON
AVERAGE MONTHLY RAINFALL
' LONG TERM AVERAGE OBSERVED MONTHLY ILUNF \LL H »R STATION
IN TANA BASIN
J
ASSOLii—
jSXEX .\6
_
JlNXEXA7__ VSNEN AH ANNEX A9 _ ANNEX A10 annex b
XKNEX Bl
ANNEX 02
__________ __________________
M()NTlILY RAINFALL ESTIMATED USING CO-KRIGING FOR UPPER BELES COMMAND AREA
ANNEX B3
M( >NT1 ILY CATCHMENT AVERAGE RAINFALL DATA
ANNEXC
MONTHLY CLIMATE DATA
ANNEX Cl
MONTI FLY CLIMATE DATA FC>R PAWE STATIC >N
ANNEX C2
MONTHLY CLIMATE DATA FOR DANG IM STATION
1 ANNEX CJ
MONTHLY CLIMATE DATA FOR Cl IACr.NI STATION
ANNEX C4
Ml >NTMLY CLIMATE DATA FOR MANDURA STATION
ANNEX C5
availability of .monthly climate data at pawe. chagnl dangila and mandura stations
^NEXct
infilled climate data for pawe station
r ANNEX 1)
FLOW DATA
^T.X b l _
4
2-SNEXD2
MONTHLY FLOW FOR M AIN BELES RD1.R AT BRIDGE STATION
Ml JNTHLY FLOW FOR GILGEL BELES RIVER NEAR MANDUHA
--^Txrn -12£>EX CM
daily FLOW for ALAIN BELES RIVER AT BRIDGE STATION
^NNEX 05
Y\\ip T~ —
dally flow for gilgfj. bfj.es river near allndura
v
MONTHLY FLOW FOR ALAIN BELES RIVER AT BRIDGE STATION (INFILLED)
Mt JNTHLY FLOW ESTIMATED USING A FCEG1OSLCL APPR< >ACH
A GUI DE FC)R OPTIMISING WATB.VL PARAMETERS J_. u .-LVD j
“~~~L
ANNUAL MAXIMUM DA1LY FLOW FOR MAIN BELES AT BRIDGE —4
ANNUAL MAXIMUM D.MLY FLOW FOR GILGEL BELES NEAR MANDURA-----------------------------
SEDIMENT DATA ________________________ _____________ — ——
SUSP^!D^js£DlMENTCONCF^£raATION^F<2®I=ii^ I ANA
ANNUAL DAILY MAXIMUM RAINFALL--------------------------------------------------
ANNUAL DAILY MAXIMUM RAINF.M1. —--------------------- — LAKE LEVELS
1
j
IJAUfll
iR
.Wm*>♦.' “ ■*»’ e>-fc*T
Prtr»T
ANNEXNR
KNNEXG1
KNNEX G2
annex H
DESCRIPTION
M< >NT1 ILY (IBSERX'ED I.AKE LEVELS Ft >R ]. \KF ,
J- "
s
D A1LX'OBSERXTD LAKE LEX’ELS FOR LAKETANA XTILu^^L
AREAL RAINFALL AND ETI(
LAKE TANA&BELES AREAL. RAIN! \| I i MNGCOKRjging
IT F< >R SUB-CATCHMENTS USING I I |( IRNTT nX'AFlT-MFTHOD LAKE TANA NET EVAPORATION
LAKE TAN A NET EVAPORATE )N
LAKE TANA FLOWS
LAKE TANA LTA AND OBSERVED (JUT FL( >W
OBSERXT.D RIVER Fl OXX DATA RAWING INTO LAKE TAX A MONTHLY FLOW FOR SUBCATCHMENTS ____
MONTHLY FLOW FOR SUBCATCHMENTS USING RAINRUN
RESERVOIR EVAPORATION
.MONTHLY NET RESERVOIR EVAPORATE)N ADJUSTED MONTHLY INFLOWS TO LAKE TANA
'
ANNEX Hl
ANNEX H2
ANNEX 1
ANNEX 11
ANNEX J
ANNEX JI
i ANNEX J2
1 ANNEX K
1 ANNEX KI
ANNEXL
ANNEX LI
ANNEXM
ANNEX Ml
ANNEXN
ANNEX KI ANNEX N2
ADJUSTED MONTHLY INFLOWS TO LAKE TANA STORAGE REQUIREMENTS ft OPERATING RULES_________________ — UPPER BELES & HYSLA SCHEME FAILURE RATE .AND STORAGE REQUIREMENT (lLALCROW - CJRD OPFRA11ONAL RUU£Tg£Zlg^----------
UPPER BELES & HYNLA SCHEME FAILURE RATE AND ST Xti /*»^aew W P*»»gr F*9*f
I h F4 SrOla Wafer Keaourcra (2)station Monthly Winfall (mm)
Date _
Jarv97
Rainfall
0
Feb-92
Mar-92
Apr-92
Rainfoil
9999
___ 0
9999
57.2
Fet>97 0
Mar-97
2.1
Apr 97 312
May92 714
jun-92
Jul-92
175,9
337 8
May 97
Jun-97
147.4
180.4
Jul-97 330 8
Aug-92 4816
Aug-97
383 3
Sep-92
238.9
175,8
Oct 92 1998
Date
Jan-02
Feb-02
Mar-02
Apr-02
May 02
Jun-02
Jul-02
Aug02
Sep-02
Oct-02
JJct-jg
Sep 97 1757 Oct 97 170
06
Jan 88
Fetb88
jdar-88
O
153
2.7
Nov-92
Dec-92
Jan-93
Feb-93
Mar-93
Apr-93
M ay-93
Nov-97
16 9 Nov-02
Nov-8?
Dec-87 9999
Dec-97 9999
Jan-98 0
Apr 88 0
May 88
Jim-88
Jul-88
Aug 88
Sep 88
Oct-88
Nov 88
Dec 88
Jan-89
104,7
3902
441.7
466.1
452.1
125.1
_____ 0
-9999
_____ 0
9.1
-9999
0
0
82
34.5
112.2
Jun-93 3214
Jul-93
Aug-93
Sep-93
Oct-93
Nov 93
370.5
290.9
167.6
96.5
31.8
Feb-98
Mar-98
Apr-98
May-98
Jun-98
Jul-98
Aug-98
Sep-98
Oct-98
Nov-98
0
98
9.6
153,6
511.3
384 8
3666
243
146 7
5.6
Dec-93 9999
Dec 98 9999
Jan-94
Feb-94
Mar-94
Apr-94
____ 0
____ 0
____ 0
117
Jan-99
2.2
Feb-89
Mar-89
Apr-89
May 89
_____0
1.9
36.9
189.1
Feb-99 0
Mar-99 0
35.5
Dec-02
Jan-03
Feb-03
Mar-03
Apr-03
May-03
Jun-03
Jul-03
Aug-03
5ep-O3
0ct-03
Nov-03
Dec-03
Jan-04
Feb-04
Mar-04
Apr-04
May-94 1547
180.7 May 04
Jun-89 9999
Jun-94
207.2
Jul-89
Aug-89
jep-89
Octi?
N0V‘89
473.3
348.2
421.2
99.7
Jul-94 2907
Aug-94
Sep 94
Oct-94
304.6
-9999
77.9
Apr-99
May-99
Jun-99
Jul-99
Aug-99
Sep-99
Oct-99
280.9
2857
359-2
223.6
Jun-04
Jul-04
Aug-04
Sep-04
134.6 Oct -04
Nov-94 489 Dec-94 9999 Jan-95 0 Feb-95 9999
Nov-99 197
NOv-04
Dec-04
Jan-05
Feb-05
Mar-95
Apr-95
35.3
14.8
Dec-99
Jan-00
Feb-00
Mar-00
-9999
_____ 0
_____ 0
2.1 Mar-05
Apr-00 612
Apr "05
May-95 927
Jun-95
Jul-95
Aug-95
Sep-95 2481
Oct-95
Jun-05
Jul-05
Aug-05
Sep-05
Oct j>5
Nov-05
Rainfall
•9999 9999
9999
9999 -9999 -9999 ^9999
•9999 9999 -9999 9999 -9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
0
■9999 18.1
___ 3 -9999 -9999
•9999 -9999
■9999
-9999
3.2
Nov-95 0
May-00
Jun -00
hjW0
Aug-OO
SepQO
Oct jO
Nov-00
1887 May-05
412 9
233.3
433.6
91.6
264 8
200 9
3653
1767
223 8
-9999
21/01/201A_Apper>drx_A1
2
2 1/O’C.-M**** ’
ANNLX A2
monthly rainfall data for chagni station
Srf
r«Oiir
Crt (2.
i
JVMjtI'Jif* Vai /qpto* ** &**** ^W*rMonthly
fmrn>
□ate
Dace
Rainfall
Date
Rainfall
Date Rainfall
Jan 77
Jan 81
Jan-85
Feb-85
Mar-85
Apr-85
____ 0
____ G
Feb-77
13.6
Feb-81
Mar-Sl
____ 0
157
____ G JAJ
Apr-77
May-77
1.9
14 8
35 3
128 8
May 85
May 89
218 4
-77
370 8
Apr-8l
May-81
Jun-81
Jan-89
Feb-89
Mar-49
Apr-89
Jul-77
278
Jul-81
Aug-81
Jun-85
Jul-85
328.5
309
Jury 89
273^
5 36J
394 9
281.1
Aug-8 5
504 5
Jul-89
Aug-89
373 5
Sep-77
269.4,
Sep-81
Sep-85
268 6
Sep-89
224
151,7
78.4
Oct-81
127.4
36.9
0
17.7
____ 0
863
59.3
Oct 85
1401
16.5
Oct 39
Nov 81
Nov 85
Nov 89
Dec-77
6.9
Dec-81
Jan-82
Feb-82
Mar-82
Dec 85
Jan-78
319
0
Pec-89
Jan-90
Feb-78
11 7
Jan-86
Mar*86
Apr-86
May-86
Feb-90
Feb-74
Mar 90
Mar-74 _
Mar-78
Apr 74
Apr- 78
18
Apr-82
May-74
225 2
142 S
Ji>n-74
May-78
Jun-78
115 2
23 5
Apr-90
Mjy-90
161.5
5.1
72
17.4 ____ 0
10.7
0.1
652
3288
298 4
May-82
Jun-82
288
Jun-86
2999
Jun-90
165.3
Jul-74
M~74
Sep-74
_ Oct-74
287.5
Jul-78
417 2 Aug-78
Jul-86 Aug-86
244 4
302.2
330 1
Sep 78
257.6
352.9
319-6
248.5
Nov-78 807
Jul-82
Aug-82 be p -8 2^ Oct 82
Nov-82
4599
3SS.6
279.1
322.1
0
Sep-86 2552
147.3 Oct-78
Nov 74 0
Oct-86
Nov-86
1746
21.6
DtC-74
Jan-75
2.51 Dec-78
1.2
2.4
Dec-82 0
Jan-83 0
Dec-96 0
Jan-87 135
_
Feb-75 89
Jan-79 0
Feb 79 0
Feb-83
0
Feb-87
0
JuF90
Aug-90
Sep-90
□ct-90
Nov-90,
Dee 90
Jan-91
Feb-91
188.2
433 2
273 8
9999
9999
9999
0
9999
_ Mar-75 _ *pr-75
6
18.8
May-75
139.3
221
181
May-8 7
254 4
Jun-87
202,1
Jun-91
451 5
Mar-79
Apr-79
May-79
Jun-79
Jul-79
Aug-79
0
54 3
____ 0
9999
-9999
Mar-87
Apr-87
0.3
53.1
200.4
Mar-91
Apr-91
May-91
hjn-75i
300.7
Mar-83
Apr-83
May-83
Jun-83
Jul-83
Aug-83
•9999
339.9
Jul-87
284.3
Jbl-91
Sep 79
Oct-79
Nov-79
Sep-83
Oct-83
Nov-83;
373.4
292.4
Oct-87
Nov-87
202.6
265
M91
Sep-91
Oct91
Dec 79
185.1
249.4
191.5
92
_____ q
Dec 83
Dec 87
0.3
Jan-80
o
Jan-88
3.1
12.8
38.6
Jan-84
Feb-84
Mar-84
Apr-84
459,5
336.8
205.8
17.2
____ 0 ____ 0
^irg-87
Sep®?
9999
9999
9999
9999
9999
9999
110,6
____ 0
Feb^SS
42.4
Nov-91
Pec-91
Jan-92
Feb-92
Mar-80
_____0
305
2193
293-7
Mar 88
2.1
Mar 92
9999!
9999
9999
9999
9999
0
Apr-92
9999
87.9
115.6
Apr-88
192.3
264,3
9999
May 80
May 84
Mar 8g
May 92
Jun-80
233.5
Jun-84
Jun-92
Jul-92
171.2
377.9
Jul-80
Aug-80
289 5
Jul-84
446
Jun-88
Jul-88
149.6
394.7
344.1
9999
339.9
Aug-84
236
340.8
123.7
Aug 88
■80
Sep-88
Oct-8®
325.2
322-5
Aug-92
Sep-92
302.6
166
354
Sep-84
Oct 80
Oct 84
Nqv-88
Oct-92
Nov-92
J999
9999
9999
Nov -84
-9999
Dec 92
9999
Dec-80
Dec 84
Dec 88
219-5
224
1943
15/12/2010Chagni Station Monthly Rainfall (mm)
Date
Rainfall
Date
Rainfall
Date
Rainfal
Date
1 Ramfall
la n-93
-9999
Jan-97
-9995
Jan-01
01 Jan-
05l
Feb-93
•9999
Feb-97
9999
Feb-01
0 Feb
osl ~~9999
Mar-93
-9999
Mar-97
-9999
Mar-01
1
3] Mar-
OS] -999^
Apr-93
9999
Apr-97
•9999
Apr-01
20
1| Apr-05| .9999
May93
9999
May 97
-9999
May-01
210
May-05, 9999
Jun-93
9999
Jurv97
9999
Jun-01
349.
5] Jun-05] -9999
JuF93
-9999
Jul-97
-9999
Jul-01
264
2f Jul‘05[ -9999
Aug-93
-9999
Aug-97
-9999
Aug-01
233.
3 Aug-05 -9999
Sep-93
•9999
Sep-97
-9999
Sep-01
251.
6] Sep-OS| -9999
Oct 93
•9999
Oct 97
-9999
Oct 01
268.
3 Oct-(
)S -9999
Nov-93
•9999
Nov-97
-9999
Nov-01^
25/
41 Nov-C
)5 -9999
Dec-93
9999
Dec-97
9999
Dec-01
8.
1 Dcc-C
IS] -9999
Jan-94
•9999
Jan-98
9999
Jan-02
1.;
2| Jan-0
6 -9999
Feb-94
-9999
Feb-98
•9999
Feb-021
) Feb 0
6 -9999
Mar 94
9999
Mar 98
9999
Mar-02|
4.(
>] Mar-0
6] -9999
Apr-94
•9999
Apr-98
•9999
Apr-02]
38.3
l] Apr-0
6 -99991
May-94
•9999
May 98
142.9
May-02l
29.3
|] May-0
6] -9999I
Jun-94
•9999
Jun-98
359.9
Jun-02]
258
J| Jun-01
5| -9999
Jul-94
•9999
Jul-98
299.7
Jul-02
300.1
Jul-O(
-9999]
Aug-94
9999
Aug 98
246
Aug-021
345.9
Aug-06
9999]
Sep-94
9999
Sep 98
261.2
Sep-02
215.2
5ep-O6
4 -9999]
Oct-94
9999
Oct-98
392.4
Oct-021
199.5
0ct-06
1 -9999]
Nov-94
9999
Nov 98
44.2
Nov-02
15
Nov-06
-9999]
Dec 94
9999
Dec-98
6.2
Dec-02
12
Dec-06
-9999!
Jan 9$
9999
Jan-99
1.2
Jan-03]
0
Jan-07
-99991
Feb-95
-9999
Feb-99
0
Feb-03]
13.5
Feb-07
■99991
Mar-95
-9999
Mar-99
9999
Mar-O3|
I6.l|
Mar-07
-9999|
Apr-95
•9999
Apr-99
24.9
Apr-03|
0
Apr-07
9999J
May 95
•9999
May-99
260 9
May-031
79 51
May 07
-99991
Jun 95
-9999
Jun-99
336 S
JunO3l
404 S]
Jun 07
99991
Jul-95
-9999
Jul-99
234 3
Jul-03
357 7]
Jul-07
-9999]
Aug 95
-9999
Aug-99
391.7
Aug-03]
323^|
Aug-07
~~9999l
Sep-95
-9999
Sep 99
235.1
Sep-03]
281.6]
Sep-07
999*4
Oct-95
9999
Oct-99
228
Oct-03
86 6
Oct-07
“^99991
Nov-95
9999
Nov 99
30.7
Nov03
179
Nov 07
99991
Dec-95
■9999
Dec-99
15.2
0ec-03]
2.5
Dec-07
-9999]
Jan-96
9999
Jan-00
0
Jan 04]
0
Jan-08
-99^]
Feb-96
•9999
Feb-00
0
Feb-04]
05
Feb-08
-99991
Mar-96
-9999
Mar-00
18
Mar-04]
.
5.8
Mar-08
-9999]
Apr-96
-9999
Apr 00
122.1
Apr-04]
77.7
Apr-08
^9999]
May-96
-9999
May-00
155.9
May O4[
67.5
May-08
-99991
Jun-96
-9999
Jun-00
286 5
Jun-04]
293.2
Jun-08
99991
Jul-96
9999
Jul-00
3348
Jul-04|
350 2
Jul-08
-9999J
Aug-96
9999
Aug 00
360.1
Aug-04|
. 359
Aug-08
^99991
Sep 96
9999
SepOO
322.2
Sep 041
408.5
Sep-08
99991
Oct 96
9999
Oct-00
316.5
Oct-04]
102 2
Oct 08
99991
Nov 96
•9999
Nov-00
477
Nov-041
.
54
Nov 08
999?]
Dec-96
-9999
Dec-00
3
Dec-041
16.51
Dec-08
-9999]ANNEX A3
MONTHLY RAINFALL DATA FOR MANDURA STATION
Mla tv-
lyMir 4!
•ctifcci (2)'<«*’ * *
rr
r
f?
x -\* f^r«M S I*—* l'r'rf'’
r
Ub F4 MO la Waler Resource! (J)
'7
uMonthly
* mrn)
Date _
Rainfall
Date
Rainfall
9999
Date
Rainfall
Oat*
Rainfall
Jan-76
Fcb_76
Mar-76
Apr-76
0
Jan 80
Jan-84
Ian-88
G
53
13.6
Feb-80
Mar-80
-9999
9999
Fet> 84
c eb-88
Mar-g4
0
____ 0
5-5
20 3
Mar 38
23
5.7
Apr 80
9999
Apr 84
____ 0
976
2303
9999
Apr-88
____ 2
212-6
May 80
-9999
9999
May-84
Jun-84
Jul-84
Mi
193 3
367 4
Jun-80
Jul-80
Jun-88
284 3
322 9
-9999
Jul 83
455 9
Aug-7 6
308
Aug-80
9999
Aug04
- jjnr?
Aug 88
355 6
Sep-76j
222 2
Sep-80t
9999
9999
9999
Sc p-84
9999
9999
9999
sep-aa
443 3
Oct-76
139 3
Oct jO
Oct-84
Nov-84
Oct 38
127 3
Nov-76
92
Nov 80
Nov 88
0
Dec 76
0
0
Jan-77
Feb-77
0
0
Dec-80
Jan-81
9999
9999
Dec-84
Jan-85
Feb-85
Mar-85,
Apr-85
9999
Dec-88
0
____ 0
J an-09
Jan 73 _
0
Feb-81
-9999
0
Feb-39
c
0
Feb73
Mar-73
73
Mar-77
4.5
Mar-81
-9999
673
Mar-89
Apr-73
43 8
Apr 77
9999
May 73
214 2
May-77
____ 0
192.6
Apr-81
May-81
28.4
Apr 39
-9999
May 85
1873
May-89
_ Jun-73
280 6
Jun-01
9999
308 1
Ju I-73
Jun-77
Jul-77
Jun-85
Jun- 89
203
454
157.5
3093
451.6
Jul-81 Aug-81
9999
Jul-85
427.7
513 9
Aug-73
Aug-77
399 7
-9999
Aug-85
Sep 73
Sep 77
223 4
Sep 81
Oct-73
Oct-77
88 6
Per 81
-9999
-9999
310
158.8
Jul-89, Sep-89
508.5
3833
286 4
Oct-89
Nov 73
Nov 77
25 2
Nov-81
13
Nov-89
211
3
Dec-73
Jan-74
Feb-74
Dec-77
Jan-78
Feb-78
£
0
Dec-81
Jan-82
9999
9999
Dec-89
10
0
J an’90
0
Feb 82
Sep-85
Dct-85
Nov-85
Dcc-85
Jan-86
Feb-86
33
0
0
Feb-90
Mar-90
Apr-90
0
6_5
0
Mar-74
Apr-74
Mar-78
Apr-78
15.2
242.1
Mar 82
118.6
33
Mar-86
Apr-86
0
6
0
Apr-82
May 74
May-78
88
MayB2
46.7
May-86
Jui>74
Jun-78
473 8
Jun-82
50.8
Jun-86
17.4
320.6
May-90
Jun-90
____ 0
933
124.2
Jul 78
496.6
Jul 82
720. S
Jul-86 Aug-86
362.6
Jul-90
3983
Aug-78
646
Aug-82
479.6
378.4
157.9
Aug-90
690 4
Sep 78
209.6
Sep-82
298 2
Sep-86
Sep 90
Oct-78
191 8
Oct 82
74 6
r
Oct-86
Nov-86
1856
1.2
0ct-90
Nov-90
Dec-90
324J
9999
Nov 78
__ q
o
Nov 82
o
Dec 78
Dec 82
o
Dec 86
0
-9999
9999
Jan 79
9999
Jan-83
Feb-83
___ 0
Jan-87
Jan-91
0
-9999
____ 0
Feb-87
____ 0
Feb-91
OS
Mar-79
-9999
Mar-83
Apr-83
Mar-87
3.6
Mar-91
■9999
9999
9999
____ 0
-9999
Apr-8 7
15.2
Apr-91
____ 0
2897
May 79
May 83
-9999
May-87
Jun-87
Jul-87
May 91
Jun-79
Jul-79
Sep’79
Oct-79
582.1
9999
Jun-83
Jul-83
-9999
Jun-91
279.3
588,7
-9999
JuF91
-9999
9999
9999
9999
-9999
Aug-83
3804
2933
1063
4.2
283.2
303.3
1884
296.6
Aug-91
Sep-91
99S9
Sep-83
Aug-87
Sep-87
204 1
76.4
Oct-91
9999
-9999
Oct 83
Oct 87
642
NoV-79
9999
-9999
-9999
Nov-83
Nov-87
Nov-91
28.9
Oec-79
0
Oec-87
Dec-91
9999
Dec 83
1SH 2*2010Mandur* Station Monthly Rainfall (mm)
Date
Rainfall
Date
Rainfall
Date
| Rainfall
Date
Jan-92
9999
Jan-96
-9999
Jan-OC
) -9999
Jan-04
Rainin’! 0|
Fcb-92
9999
Feb-96
9999
Feb-OC
) -9999
Fcb-04
Mar 92
9999
Mar-96
9999
Mar-OC
1 -9999
Mar-04
2Zn|
Apr-92
■9999
Apr-96
-9999
Apr-OC
II -9999
Apr-04
^ilH
May 92
9999
May-96
-9999
May-OC
| -9999
May 04
5BI
Jun-92
-9999
Jun-96
-9999
Jun-OO
1 9999
Jun-04
190l]
Jul-92
-9999
Jul-96
-9999
Jul-00
-9999
Jul-04
S3«3l
Aug-92
-9999
Aug-96
9999
Aug-00
-9999
Aug 04
587 2]
Sep-92
9999
Sep-96
9999
Sep-00
-9999
Sep-04 i
419.6]
Oct-92
9999
Oct 96
-9999
Oct 00
9999
Oct-04
213.61
Nov-92
-9999
Nov-96
-9999
Nov -00
-9999
Nov-04]
37.3
Dec-92
•9999
Dec-96
9999
Dec-00
-9999]
Dec-04]
29.2
Jan-93
-9999
Jan-97
-9999
Jan-01
-9999]
Jan-051
-9999
Feb-93
-9999
Feb-97
9999
Feb-01
-9999
Feb-05]
-9999|
Mar-93
9999
Mar 97
9999
Mar 01
-9999]
Mar 051
999$
Ap<-93
•9999
Apr-97
•9999
Apr-01
-9999
Apr-05]
9999]
May-93
-9999
May 97
-9999
May-01
-9999
May-05]
-9999]
Jun-93
-9999
Jun-97
-9999
Jun-01
-9999]
Jun-05]
•9999
Jul-93
•9999
Jul-97
9999
Jul-01
-9999]
Jul-051
-9999I
Aug-93
9999
Aur-97
9999
Aug-01
-9999]
Aug-05|
-9999]
Sep-93
9999
Sep 97
•9999
Sep-01
-9999
Sep-05]
9999]
Oct-93
-9999
Oct-97
-9999
Oct-01
-9999
oct-osf
-9999]
Nov-93
•9999
Nov-97
■999$
Nov-01
9999]
Nov-05]
•9999]
Dec-93
9999
Dec-97
-999$
Dec-01
-9999]
Dec -05]
-9999]
Jan-94
9999
Jan-98
9999
Jan-02
-9999
Jan-06]
-9999]
Feb-94
-9999
Feb-98
•9999
Feb-02
-9999
Feb-06]
.9999]
Mar-94
-9999
Mar-98
-9999
Mar-021
-9999]
Mar-061
-9999]
Apr-94
-9999
Apr 98
-9999
Apr-02]
-9999]
Apr-06]
-99991
May-94
•9999
May-98
-9999
May-02
-9999
May-06j\
-9999]
Jun-94
9999
Jun 98
9999
Jun-02
252. if
Jun-06]
999?l
Jul-94
9999
Jul-98
-9999
Jul-02
234.4]
jui-06r
.9999]
Aug-94
9999
Aug 98
9999
Aug-02|
-9999]
Aug-06]
""^9999|
__ Scp-94
9999
Sep 98
-999$
Sep-02]
159.6]
Sep-061
9999]
Oct-94
Nov 94
9999
9$$q
Oct 98
-9999
Oct-021
156.5]
Oct-O6|
Jan-95
Nov-02]
Dec 021
9999I
9999]
Dec-94
9999
Nov 98
Dec-98
9999
999$
9999
Jan-99
Feb-95
Mar-95
Apr-95
May-95
Jun-95
Jul-95
Aug 95
Sep 95
Oct-95
9999
-
Jan-03|
-
0]
31. if
9999]
Nov 06]
Dec-061
.9999]
Jan-O7j7
"^99991
■9999
■9999
9999
■9999
■999$
-9999
999$
$99$
-9999
Feb-99
Mar-99
- _ Apr 99
May-99
Jun-99
Jul-99
Aug.99
_ Sep 99
Oct 99
9999
9599 r -999$
999$
999$
•9999 _ 9999
•9999
Feb-031 Mar-03] Apr-03]
May-03 Jun-03]
Jul-03] Aug-Q3[
Sep 03 ’
5.7
9.31
zsl
53.31
312.lT
291.8
304.2]
407.9]
Feb-07] __ Mar-07] ~ Apr-07] ~
May 07] ~ Jun-07] _
Jul-07] Aug-07] Sep-07]
-99991
99991
^9999]
-99991
^99991
9999]
9999J
-99991
Dec-95
-9999
•9999
Nov Q$
Dec-99
•9999 Nov-03
9999 Dec-03
Nov-07
Dec-07
■9999
A Appendix A3 xIs<
; •**jt<' p'j'*
ANNEX A4
MONTHLY RAINFALL DATA FOR DANG TLA STATION
(2j
J
IVMji tJ'l*"
f '*■'**' /S**’
t'h I 4 StfOLa Water Reiourrea (2)
iiDate
Jan-70;
Otte
9999
Feb 70 9999
Jan-75
iab-73
’j
Fabio
Mar-70
Mar-75
MaMC
Apr-70
*P' 7S
-Apr 80
May 7D
May 1C
ftj fi-65
kr-40
Jul-65^
2826
352J
Jun-70
Jul-70
May-75
Jun-75
Jul-75
9909
9909
9999
Aug 70
Aug 73
JU-80
AagJP
J-F .rj
Sep JO
SrpTS
Sepao
9999
Oct 6J
Oct JO
Oct?5
OctK
9999
Nov-65
Mqv-70
NO*’75
her* 10
9999
Dec-65
Jar-66
Dec 70
Dec 75
0
Jan-71
Jan-76
J999
9999
c*c40
Jan-81
9999
jjn-61
Feb-66
__ 0
Feb-71
reb-76 9999
Feb-Bl
9999
Feb61
Apr-61
Mjr-66
Apr-66
54 3
Mar 71
Mar 76
Mar 81
9999
14 2
ApMl
May 81
May 63
May 66
Apt-71
May-71
Apr-76
May 76
-9999
9999
Jun-51
j ur-66
Jul-61
Jul-66
251-6
336.3
321J
Jun-71
Jul-71
Jun-76
Iuk76
Jun-81
JiMl
AUg-61
Sefr-61
Au8 66
298.4
(Xt 61
Aug-71
Sep-71
Oct-71
Aug 76
Sep-66
Oct 66
229-3
123.2
9999
Nov-fr)
Nov-66
41.5
Nov-71
Sep-76
Oct-76
Nov-75
±4?L
Sep-81
Oct*)
No^ai
-9999
Dec 61
Dec 66
0
Dec-71
Dec-76
Jan-62
Jan '67
0
Jao-72
J*n-77
Decl)
Jan-82
9999
17.9
Feb-62
Feb-67
__ 0
Feb-77
Mar 62
Mar 67
01 3
Mar 77
Apr-62
Apr 67
7.5
Feb-72
Mar-72
Ap<-72
Apr 77
Feb-82
Marl?
Apr-82
May-62
Jun-62
May 67
Jun 67
746
170.1
May 72
M ay 77
May 32
Jul-67
295 2
Jun-72
Jul-72
Jun-77
Jul-77
Aug-62
Aug-67
5ep67
16SJ
204.9
Aug-72
Aug-77
9999
.jep-q
Oct-62
Sep-72
Sep* 77
Jun-82
JuMQ
Aug-S2
Sep-83
Oct-67
120.3
Oct 72
Oct-77
On 12
-9999
9999
Ncy_62
Nov 67
82 7
Nov-72
Nov 77
Nov 12
9999
Pec-62
Jan-63
Mar-63
Dec-67
D Dec-72
J an-68 0
Feb-68
0
Mar 68 3
Jan 73
Fab-73
Mar 73
Apr 68 51 Apr 73
Hio-63
May-68
Jun 68
Ju 168
901 May 73
9999
322 9
Aug-68 237
9999
Feb-69
9999
>9999
Jun-73
Jul 73
Aug 73
Sep-73
On-73
Nov-73
Dec 73
Jin 74
Feb-74
Mar-74
Apr-74
May 74
Jun-74
Jul-74
Aug-74
Dec-77
Jan-78
Fab-78
Apt-78
May-78
Jun-78
Jkji-71
Aug-78
5cp-78
Oct-78
Nov-78
Dec-78
Jan 75
Feb- 79
Mar-79
Apr-79
Mn-79
Jun-79
Jul-79
Aug-79
DecH
lan-83
FeMJ
Mar-83
Apr-83
Jun-83
Juh83
Aug-83
Sep-83
Oct-83
WH3
Dec-83
3>n-84
Feb-84
Mar64
Apr-84
9999
9999
-9999
9999
9999
9999
9999
9999
■9999
■9999
9999
9999
-9999
9999
May 84 9999
Jun-69
Acii^g1
-9999
212.3
3-456
347J
jun-M
Jul-84
Aug-84
9999
9999
-8999
j9999
-9999
-5999
9999
Sep-74
Oct-74
37QS
9999
4.7
0
Sep-79
Oct-79
Scth84
Oet-M
•9999
Nov 69
Nov-741
Nov-75
NOvM
•999?
iWWXj^
g«69
Dec-74
Dec-79
Dec M
'77X3Ralnfal'
Rainfall
59
1
Lan-85
Kb 85
Mar 85
Apr 451
May 85
hjn-85
MC
Aug 8S
Sep 85
Um'li’
-9999
9999
9999
9999
■9999
-9999
9999
9999
9999
Jan-90]
Feb 90
Mar
90
Jan-95
Feb-95
Mar 95
Jan-00
0 FebOO 61.1 Mar 00,
Apr 90
_ prQ5
fl
May-90
62 I May 95
1302 May 0
May-(X
Jun-90
Jul-90
08
245 4
4699
Apr-95.
Jun-95 209 2
Jul-95
2208
Apr 00
0
Jun-OO
Jul-00
Aug 90
4792 Aug-951
263 A_ug:oo
135 3
344 1
313
436 1
Sep 90
265 8
Sep 95.
177.9.
Sr p-00 2378
St;
55 8
—1
Oct00 26S3
Oct 85 9999
0ct90
OctOS
Nov45
Nov-85
Dec 85
Jan 86
Feb 86
Mar 86
Ap'86
9999
99991
9999'
•9999
9999
9999
Nov-90
Dec 90
9999
•9999
Oct 9? Nov-95
3.3 Nov-OO
9999
Oec-95| 21 2
Drc-OO
Dec 05
Jan-06
Jani?
Jan 96
0 Jan 01
Feb-91
M 91
F b96
e
Mar 96 1253 Mar-01
19
}eb 01
Feb 06
ar Apr-91
May 91
Apr-96
May-96
Apr-01
182 4 May-O*
Mar-06 157 3 May 06
May 86
Jun-96 185 6
Jun-06
Jun 86
Jun 91
Jut 06
Ju 86
Jul 91
385 9
Aug 01
259 3
Aug 86
9999 9999 9999
JJ999
Aug 91
Jun 01
Jul-01
Sep-01
318 1
389 5
150 3
Au89
Mar-89
Ap'-89|
M
Oct 01
Oct 06
Oct 91
Nov 91
Oct-96 74 2
Nov 06
Nov %
43 2
Nov-01
Dec 91 Jan-92;
Dec 96
Jan 97
0.3 __ 0
Dec 01
Jan-02
Feb-02
Feb-92
Mar 02
Mar 92
Apr 92
May 92
Jun92
Jul-92
Aug 92
Sep-92
Oct-92
Nov 921
Dec-92
Jan-93
Feb-93
Mar 93
Apr-93
May 93
Jun-93
Jul-91
Aug-93
5ep 93
Oct-93
Nov 93
J>e<-93
Jan-94
Feb 94
Mm 94
Apr 94
May 94
o'
357'
52.5
209.6
240 1
Mar-07
Apr 02
Jun-02
Sep-02
Oct-02
Noy-02
Pec-02]
jan-Oj
Feb-03
Mar-03
Jun-89 2268
Jul-89
a >89
Sep89
Oct 89
Nov 89
D<-c-89
4482
Dec-94
Feb-97
Mar-97
Apr-97
May 97
Jun-97
Jul-97
Aug-97
Seo 97
Oct-97
Nov-97
Dec-97|
Jan-98
Feb-98
Mar-98
Apr 98
May 98
Jun 98
Jul 98
Aug 98
Sep 98
Oct-98
Nov 98
Jec 98
Jan 99
Feb 99
Mar-99
Apr 99
MayW
Jun 99
Jul 99
Aug 99
yr: 99
Oct-99
Nov 99
Dec-99
Jun-03
Jul 03
Aug 03
Sep 03
Oct-03
NovO3
Dec 03
Jan 04
FebXM
Mar -04
Apf-O4
May 04
Jun 04
JuHM
Aug-04
Sep 04
’oct 04
Nov-04
Dec-04ANNEX A5
MONTHLY RAINFALL FOR GORGORA STATIONh+af DaaatH* KpaH E/tofaa. .\baufn afTafrr^ Eatrg X4 h**aa aaJDfqt b^as
ii
I pw"Month!* R*"fa" (mrn|
Date
Jan-76
Feb-76
Mar-76,
Date
Rainfall
Date
ii
Date
Rairf aJI
Jan-80
0
Jan-84
Feb-84
0
G
Jan 88
C
Feb 80
2.7
Feb-88
Mar 80
2.7
103
507
Mar-84
Apr-84
76
34
108.6
Mar 88
79
05
Apr-80
Ay 83
c
May-76
Jun-76
May 80
May 84
May 88
33 8
Jun-80
Jul-80
2379
Jun-84
Jul-84
180 5
Jun-88
133 3
Jul-76
Aug-76
247.7
205.3
171.1
Jul-88
359 6
Aug-80
Au£84
1463
1203
_0
105
10
0
0
Aug 88
MS
Sep-76
Se: 80
169.5
18.1
____ 0
____ 0
0
0
Sep 84
Sep-83
105-9
Oct 76
Oct 80
Oct-84
Oct 88
114 6
’-76
Nov-80
Dec-80
Jan-81
Feb-81
Mar-81
Nov-84
Nov-88
Dec 72
Dec-76
Jan-77
Feb-77
Dec-84
Jan-85
Dec 88
Jan-73
Jeb-73
Feb-85
Jan-89
Feb-89
•9999
____ 0
____ 0
Jlar 73
Mar-77
Apr-77
May-77
0
Mar 85
11.3
Mar 89
27 6
apr-73
May-73j
Apr-81
May-81
Jun-81
Jul-81
35.3
41.7
Apr-85
17.2
61.7
66.3
Apr-89
May-85
May 89
169
31.2
Jun-73
Jul-73
Aug 73
375.5
5373
216.7
Jun-77
Jul-77
109.1
Jun-85
Jul-85
Jun-89
Jul-89
238.6
322 8
193 9
293 3
Aug 77
Aug 81
247 3
Aug 85
191.6
Aug 89
207.2
Sep-73 262 4
Sep-77
Oct-77
Sep 81
838
Sep 85
129.3
468
Oct-73 24.1 Jov-73 0
Oct-81
299
28.3
0
0
0
13.8
Oct-85
Nov-85
Dec-85
■ttji
Sep-89
Oct-89
_4O4
Nov-77
Dec-77
Nov-81
oooo
Nov-89
Dec 73
Jan 74
Feb-74
____ 0
____ 0
1.6
Dec-81
•9999
Dec-89
Jan-90
Feb-90
____ 0
____ 0
Jan 78
Jan 82
Jan 86
_0
48
Feb-78
Mar-78
Apr-78
Feb-82
Mar 74
____ 0
Feb-86
Mar-86
__0
2.8
____ 0
____ 0
Apr-74 0
Mar-82
Apr-82
37.2
17.4
Apr 86
83
Mar-90 Apr-90
May-74
May-78
Jun-78
Jul-78
May-82
May 86*
bT
Jun-82
Jul-82
56.4
189
Jun-86
Jul-86
110.9
210.7
May-90
Jun-90
Jul-90
21.7
128
143
187.1
Aug-78
312.6
Aug-82
1516
Aug 86
22S.8
2123
, 9999
111 8
Sep-82
106.7
Sep 86
JJct-78
Nov-78
Dec-78
15.2
14.5
Oct-82
Nov-82
42.3
Oct-86
299
Aug-90
Sep-90
0ct-90
129.9
9999
0
Nov 86
0
Nov 90
9999
Dec-82
9999
Dec 86
0
Jan-79
Feb-79
Jan-83
Feb-83
Mar-83
-9999
-9999
Jan-87
Feb-87
Mar-87
_0
Dec-90
Jan-91
Feb-91
9999
•^999
0
9999
-9999
9999
___0
Mar-91
-9999
Apr-79
Apr-83
Apr-87
May-87
Jun-87
Jul-87
11.6
112.7
64.7
1163
210-2
Ay 91
9999
May 79
76.1
May-83
9999
May-91
Jun-91
Jul-91
9999
Jun-79
Jul-79
131.1
236.1
249
10S.3
64.4
Jun-83
Jul-83
9999
-9999^
2189
86.7
9999
Aug 79
Sep 79
Aug-83
Sep83
Aug-87
Sep-87
30.4
Oct-79;
■79
Oec-79
Aug-91
Sep-91
Oct-91
Nov-91
Dec-91
9999
•9999
Oct 83
61.9
0.1
0
Oct 87
61.7
-9999
Nov-83
Dec-83
Nov-87
Oec-87
0
0
9999Gorttorj Station Monthly Rainfall (mm)
Date
Rainfall
Date
Rainfall
Date
Rainfall
Date
Jan-92
•9999
Jan-96
0
Jan-OC
0 Jan-C
4
Feb-92
•9999
Feb-96
0
Feb-OC
J Feb 0
40
?]
Mar-92
0
Mar-96
53.2
Mar-OC
3 Mar-0
4
Apr 92
4.2
Apr-96
72
Apr-OC
64
1 Apr 0
4 52.
May-92
17.4
May-96
1137’
May-OC
35/
i May-0
4 18
Jun-92
559
Jun-96
3169
Jun-00
327 !
j Jun-0
4 172
Jul-92
155.3
Jul-96
-9999
Jul-OO
3114
Jul-0
4 311
Jcrf-Q
Aug-92
3O8 2~
Aug-96
341
Aug-00
191 i
Aug-0
4 241.
8 M-a
bB
q
p
5ep92
86 1
Sep-96
9999
Sep-OO
83.5
Sep 0
4 136
7|
Ckt-92
-9999
Oct-96
9999
Oct-00
1585
Oct-G
4 58.
7| octa
Nov-92
4
Nov-96
•9999
Nov-00
1C
I Nov-0
4 8.
5] Nov48| f
Dec-92
0
Dec-96
-9999
Dec-00
c
Dec-O'
1 2..
5| Oecaj fl
Jan-93
0
Jan-97
0
Jan-01
c
Jan-0!
> 999!
J] JanO9| fl
Feb-93
13
Feb-97
0
Feb 01
G
Feb 05
j 9999] FebO9| 5
-9999J Mar-09 fl
Mar 93
16.6
Mar-97
-9999
Mar-01
0
Mar-0!
Apr 93
33 4
Apr-97
-9999
Apr-01
-9999
Apr-05
•9999 Apr-091 -3
May-93
66.5
May-97
203.9
May-01
-9999
May 05
• 9999| MarM 9
Jun-93
Jul-93
1943
-9999
Jun-97
Jul-97
147.8
294 9
Jun-01
Jul-01
149.7
308 9
Jun-05
Jul 05
-9999] Jun-09l - -0999 Ju*«| _g
---------- T-rzl—i
Aug-93
Sep-93
249.1
1106
Aug-97
Sep-97
111
99.7
Aug-01
Sep-01
374.1
172.9
Aug-05
Sep-05
__
~ Sep4>43 I rvtTWl -
Oct-93'
17.5
Oct-97
3887
Oct-Ol
1.4
Oct-05
«
Nov-93
253
Nov-97
91
Nov-01
Qi
Nov-05
-99!W
9999
-9999
-9999
[ Nov-dj | DerS
Dec 93
-9999
Dec 97
5.3
Dec 01
10.3
Dec 05
9999 "0
Jan-94
Feb-94
-9999
-9999
Jan-98
Feb-98
0
0
Jan-02
Feb-02
u
3
Feb-06
n
Mar-94
•9999
Mar-98
349
Mar-02
0
Mar-06
u
---------
Apr-94
-9999
13.7
Apr-02
-9999
Apr-06
--- ----------
Apr 98
May 94
9999
May 98
51.1
May 02
9.7
May-06
—“ZTqaT -
_
Jun-94
272 1
Jun-98
288
Jun-02
248
Jun-06
Jul-94
335 5
Jul-98
3663
Jul-02
253.6
Aug 94
287 1
Aug-98
1804
Aug-02
278
Jul-06
Aug-06
Sep-94
1764
Sep-98
918
Sep-02
142.1
Sep 06
nr? 71 257.41
— in7 71 29/^1 I77.7I
Oct 94
C
) Oct-98
29.1
Oct 02
30
Oct 06
Nov-94
11.1
Nov-98
0
Nov-02
0
Nov-06
Dec-94
C
) Dec-98
0
Dec-02
0
Dec 06
Jan-9!
>(
) Jan-99
9.5
Jan-03
0
Jan-07
Feb-9!
>(
) Feb-99
0
Feb-03
7
Feb 07
-9999,
Mar 9!
> 14.1
J Mar-99
0
Mar03
3.4
Mar07
Apr-9!
> 21
-9999]_
i Apr-99
6
Apr-03
0.5
Apr-07
May 9*
> 8J
5 May 99
44.1
May-03
1
May 07
-9999I
Jun-9!
> 130.1
I Jun-99
285.5
Jun-03
152 7
Jun-07 _
•9999I
Jul-9!
297.1
i Jul-99
225.2
Jui-03
268.7
Jul-07
Aug 9!
> 237!
) Aug-99
2013
Aug-03
25S.4
Aug-07
Sep-9!
O t 9*
109.* 22 (
Sep-99 > Oct 99
50.4
Sep-03
1223
Sep-07
c-
Nov-9S
126.9^ 0_
C
) Nov-99
0
Oct-03
Nov 03
4.3
15
Nov-07
0^
Dec 95
o| Dec-99
0
Dec-03
0
Dec-07 _
A AnrMHdix AA »l«^^^X^/rrtJUfrj^PwjtrPr^
ANNEX A6
DAJI.Y RAINFALL DATA FOR PA WE STATION
P >eta'MaoooociaoL - X> o s o o
w Jh* fit
UwUoOOoaoao -* fi> - ii t!i i
» A. £ M Z «
iiHHL..H=E s......—•
S
b M< K— 0kjaeaooookj
*>
? r» »i* p
^U^0nOWOd
HHHH..H:
HHiHi.ih
llililli.il.:-;
HHHH..H
iHHHLJi
ilHHHLJi:
O
aOO^OOC*000^"1
-•
G>aWoOOOOOOfl-«k)L -* «■ 0 V
?eo O Q
o I* o
su
ahi 0-0004 □ o h t ia u
OQ0Q«^eiO*'EPi0wW* !J«**Lf**.
** —■ *m a o o o
U oo c o*»
_ _*
o^mLiI'OOdooOoo**
Krgc
■M & O Q Q o
— R»
oooooooo
Eg??!
ra o m o c
tec
-J G»
*aooo»i>^ ^5»— QUi0ti<>p *-, 0— 0 o
w8o
S-
*■ Ia o e 0 o &
HHHHL.H
r*
HHHL.H
-M 9 <*>
= 28
o ci o Li *j K>
Ei
■a a ca o o
iiiliii&a8So-Si^eoaao*SQ?2
3iHIH.il
IHHH..H
o yJiHiiLJi
Im NO 0 0 *< tf bo-Mir^cooaooovwvkioi^oooQQohyhktf^iv
tQU
M <■ M *P o o o
o a» O O U1
oo
okcuOtdceo
c
OC3OOaO«a»0<*30-0•aO*C-> OOU*rOKlU*
a Cr
HHHL.iL:
qq
bjioiiipftaaeouoiiWij^uop
aau*a
.- r- ?
“ -" s
“ - Cm
o*
oa
JHHH..H
iiHH.LH
u • qS
^kib-'LeaeaacahabB
o ei
FS
kivo&ooooD
0 3 -*•
ki *. * a irt ■
C M hihl.h .! £££ aiae«3aoc9Q0ijiL>'0kiooao€»o»h>
0u— P o o
o
• ooooaoo-^ ■« u i/ ui
*• fj m o o a
p
„HHiU..H.«= i..t.^U..i3.o.aQ.Q..O.Q.Q.l>.... ..eSe!
wu
S
D£>U1FOG><=O
.JHHH..H. 4s!£. .:..... ssSiuS.—.-.t!'"'-'-
iliiii...He.asa .!i!
iHliH.jLetiu
Moooaooao
■FGoatjCoaoMN
E
ifl — -m
lyhi^OOfiooo o
WNkt»»o-.oo
UQ
ao»So*Joooa
fcj "J
t? u
X_w <> **B*^on’34oQoota5^c>ooGiaao4^«*1
-■w
-o
CooOO
^■^^^^OaCicooaQv
ufcSxcjoaooots^-*
4UaoQQo
..iHHh.,.ik1:!>-
Ki & 0fe BU«y w. ? b iy .•>QOtiC0*iM-
p M - -*
e> «w a o *m v 0
P ® » X ir - at
OPQiJOOQ^ij’^
K 8 5t
sLo
“sA_*.pptHd*«_A6 ilj1
wxxr
• ►ow I KKk’
r KW cW t *ooz 1 »ow
n cow
H row
M
raw
«
row
*
row
€
row
<
row
0
0
691
1
0
n
row
>1
60
SO
<1
row
S'I
ro
re
ro
11
row
s
LI
Ol
0
F»
row
r»
r»
zoc
cc
t
■
.row
0
0
0
rt
row
0
0
0
z
0
row
0
0
0
0000
0*-
•MN
:S «
s
5
-*3’
oo°°
r-gsr”
,•*5®
„ o”. •R
oa©°
e0
o*«*2
9
O p., 0 O o
o
< © ■ **I
«<5J53
o°
.-isa?-
fin
o < **
ooe
<,©o° °2<
o
al
r-xj
. ® « ’’i ° ° °
ooo
oo©o
-S3|2S
—JSp
”2:::2
OPQ<-*«* ° 000000 "
aoo
. a 9 « n,^•■odo©^©00
•3:°
« * * n*2
OOU?°
oa
©©©
• ae
9 D I* ft
’«
e»vooo©©oor*<>tf)«N
* ni
«> «* b n
■ SQQtfi^aooooooqenae
” O o •
M—or»
I
• OO
o
B K025Ji22000002|
© O © O «A ft
H ° O O O © © «( O
°*Oo © o O
’•5*?003»<»oo, ».«,.
c ooo
-b-K
’S5;°oo0ooo
o
i°;oo°
!5 ‘”0000S »2!!|“‘>
oo
•-*©©
«H«-
*°oOQ
Sr33222°
rMn” «©K
1V12/1010I
1ANNEX A7
daily rainfall data for mandura station
! *ources p)
iFtdrnl Dtumb. RfpM* of Efiropia, MMty 4 VTattr r- E*cip Ettnpj* Nik Imfttna and Dngtap Prjea
u
j >AWQior/Etm
TI K*'1
fc !
ff
........... tjgs**”'
*> e&?E.E
a
iI"rji F
1L
I>
O
a
,8<*M
g!^—-
S t, O 0
»xk5-k„:
1 0 £■ - ♦*© • • o u•
Mm.
K* w to * * o .
h £ M. "
o
o*
>!• o
s
gp c:3-c<
0o
OO
aa
-iiimiHiiiuHimiiiiiHJiimlt ..HiHHlHiHhHHHniunHHW
..iHiiHiiiiiiHiHiimmiHiiHK HliHilHhHiilHIIHHiHiHiir
.i!!HHilI!liiniiIli!ilIHililIil HiHHHHHHmHHnilHIlIHl ii!!l!ill!ill!!liilll!UiliU!iHl HHiHHHHiiHHIiHHiHHUll HiHHiHmmnHiHmnnHil
O
o
;S<2s- 0
o
O
OO
oo
p
oo
o
a0
oO0
o
..HHHHHiiiHHHHHHHIiiHil ..lUlHHiiliiHHmhhHHimq
..inHiiiiiiHiHHUHitiHimiil JHIHHHHUmHHHHnHUHH
.HnHHHHiHHiHiHmmnnl HIHHHHHHUiHHhHlHHHl
•« •* *
utiooo a 3 o N °
• X r- iiioso a • a a k> o o
■iioooooBnL *
_oMO—
cossNAObUa
°
*•«•••
oowskona o mm
9i
I.
I
a
?w»
«*IO - bu • - o
»O • c O o o o
3 5»
° "■ • o o o o
o o oo
©o
o © o & u>
o©
ooo
oooo
o c* K>
o
oo
u
’’••I
©o
o
oo
0
M
r-
0fc;“°oOD
•“-’oea,
o o□
oQ
o
kJ
’■•So. ° ow >Q■o.
'a
°Q o
o o 2 HiHHiHhhmUHiHUiHUill
Q JHHhHihihHH ......... . JHHHiHHiHHHHIiHttHilii JHHnlHHiHHhiliiHHiiHH
.HlHHOlHHHhiiiniiiiHiiii iHliiHHiHHHHHiHiHiiiHi HHiiHHiHHiHHimiHHm! HHHHnhHHHHHHiiHlHli HHiHmHiHHimHHiiHHii
•i, a
o
oQo
o ” -«o5i:o
a
° Oo^e^Q
o
Oooo
a25?
®A
8**
8 u» oO
<«
^”^ °^>2=223-}
s
q o O O o ©
S?02-
000 000
| 2r-2;i;
o«-Nooooo©o q__- _____
V0
OO
O
o o
Hill fllll? Hill
'-s 3Sj-3
-3J2? "-|
©oov«qaq
5Z* *
<’2:»ss‘” “ ‘”5^;a*— _-j ..
oo
5 2s o
p’ = jn o
35
Hill
^ooo©©©^®
oC»°
Hill5**
jas *
"^^0XOOOOOOQ«?2!"'c’000000-^n-
?**?
<*•
ooo
.oooooooojojooooooojojjj.jvooooooo
:a
Hill?
fi H|?-'""" " """
:a:’3*”|»3’“»3a’
! S;"s"-
’l
•“ © rw
„q^o©ooc>'«~-:g©~o©©©2o<1*!T'A~4©©oo©«oa
£ © £ *“
*
fia0
— © © g *•
ooo
»i n
I
-n oooO°
•OOo°°°
©
• O 0 o o o
■ o fl c o a ©
R««
?2322:00000<”2RX3000|
:;3°a—“o"”,’3325s<>o|
ooaonvqq
*~ » a* at
j—jsas»
JOOeONOWM
onosa«R
o 9*(q o o IJ
t *«ld 2
q0n©oooo©oa«n«oooo©©ocoMq00» o
R80;002oe>0002°5 2
a
ooco,’000-3;<><>0
o
0
*1 q - o © ©
© R- ai N
00002?^©2©o©©°oojj;:.©©o©
I
♦O©
too©
ooaoocx-eoaoocoaoiQNw. ^r°©
Hill
HUi
^©Oo
X©Oo
I
i
ooooo.-or ©o©©©
!
0002225
MR
oaooj^jjon©©©©®® ^;;
0
»■ w
*• • " *
**
I
I
I
I
OOoocaq
* o o o ©q « q q
©©©•22
Ooooo«p>q
*
tfl
©aooifloaq
s*
ooaoq^aa
«•••
•»r5:»02000,”003r’20l oooooo©** o
lU|p3oe|°“'’||
oaoopooriMO*00 1°
■ 0- Go*’0^'0
wo-ooo
•o-ooj©©2
*• fli
iliffsss-j
o o © on o50
th *
a*
<1
i
32°°|
r*
!
13/12/7010ooooooooij
ooooo J <’222
o-oooojjog^ooceoooo^.^eoeooo.oj^
ooooeoo^gcoooo-.orjj^oooooooo©^^
°5°39
°°Om
o o O in v
ocooeoo.-jn
0 ooooOOM»n<^^-
oooooooe«o»f|
*" n
o o o «| * •
n
-_--000*r1'^
o o © » r*
c o o o w »*•
ax
©e©eo©»-
« ooooocooo
*8
e> © «■> «
n
o •■> o * •
*”3
ra
0°»«000«3SSJ
o
o
25R;oooooooo;°5
OOODOO»Ai*^®*W»000©0000*
oo°•
tf}n*o*co0oooo«nt0^-.
***** ** * "
w>«i«r>oo
39
!!»««»
"■j’lHmmmnu niHKHiiniiii
HSHHIHHIlll! sHHIiiHiiillllli
fHHHiiiliW
e ©©©OO^*^Aj^DOOOO©*n0^^«O©©OC»O©on
*’° 22f
o
X
aooaooeMOqooooooo.n.jnj.oooooooo^
°8
Ooo•°
hhiiihh*1®
O O O « **T
wi *"
r*
oooaoo «.^
3 ;s5
e nttoe®-
3333s
0oa©o©o^00?*2o300000003
2
o © o <4 <><
Si *
,„. ^
M 0000000-?Dr R
.
w *-
I"*2*
0 ,0 0
< ‘0<’3i3*000‘’ * 3 33 ?||g
At©l*O©OO*M0 '
tf faAeiA
*' a w 2
^^
- 0o’Je*«*0'Q«>eooo©©ooooA|A
oo05:.groooc>Qo
3
© n *i
«O©OOO0O*W»*-*F»&oOek__^
*w*
aj © o o o © o o o p
oa
Lc
o
Sc « o
.iHhHiHniihHHHHHHnHiHHfHI- ’’’’, HiliHifitliHHnillliHlilHiHHH!
■ j(l
aI i;
*1*.
EwttWWIlIHMWIIHHWIIIIIlIir**...... iiimmuuiiiK
BIHHIHIUHHHHHinUni
m
eB «H.
<1
“■till
I!
ImiHmmituHHiHyiHtHHmHnHfHHmnmt
n “«H|.
i
KinilHUHililUlltiniHHmHiHHHUHHOHHiir
« •‘ITIb
'I
lumiiUniHlinUiHIHHiHHHHHHiHHHHHHir""
bimimmmumiHuuimuiimnmmiiHiiiiK KHmmHiiiUHiimmmHtuutmmiiHmiuui ■' VuiuuiHimuimniiiHnimninHHHUtHHHH
»o|‘” T' T'
0
a
p
r
.fl ‘I
c
............... = = ? ~ —rs»
--'-HHigiiiiHiiiiiiiiiiisiiiiiBS®
gsRSS^--*
__ jn -v r>
*“ ® -®1 CW S bi fh m —
1 N
i|
•1
ti-f *•
- ?“K"»
H’lHIHjl"" r-ps;s—•••.,... ...
e
I I
* *,® *
p< *
* *> °
sj£°
°°d
-•••s;;:!SS"jS|(|ln
o o s> a
{eooer.ooa
r’p-js
;
» o O »M e» g r. o o a # m KT 1? e
s!
°
fl***
-J «. Cl
& a D <3 o
o o O' O G? c 2
7ii
^woee»KD9ant>ta*an
irf “
■■»w««cai •
a q e n o -±hDa'C)&c^
”
**-
’•j-odw*
*?s
v«a-v«na
"•-
0 000
P-feaq** "-
"" H •-
*do
-•
MriiiiiiM
fMOOOOOOC^0*01
i-t’it’
„boo«>»‘ ”23?(
*fl
-ooooDi5joorf|awni«iooB«©r>-& h.fe-»c*
I
w •-
..—"•“gasj
-3=.........^IHUIIIHI--------------
| -* d ’ ^8
».BO0O0t>*>0
i ^h-OOODOO° oe
■'"•|o’55"o"“z’*5e5*3*°
.o = I
:r
o««°g555a;ri
r*
j=
9OeaQN«S3*«< Rf r. O <3 CT <3
j.. .«
5
I qo nun
* e- e e 4> o
o o r> n- o e a
■
R
- 9« o o e o o
-. * "» *}
'I°R
*-' d ftl c d
«— « +•
oaoo•
dd-
P>
I
■=? c= o o ** o o
I”
m■n•■o
aq
• P
0
• oao , „
’ S “S n?° I
0 0 otrt_ _ nc 2
2 ■ • °* a o o o ft
■uiirsmHiu nHinHHHH”"’*
*n«»-*-aoaa«Mipoo*^-
J d • Ji • -
»
,
*
aa o<»0|oS?.«ao0|
mcaa
*
«»•j-
A fe • — O O
liq*
■=
:;ij3m*|||f||j||
|’’?- 322”3j:5S2!3
i
2 O » >9 o
n
*1 r » c «>
► rt * H
,- Q n O O Q
|5?=?33 3-- 3-
-tCIQ-,„
“
«OoQ
is. q a » O «- d 9 ■
itniiHHH*" *"
^lirimiiiii.................
-< a a < a *1 *
4 k.
*•"
n
I?
|: 3 2 - ° ° “ ° “ “ ° * “
aminmiiiH
o«e=“’|
9Aa ®
|
1*3-^
arsMrs-^acGoiP'Vd
□ - -sa
ip-
‘2
•b
I
liriHHIHI i" •"smrHHiiiii
andoca
ooocoopjjgjj
In.k.npooaoonn,.,.,:.
3 -at)H
3
c a c a o t-v
*°°°®
eoo*ota*2*^I
oc
”’**••••—«s»liri|l||l||l
w w rJ
- * *1 - *
33K2°°
°O--
« ao o
oo
i
O-T9«COQ4i«»
Jj’° oe
acd
dI"
9Q
« l> <>
i ■■’=5?a!tiniiHiiH
• a.
I
rtirmimii ^”“»p.:3325
^•?o«soc’°ao}j55*
I
*®
*«
I
I
OOODP*
j*g’-?**
•* -*’RS
fenfen^.fe.feo-jfe-feaa-.fea.a-fe
Mnhll;;
XWIVI010annex a?
daily rainfall data for gorgora station
«
'®*QiatBB|i pj
JX
Df/wM rfEfhitp* Mm fry ef ll'aftr & Entig E:Nopuf .V/ 0 c 0 02 St k B ro i Cl 0 9 1 c0H 060 000 000 000 000 $9 95 12 000 Ci 0 0 Cl riz Stt >04 tot FC 000 000 000 000 0 0 CZ 000 000 000 0 0 52 >2 c 0 ro FOk r*k 0 0 fit 000 000 000 000 000 000 000
01 co F2
Sti 0 0
49 Z>2 52 01
5 1 51 45 Ok c a fl F2 L kt e fl Fit Ft M T24 2 12 rri 0 0 0 re
000
000
MM MM MM
000
000
000
fl zs 0
0 • es 41
rs rc 1
o 0 fl
X 0 ro
0
0
0
0
0
0
00000000o
0
0
0
0
0
0
0
0
0
0
V
0
0
D
0
o
000000000o 0k0000000o 0 0 0 Ok 0
c Cl 92 0 0 0zo 4 0 0 o • R se 0 c
■Ik ro F»2 E Zk in 0 4 ze rc rkt o 0 s» 0 ?K 0 4 *52 Or rei rzc 0 »■» Til 0 0 0 0 0
04 c 0 i t V'l 0 0 or rw 0000000000 0000000000 00000□0000 0000000000
0 0 0 Ci 0 24 0 0 0 0 0000000000
ri 0 0 0 0 0 c» 0 4 »
0 0 0 0 Zk 0 45 C4 4 2 0
5k
4 Ok
•
rot
>0
roc
roi
rz
k’l
zr
rr
0
I0
050 0 5 0000
0
5 55M MM M.
00 0 0 00
000
1 ro 0
52 r$ <• 0 ct
0 0 Ft
• k 0 ro 000 000 000
n00 o00
0 st 0
0 0 sc 0 0 rzi 000
0 Fti 0
000 000 000 000 000 000 000 000
0 0 rc
«k ret 0
9
c
12
11
»
*k
►0
k
k
lie
Ilk
0
z
0
i
• •
0
•
01
22
•
ii
o
0
rci
Fkl
0
0
c
r
0
0
0
402
in
0
c
0
0
0
rtt
0
rkl
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0GTOtfCtAT
E
0
FH
Sfl
o
FC
0
• 0
rc
■
0
»o
• ‘0
b*t
0
a
0
10
frir
flQ
0
0
0
fl
0
0
0
fl
0
a
0
0
a
0
0
0
fl
0
0
0
0
0
0
a
0
0
0
B
ra
lib
TO I
CEt
0
*T
roi
ff I
tfl
Ft
w
flTH
0
ri
a
a
0
a
0
a
0
fl
fl
0
□
G
0
&
a
0
0
a
fl
0
0
0
MM MM »se- 6Wfr MU MM MM- MW frtfti Fl FB 0 00 VO FOb FC 0 ff DI «M& 6Wfr M44 fl 0
0 0 fl
0 fl 0
000 00G Ci MU- MM-
MM* MM" WO MM MM- MM- MM OMG BMT’ •Mfrr M*fr MQfr •'0 bC 11 U
rti »
roi tT rz ■V 41 r$ ro 0 0a0Q
a a r» 0
ri s
fl
fl 0
0 fl D 0 o 0 fl
a000
a a fl 0
a a fl a
0000 c o 0 fl a 0 □ eoi bl ► in 0
• > IH ii frE
►fnW
►XI 0 0 TO fl 0 0 0
a00D
a a n flMB 0
0 BM4 Q fl 0 0 fl a fl a00
000
0000ao a00□00 D 0 0 0 fl a 0 0 fl a fl 0
000000 rr Fl cii D >5 Q Fl z ■ w fl ro FO r> 0 MM- MM- fl sue fl ri 0 fl 0
0 Q Z>1 fl 0 0 a euc 0 a 0 fl 0 0 II 0 1 0 90
fl
fl 0 0 D 0
0 a fl
Ml 0 Q
ffr • 01 r«
S bl n sc
MM MM •4U ♦ • »0l cc • 6 CO! cz »0 0 ro
A
vz
1 MM MM-
rt • 9 «x • »
0 •0 00 00 00
k- MM MM 00 00 00 0 ro
IH ■ 9 0 211
91 0
00 00 00
00
00
MM
MM-
MM
MM
0
0
£
t
Z»l
11
0
0
199
rtz
0
0
0
0
0
0
0
□
00 00
00 I 0 60
I M6k Zl /Ni
ll ZMl 01 ZMlown/n
’!■ Hr W'MUW'Y
D
0
a
0
a
0
0
0
a
o
0
0
a
0
0
a
a
c
Q
o
a
u
6
fl
fl
fl
0
0
a
0
4
*1
0
SR
fl
fl
fl
0
fl
0
D
C
0
1SL
&
0
0
fl
fl
0
»’«
fl
a
0
0
■•
c
EE
ru
0
1
0
fl
«
IE
rw
fl
0
rtr
fl
FS
0
14
a
0
0
0
i
• 1+
0
CM
rz
tb
8'ti
4E<
40
SOr
0
o
rib
0
0
lb
0
rt>i
0
•Me
A66C-
MM
0
CH
Hl
fl
a
fl
fl
• i
Q
««*c
M4E
•AM
UM
MU
MM-
BflM-
MM
MM
UM-
UM-
mu
0
0
0
MM-
M44
MM
MM
MM
M4K
MM
M«*
MM
0
0
a
0
fl
Q
Q
0
fl
0
a
fl
0
0
n
0
C
fl
fl
0
e
0
fl
fl
0
0
0
a
0
0
0
0
c
a
a
0
>
e
fl
0
D
fl
D
0
fl
c
0
a
0
fl
0
fl
0
fl
0
fl
o
0
a
0
• it
0
t
0
B
it
»t
»ZE
0
0
flcz
rib
IB
■ if
At
Ft
reb
0
G'flE
• Ob
0
FBI
0
ri
Vfi
CM
Si
ai
*»b
Fit
E
me
0
•m
MM
6446
MM
MM-
Mtt
uoe-
MM-
flHfr
W
UM
MM
uu
0
MM
0
rb
0
0
• C
Ob
0
E-F
r&
Ft
Fl
tn
c
r*
9C
91
CH
W&S
•
FC
0
F6
r*
0
0
Ft
rt
B
*
MA6-
0
Fit
0
fl
0
fl
a
C
0
0
FO8
a■
BWF
FCZ
t
0
III
0
0
0
0
0
D00
0aQ 000 000
0D0 000
El r* a
COI Of Efib 000
0 0 Fib 000 000 000
0c0 000 000 DG0
0 0 664* 0 rz Fbl
Q FC tit W FQ
6646 6M* MM
0 a 0 0 0 0 fl «M 0 «
0 fl fl 0 fl
0DQ00
00000
G eb 0 0 0
MM fl 0 0 rt
9*0 b F5 0 0 so
rw •> t I bfl
0 FC 0 MM 0
D fl fl 0 0
0 a BO 0 MM
0 a 0 Fit Sb
a0000
0a000
Q o t> 0 0
Ft a 0 0 0
00000
0 a ICfr •7 c
fl 0 fl fl o
fl 0 fl
fl a
fl
fl
fl 0 a
0 fl 0 0 0
0 fl 0 r< t
f>b FO re a TO
Hi 94 a rz 4»>
r« Ffl IS fl a
» 0 a D flb
0 a 0 0 fl 0
0 fl a l> MM a
a £ 0 0 o fl
cd0000
a 0 o 0 0 fCl
I'IE f« o Mu D o
rr FM Fi re 1 fZl
roc MM- Efil Fl rs **
ICM 0M MM- MM UM 56H
fl
fl
fl 0 Q fl
MM
MM MM $M6- MM
MM MM MW MM
MM MM
MM MM-
UM MM- MM MM MU MM
IMF IMF A6M
MM mm m«
anids- Vl* ■rrT*™"' W Aym/
ANNEX 10
DAILY RAINFALL DATA FOR KUNZILA STATION
|CT ^*:...
...... HIHiiiL..Jec=..
.....IIHiHH..c..........s8.j..
.......... eHHHILeuoooC................
....=JHl!HL..;.t«
... iHlHISlh'..
...jsHHHHL.e....
....ccHHiiHie.*....
.....JHiiiHie.=o...
....:eiHHHH.E..>..
B
"‘•“H’HHtmHMithiiij::-;!’
Hiiiniiiiiiniiniiiim,,. '"'I JHiimiiuiHHintiHimu .1
HililimHiHHHHHHHHnn ml HHlHiiiiHHiHiHHHiHhminl
iiHHiHHHIHHi!iiHiHHNHH]| HHHIiiilililiHiHHHHHiiHhJ
.... JliHlIIHE::.....
.....JiiHiHLz....................See. .... HHiill!
...e.=HHiHH..c..........2E«=.
_ ...... .e.e5:
...... u.e
......HHIHH.e.
.....dihllilLs..
.....HiiHHiiiiHiinHjinnHiiiiiHJ ....JiinHHHiiHifHiHiiiHHiiimi| __ HiHiiHHiHiiilHiiHHiiliilHHI
...jiHnnniHHiiiiHHifiiiiiiHnj
:..JHHHHHiHHHiHHHHilHlhUl -JilHiHHiiimfHiHiHHHHHWl
JHiifHiHiiHiHHiiiiHiiiHHJi-l
....ccHHlHlL'..:
.....SlHlHliL.J.
HHiiiHHiHinHiHHlHHH
f-
jHHfliniHHflHHiliiHii
.HHlHllHHlHHiiHlHH
I
’|
» JI
.....JHHHH.e.ec
* r-
......liiiHiil......................
jiiiiiHiiiiHHiHiHijfH^
.HilHHfiHHiiHHHH
e.o.tsHHiiiii..=„!.„.„ ....“jc.„..„
o
iiHiilHHinHHHiiiHH
rJ
..cei=iiiHIHE8!£“Ee^...cJBsSct...!
HHiiiiiiiiHHHHiHnn—?”32
o3
p 3 ??°
O O O r. q r- r
I oa n o r>
m*—ri
UH
o
2X
.ooooo
?»“•.............. .
|° oo2j:
fT
l—sgs’l
«OOOON
: | ° ” n o
mp .......... ---25^t
O (' O n c
f j? - "Oo
n°«
MH
weqra in o n a
»r
f
a
«”-o-33
o o r» o e»
{ |2r=T"a”=o?3-''....................................I
naoo««aooooo
I3!
MH
mm
ninr
mr-3 E?-’M
W= I
a?;-3
4
o *■< o o o
M
e o • 2 mp35
I
•» O • *■ O M
f
«n<)M«»oooo0
• e s|
a
a • — a << o O
f f-s
«■ -- a —
- ~ 3 d d
ooe3|2?2-
&
IHP”3 P3’!
r
im?3ss
Illi?-:
sri
2I
SP?*= I
••■■•<•
!-■-'...........
..
2
l’ !
s
imr
2-0,O|
1
I
3?*5
•Tim
I
M * 2 ° ° -
%? “I 1H|
IHi
mi
oo x:5:°i
* i
«* o e
o
3 " |’ * a=|»|“»-«--?32-i....T.....................................................................Pllllll
-•uil
=......... H 51
....... • “I
32
35
2352
urn mr=- mr3s= mr-ss
=|IHE
.•••31
nir^............
!
I
i
p??“l
=??"l
’ll
|--r I
I
ri="M
3°
2«”;
3j3’S
rs
mi5 3
-
............
3
’"mi'as" ................................. 2“32S|
|=3
mr?35>-
-2?
2333*
*J«i
uin*i
Hll—::
-==?|
7»25|
’ r^-
—i«-hi
2 r=r-r"’2"
hlr;:5;
° 2 * ** g ||
• ----a41
■F
-
I"I
hllHHH
kllllllli
Iniinm
HHflllf—limmiliHHIimHHiHHHHlHiin.il.
............ -.......... . ''"Him
o
o
imiiill
lillilliil
IniiiHH
limmii
Imimii
IlHHilll
Ihiiiiih
Iniiimr
ImiHiir
liiimm
ItHIlllli
Ihihhii
Imiiiiii
Imiuiir
liillttill"
Ihiihih Iiihiuh
liiHiiiir
liiiiniir
liiiiitiir
ImiiHir
litiiiHir
ffliniiiir
Juiniin
oo
o
IlilllHIIHIIHHHHHIUHHHHHnini
•Mil........HIIIIHIillllllHIHHIIliitimii '"Uli IHlIIIIHIIIIIilHHHIHIHHHlinniiiii.
>1
'">»
IlilimHfHIlimffHflfHHUUUilillflflllI
?
©
o
tHIHHIIIIItmiHltlHUHIIHIHIIHiilliitin !'
............................................................................ IliHIHIIHIIHIHIIIIHHHIIHHniHiniilHilliiB
HillliHII Hill IIH Hi If If f I E EE Iff EE EEE E E EE i H HHMillll: HHnilliiHii || f|| E!IEE| EE EE EEE E EEE EE f 11 f Iff |Hf IHlIini niiiiHiiHiiiinniHiiiiimfifniHEnEmiiHiiiiw HIHHIHHIilinHiHiiiiniiHifHHnHHHHW'
lid
HHEIiHmillllEEliEllillEEEEEIIEEEEEEifEEHHElH^
heeeeeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeh m > m g im * $ j eh i $ i ei ninuim***
HiHiiiHiiiiiniiiiifimiiijiiiiififinHiinnn
.'^“’J’P^HIIHnnEfEfimmEEEffnfUlHH^Jf.HiElll HliEIIEEHiiHiiifiiiiniimmgfinffifHfiflffn (
Jlflllllli'.J???!!’?“’”HiiniifHiiEEffiEiiiEfEiEifffn*n*?\-*<
e •> •. £ £ t ~
X
o-
r- •• S S’-**1WUM010
I
ilium
mum
mis.m
miBciii
mum
. ........ ....... .
-........ ..................I....... .
........ . ............. '!! i
................... ‘MMHHlIHlJ
i
mhcHI .hhhihhhhi....... .....
I
mum
•.......Hllllll...........hit........
mimiummmmimmmHiminh mfejiMimmmmimmimiiiHii
im..m.mmmimiiimmiiimhHii
mum.mmmmmimmmmhnu
!m..mjimmmimmmiiHiHiiiiii
mi..m.mimmmmmmmiiiiiiiH
mum.mmmmiimmmmiimih
Hium jmmmimmmmmmmn mhCmJimimiliHH!HiHl!!Hll!Hli rnkjikmiiimmiHiiimiimiHiiiu mhemdmmmmmmmmmiiim
mmm.mmimmimmmmimiiii micEmjimmiimmmmmmjHji mumjmmmmiimimminHH mimiijmiimiiimmmmmH!!!!!
illLHIL
mmmmiimmmm
mimmimimmm^ .
HlkJIL
mmmimmmmm {
mkdH.
lllkJIL
mum.
rnmmmmmmm
mmmiiiimmim
h
”
mmimimmmm
hii.jil
rnmmmmmm j n
Hll
mum.
irnmik
Himimimimmm
mmmiimmmHm
Jj|f1Mtmtrn *T\ttrr^ Ewp
Etln9f*ji N/k
attj
PfjfifANNEX Bl
r TERM AVERAGE OBSERVED MONTHLY RAINFALL FOR STATION
LON
IN TANA BASIN
15 May IIFtdemi
Ef/ngttdo Xrif
cf ErttoC*. Minufr) of^atrr^ Eterp a^Dnait^t PrvffJ
Srtt, W.ler RrMunnXJiMrfc™ „
m nlhiy minfaJJ fof ,IBdM
Sra rjop
■BiJtr Dar
j 1 Gpndir
37.42
2099
1B4.4
413.0-!
rsc,
i Deberc Tabor
3!fi__ _
37.04
12 19
205.8
289 3
415.0
260,7
200.8
106.4
Chcwahtc
37.22
12! 6
12.31
99.7
Addei 1A1
37.49
157.9
1176
1956
245.6
232.7
109.8
Enfrarutc
37.68
3755
12 18
1516
320,8
266 3
154 5
1 ilitiuMt
II 78
L4U.0
295 4
272.8
Tbs Ablray
37.58
174 9
438 7
11.48
403.3
210.8
14B.3
330.6
2693
1394
lib Ft SfOLt Water Reiuurcct (2
13 May HDf.’wcmttc Krpubbc tt Ethiopia. hlniitrf of tTatff f* Ewft
XtJf Intfafioo »«.V r>n*r*fr P/w*rfANNEX B2
MONTHLY RAINFALL ESTIMATED I SING CO-KRIGING FOR UPPER BELES COMMAND AREA
i
B-Mav ril-f.imt.' [ynmr-jH,- if EffapW, Mututy cf ITjfrr cu Er*Xt-i .Vifr IrrtfJ3et juJ Drjtiwft Pnyrf
Wire,
' Rc*°“rt eg (2jAMd thh rainfall evtimatrd uaitig cv-kriging fat L'pp
JTCA
JttD
177J
260/7
115-2
439.2
54J.H
321.1
34T£
322.5
ir.s
104.4
156.7
2219
3212
260.0
2433^
284.0
108.8
104.0
367 J
3426
2113
2802
248 H
204.7
342 5
176.4
365.0
338.6
2595
240 5
1410
169.0
I960
215.8
1608
106.6
406.7
3874
156,4
176.8
2661
462^
396.2
558.1
3390
347.3
+442
384 0
1174
2620
448.8
268 4
350 8
2120
161 8
3697
45±8
285.8
196.7
174.5
1484
27B^
328 7
334J.2
179,6
357,1
295.2
276.0
143 3
1U3.8
103.0
358.2
1863
250.5
147.2
164,7
440.4
248,8
356.3
2646
46 M
272.8
338.2
155 3
184 9
1310
168.2
376.3
343.9
349.7
233 8
113 8
331 tt
223 6
166 3
282 H
387.2
1616
221 6
113 8
2002
2003
319 1
3596
154 4
105.3
273 3
245 2
2O5.S
140,6
12tk£
3219
382 5
239 1
288 U
50.0
192.4
477 2
*0$A
277,7
216.4
170 5
220 5
501 6
1-4.3
244 1
5203
592.2
Meiui
1118
240.7
366,7
3317
Ub F4 Srflfl. Watrf Resource* (2)
i
15 Aby-U.\u4* JfT f' ^fifr L>rjrnj^ P*yfrt
?L
*2 1
2-8 !
19.4
40,7
84 7 .
-
82.2
96.7
87 9
70.7
45.9 1
14.0 1
«!
o.o 1
0 0 I
0.0
0.0
40 5
171.5
285.3
259.7
157.0
81.3 1
OO 1
0.0 ’|p rmm Mrurfn flflT'jfrr £- E-r^
ANNEX B3
MONTHLY CATCHMENT AVERAGE RAJNf ATI, n at atthupJ* M
aa/i DrarHJft P^a
Ub F4 $fOU u «»er Mr*oUfce> p
ufox rign
IBM* 326_
■ .— 23-9
Apr
weir .11
M*y
Jun
Sep
Oct
Nov
Dee
J*P
Feb
JW-
Aug
668
2463
315.6
281 8
167.0
6.7
03
4 -__
.0_-
2-5
K5
404
143.1
203.3
284.2
2874
132-0
101.9
42
45
198 5
11.1
35
5.2
14.2
153.1
2880
345.3
201 1
1185
61
0.5
1936
1JM
I4
29.9
1864
256.5
276 5
272.2
2D4.9
106.6
12.2
04
]u£_
04
1.2
508
2729
413.3
3228
264 0
157.8
7.6
114
l™_
O7_
—
—
0-4 _ ft 1
15 2
. 49
25.6
126.6
1924
398.7
4059 (
2?4 6
26 1
5.7
1.6
im
0.1 _
. 7 f|
.
224
05
848
104.8
357.9
255.0
217.6
323
04
0.9
39-2
148-0
205.1
494.3
310,0
181 4
68.5
163
0.2
i 19*71
6.9__ _0J_
04
04
580
831
13B2
3179
3634
127.7
138 6
48.9
115 ,
l»<
IJ.V
30.7
1314
2104
313 1
273 1
204.2
1473
73
0-0
1993
1.0
ft 1
04
25.2
2.0
9.8
121.5
2024
311.6
309 5
1493
21.1
11.9
1.9
1994
LL1
{)•>
09
0.9
29,3
22.7
115,1
215.0
2120
203.2
922
25.9
(1.0
52_
17 f J
IMA
16
0.0
”43
68.3
108.7
260.9
268.0
2993
2053
899
40.2
0.0
199?
ot
.
1.1
0.0
145
24.8
210.6
138 8
203-6
273.7
2145
195”
39.7
2.5
1999
0.0
16.2
65
1205
213”
3”0.9
348 5
196.0
1142
176
20 _
1999
6.6
0.0
0.0
14.0
114.8
1844
375.0
359.1
177 2
187,6
93
8.7
2*XW
0.1
10
5.2
71.6
”0.5
175.0
325.7
372.2
188.7
188.”
39.8
0.2
3X11
0.0
0.0
4.0
5.4
04.6
245.7
365 9
369.8
1007
722
0,0
48
2002
03
1.7
10 3
213
153
2694
3353
300.5
131.6
62.5
10.2
0.0
X03
0.0
3J
1.7
1.3
7.0
238-1
3”6.9
339.8
242,7
390
17.7
5.9
JiXM
2.7
9.1
1.0
374
25.8
233-2
461.9
3166
162.0
88.5
39
2.8
2005
14
3.B
39.8
27.4
459
256.1
363 4
281.5
167 1
35.4
2.4
0.0
J)
13 Miv 11
1
fs
|*
J___ I__ LMmro, nui
Sii I"*—
.hh areal rainfall for left dhrmon weir (mm)
Jan Feb Mar Apr May
Jun
Aug
—------- 1982
49
0.0
34.4
27.2
24.8
71.8
267.2
313.3
279 l
Sz
19851
1.1
0.1
0.1
1.7
53.9
149.5
345.5
363.0
. 248.8
206 0
19M
0.0
2.8
6.0
10.3
74.7
233^
338.7
254.5
Ljs.
1985
0.1
0.4
10.0
40.1
143.7
200.9
287.7
291.5
137 8
?uj] *
1986
0.1
0.2
3.4
5.9
15.1
165.0
285.8
339.8
.
1 200.0
.4
ZPr
V
1987
5.5
5.0
13
29.5
185 5
266.4
272.1
268.0
196.3
1988
0.8
173
0.4
13
54 1
278.2
400.6
32X3
' 270.6
— IflD j
_ *U<5 106 1 16X5
294
.Il
1989
0.1
0.4
162
28.1
131.7
197.3
403.4
399.6
*2796
1990
66
0.4
46
0.7
J79.4
1123
366 1
2763
218 8
36.4
hi
1991
02
1.9
24.7
48.7
163.01
208.9
502.5
309.8
181 1
69.1
IS’
1992
0.0
03
0.5
56.9
812
139.0
320.5
367.9
1343
138.J
1995
15
0.5
243
292
130.4
214.5
313.1
275 3
20X9
143.8
L 5U 11
i
Ji
)i
1994
0.1
1.0
2.0
10.6
1221
1993
310.9
307.1
147.5
23.9
U5
1995
0.2
0.9
303
21.7
113.0
225.2
213.6
211.9
99.7
293
00
u
1996
1.5
0.0
75.6
67.0
109.5
261.1
273 4
311.8
211.9
886
385
U
1997
0.1
0.0
15.0
26.8
206.8
142.8
211.8
275.9
208.4
195.5
39.0
21
1998
1.0
0.0
162
6.6
124.4
2303
370.9
347.91
2003
114.0
16.9
l»
1999
63
0.0
0.0
154
123.3
189.4
3723
355.0
187.5
187.^
104
r
MO
0.1
23
5.9
70.5
78.0
188.6
324.7
373.0
1893
2012 |
423
u
2001
0.0
0.0
4.4
53
983
2497
364.3
364.2
10X9
733
00
it
2002
03
1.7
10.5
212
184
269.9
328.4
298.8
133.5
68.0
IOC
—i-
2005
0.0
3.2
10
12
7.1
247.1
378.8
325.0
247.5
393
186
2004
2.6
83
10
393
25.8
222.4
4663
316.9 I
167.9
93.6
46_
K
j|
2005
1.6
3.8
380
273
47.0
254.4
37X5
28X4 |
169."
3611
Ub F4 SrOh U'trer Rewrcrt (2)
iiA-frw/Jp ***
^P
Oct [~Nw
452-4
2753
1213 1
175 J
333.8
357.6
250 0
1093
100.8
236.7
346.2
253 4
80,9
153,6
2184
346.0
3120
282.7_
172.9
1 9'1
190.1
248.7
3353
3011
266.4
360.7
288.9
213 J
1703
B5_0
107,6
95.6
319.9
410 I
336.9
351 I
245.2
4474
44)3.0
M1.8
238.2
233 3
528.2
3890
41Q.3
337,2
1972
“6-2
152 1
343.4
4021
302.6
18" 9
137.2
265 2
206.2
1433
1253
136.3
2239
303 I
309.8
114.5
226 4
170,1
1778
121.5
346.7
182-1
2843
3224
425.8
3256
2643
1887
1919
1438
3684
373.4
348-7
235.6
BO. 5
1753
255 5
356.7
2960
3576
240.2
10&5
135 1
269.1
2823
3836
3407
228.5
3419
iqa.i
267.7
285-6
310
190.9
167.4
150.1
tl2B
310.4
385-6
280,9
294 2
489
207.2 1
481-9
326.9
29L.8
9
140 6
241.7 £
44O.£i
1461
472
1
1.1 Mar-lJh*f*' Df**rufK of Eitortu. Ethntur Mt Irrigt^off 9999
-9999
995>9
9999
3999
-9999
-9599
9999
3999
9999
Mar-65
9999
9999
-9999
999
999
Ap'-flS 3999
3999
9999
9999
May-lS
399?
jufl-a.5
:J-B5
-9999
-9999
■9999
9599
9999
9999
9999
3999
3999
999
999
999
999|
4uH5
jeHj
-9999
3959
-9999
DcHLS
-9999
-9999
3995
9999
9999
3999
■9999
3999
995
935
999
Nqv-85
Ofc-85
•9999
9999
3999
3999
3999
9999
9999
J99
999
9399
■9999
-9999
9999
9599
9999
3999
3999
9999
999
999
■9999
9999
-9999
9999
9999
999
9999
-9999'
3939
-9999
■9999
9999
999
-9999
-9999
9399
9999
-9999
3999
*999
999
■9399
13
9999
9999
43 5
1.5
17
1-6,
56 2
-9999
9999
3939
9399
3999
3999
9999
1.5
1.2
-9999
9999
9999
34.4
9599
9999
17
13Apoendnr A1
A•My
Humidify |%)
___________ -9999,
___________ 9999
9999
9999
-9999
___________ 9999
9999
___________ 9999
___________ 9999
___________ 9999
__________ -9999
___________ -9999
Sunthing (bwj
_______________ 9.8
_______________ 9.0
0.5
66
Wtod (m/i)_________ _______________ 0.7 _______________ 0,7 _______________ LI
81
6.2
____________ 1.3. ____________2-2
LI
43
___________ 10
5.7
______________ 0.9
5.3
6-6
92
9.7
___________ 9999
9999
9.5
______________ 0.7
______________ 0.4
______________ 0-4
______________ 0.4
0.5
95
9999
9999
9999
-9999
9.9,
92
8-2
5.0
______________ 0.8 ______________ 0.8
0.7
______________ 0.9, ______________ L0
9999
9999
9999
33
______________ 06
□ct-9*
9999
9999
-9999.
9999
9999
9999
4.4
5,8
79
______________ 08 ____________ 116
04
Ney $4
D«-9*
-9999
8B
102
j*t95
Fefr9S
Mf-95
4pr-95
-9999
25.1
22.2
101
8.9
8.9
9.5
MJr95
-9999
9999
84
7.5
-9999
4- 2
•9999
9999
5- 3
•9999
9999"
6.4
82
$3
•9999 '
9.5
-9999
95
MGO
•Tlja
-9999 "
9.4
8.6
9999 ~
SJ
6.6
6-4
0-4
0^
0.S
06
1.0
1.3
LI
0.7
05
04
0.3
0.3
0.4
0.3
0.5
0.8
0.9
9999 '
9999
9999
51
9999"
4.4
6.1
82
0-9
0.9
08
0.7
-9999
•9999'~
9999
•9999 "
9.3
9.5
0.6
04
0-4
0.4
-9999 "
95
9999
$999
9.0
7.3
0.4
0.5
0.8
■9999 ~
8.0
68
59
08
9999
07
67.7 ~
74 4
45
74,2
59 3 ~
62.9 ~
4-7
7.3
6,6
9.5
0.6
05
0-5
0.6
0.2
46 9'
36 0
10 2
21/01/2011r
PawiStK^
^Month_
Jan-98
Feb-98
Mar-98
Apr-98
May 98
Jun-98
Jul-98
Aug 98
Sep 98
Oct-98
Npv-98
Dec-98
Jin-99
Feb-99
Mar-99
Apr-99
May 99
Jun-99
Jul-99
Aug-99
Sep-99
Oct-99
Mln Temp [X]
--------- 7^7
Mi* Temp ( C)
Humidity (%)
•9999
j9999
•9999
9999
9999
•9999
-9999
9999
-9999
9999
9999
-9999
9999
•9999
-9999
-9999 9999
9999
-9999
-9999
^9999
-9999
9999
•9999
-9999
9999
-9999
9999
-9999
-9999
9999
•9999 9999
Nov-99 9999 9999
Dec-99
Jan-00
Feb 00
Mar 00
Apr-00
May 00
Jun-00
Jul-00
Aug-OQ
_ SepOO
Oct-OO
Nov-QQ
Dec-00
Jan-01
Feb^Ol
MarQl
Ag 01
May Qi
Jun-01
>ul-Ol
.Aug-01
Sep 01
UcvOl
Nov-Oi
DecOl
_ Ji r>-02
Feb-02
Mar-02
_Apf -02
May 02
Jun-02
Jul-02
Aug 02
Sep-02
Oct-02
Nov-02
Dec-02
-9999
9999
9999
J>999
9999
9999
9999
-9999
9999
•9999
-9999
9999
9999
-9999
9999
9999
-9999
-9999
-9999
9999
Appendix A1Humidity (M)
____________ 43 4
____________ 53.6
44 1
377
_____
43.6
Sunshine {hr)
_____ _________ 9 9 ______________93
80
100
9.6
69 fl 64
793
9999
4.5
5.0
_______________ 0-3
_______________ 0.4
06
0-5.
_0.6
0.6
0.5
0.3
___________ -9999 61 0 3
79.1
_ _________ 9999
__________ 9999'
____________ 76,7'
74.3 '
8.4
93d
9.9
9.9
9_S
____________ 59.0 ~ 9 3
64 7 "
___________ 68-7 ~
78
0.2 O^l
02
03
0.4
O4l
0.5
____________ 83.3_"
____________ 90.0_"
___________ 90 .7 "
6.3
62
54
___________ 92 3 "
68
8.0
_____04
____ 0.4
____0.4
____ 0-5
___________89 3 "
____ 0 2
__________ 85 3 ~
S.fli
___________ 79 7 98
____ 0.2
0.3
_________71 9 "
9.6
16 0
389:
64.0 ~
Vir-05,
17.9
1«3
__________ 67,6 ~
_________ 777
72.7 ""
10.0
89
8,9
96
880
934
49
46
92,9
: 9999
93 3
5.3
6-4
7.1
870
67.1
-U
____ 0.3
____ 0.3
0.4
0.4
____0.1
____0.5
___ 02
0.3
0-3
___ 0.1
___ 0.1
10 i]
___ 0 1
-9999
9999
9999
-9999
10-Qi
9.8
94
9.81
-9999
■9999
9999
6.8,
5-9
-9999
-9999
9999
9999
4,4
-9999
6.1
66
96
-9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
■9999
■9999
9999
9999
9999
9999
9999
98
9.7
9-5
9.1
9.5]
78,
6.3
■9999
9999
9999
9999
9999
9999
9999
9999 '
37
9999 "
9999
9999
9999
9999
4.3
5-5
8-2
97
■9999
9999
9999
9999
9999
10,1
•9999
21/01/2017Aooendix A1AW Zmnui-w jwa* Pr-jr^ p^M
**
An NEXC2
^OrVTHLY
CLa*ATEDATA
F °RD^GrLA
^nojv
J“? WJi f*
'rwqfj/o .’W^ry W1*^2 W1-2011ADCOMi* A921/01/201121/01/2011Mra. RfMr tjfpJbinpia, Minutry af Wafer and Enrr^ EfhtupM ,\ia Irr&ft" and Drae^t Pnted.ANNEX C3
monthly CLIMATE DATA FOR CHAGNI STATION
,rHj'Ce, Qj
l.VMsy-HFtiM Dmocmti: itytbb; of Efkopta. Mrnjtr) of W'attr & Etrp EriMpiaa NtJt mJ Draioqt Profit2W1/2O11Appendix A321A3TZ2O11Apoendix_A371/01/20* 1r——«——i -r - i*r\
rhunl SUtkxi Me*n Monthly d»U
Month
Jin-03
Feb-03
Mar-03
Apr-03
May-03
Jur>-03
Jul-03
Aug-03
Sep-03
Oct-03
Nov-03
Dec-03
Jan 04
Feb-04
Mar-04
Apr-04
May-0*
Jun-04;
Jul-04
Aue-O4:
Sep-041
Oct-04
Nov-04
Dec-04
Mln Temp |'C)
MMaatx Temp (*C) Humidity (%)
Jan-05
Feb-05
Mar-0$
9999
-9999
-9999
Ap-05
-9999|
MiyOS
Jun-05
99991
•99?^
Jul OS
9999
Aug 05
SepOS
____ Ocv05
Nov-05
Dec-05
Jin-06
•9999
Feb-06
•9999
Mar-06
9999
9999
9999
9999
9999
99991
-9999
9999
-9999
9999
9999
9999
-9999
-9999
9999
A pr-06
9999
-9999
-9999
MiyOfe
Jun 06|
•9999
9999
9999
Jul-06
•9999
-9999
9999
-9999
•9999
-9999
-9999
Aug-06
>p 06
-9999
9999
•9999
9999,
-9999]
9999
9999
9999
-9999
Oct-06
Nov-06
9999
-9999
J3ec-06
Jln-07
.9999
-9999
-9999
9999
9999
9999|
Feb-07
•9999
Mir Q7
■9999
9999
9999
~Apr-O7
Miy 07_
_ Jun-07
>9999
9999
9999
9999
9999
9999
9999
9999
9999
Jul-07
12?
9999i
9999
9999
9999
_Sep 07
-9999
9999
-9999]
-9999
Oct 07
9999
Nov-o?
Dec-07
_9999
9999
9999
9999
9999
-9999
9999
-9999
9999
Appendix A3„
4/Sr
^ <*- Bwjp
E B*in'’
r
X54 W’" On**t P^M
ANNEX C4
MONTHLY CLI
MATE DATA FOR MANDI7RA STATION
ScOh
3Ict 2)
LFaM Dtm^ran: RfptMf tf Elbnfta. Mtiufry 9) Wafer cJr Ewg Efbnpum Nik Im&tiM art Dmaage PrwtJ
L’b IM SrOJa Water Resource* 2)
ii
JJ-M*"M.
n<)u
----------------------------- -
r» Station Mw
MontftJ
Jan-83
Feb-83
Mar83
Apr 83
May-83
Jun-S3
Jul-63
Aug 83
Sep 83
Oct-83
Nov43
Dec-83
Jan-84
Feb 84
Mar 84
Apr 84
May 84
’ Max 1
M>n TempfC]
Humidity (%)
___________ ^9999
-9999
-9999
-9999
-9999
•9999
9999
-9999
-9999
9999
9999
•9999
-9999
-9999
•9999
99991
•9999,
Sun$hhe (hr
Jun-84 9999
Jul-84
9999
-9999
•9999
•9999
-9999
Nov-84
Dec-84
Jan-85
Feb-85
Mar 85
Apr-85
May 85
Jun-85
-9999
-9999,
-9999
•9999|
•9999
9999
-9999
•9999
9999
•9999
•9999
-9999
-9999
-9999
JU-8S
-9999
-9999
- j >5
-9999,
-9999
8S
-9999
Oct 85
•9999
-9999
Nov-85
•9999
•9999
9999
Dec85
Jan-86
Feb-86
Mar-86
Apr-86
May 86
Jun-86
9999
-9999
•9999
-9999
•9999'
9999~
-9999
9999
■K1I-86
•9999]
Aug-86
Sep 86
9999
9999]
Oct-86
-99991
-9999
9999
Nov-86
£9999
Dec 86
9999
9999
Jan-87
Feb-87
-9999
-9999
Mar-87
Apr-87
•9999
-99991
9999
•9999
May 87
•9999
Jun-87
Ju<-87
•9999
9999
Aug 87
•9999
-9999
9999
-9999
-9999
Sep-87
Oct-87
Nov-87
Dec-87
-9999
9999:
•9999
-9999
•9999
-9999
j9999
-9999
9999
-9999
9999
-9999
-9999
Appendix A4^■nduri Station Mean Monthly Olmite date
Month
Jan-93
Feb 93
Mar 93
Ap<-93
May 93
Jun-93
Min Temp (*C|
Mu Temp (*C) Humidity (%|
_______ 9999
9999
•9999
•9999
•9999
9999
•9999
9999
9999
•9999
•9999
•9999
9999
9999
■9999
•9999
J99 99
Jul-93 9999 9999 9999
Aug-93
9999
9999
Sep-93 9999 9999
Oct-93
Nov-93
Dec-9 3
Jan-94
Feb-94
Mar 94
Apr-94
•9999 9999
9999
•9999
9999
•9999
•9999
•9999
May 94 9999
Jun-94 9999
Jui-94
Aug 94
Sep 94 ~
Oct-94 '
Nov-94 "
Dec-94 '
Jan-95 "
Feb-951
Mar-95 '
Apr-95
May 95
9999
•9999
•9999
•9999
•9999
9999
•9999
9999
•9999
■9999
•9999
9999
•9999
•9999
9999
•9999
9999
-9999
9999
•9999
9999
9999
9999
9999
9999
•9999
9999
9999
9999
•9999
-9999
-9999
•9999
•9999
9999
•9999 9999
-9999 -9999
9999 9999
-9999
•9999
•9999 -9999
Jun-95 9999 9999
Jui-95
Aug-95
95
Oct 95
Noy95
Dec 95
Jan-96
Feb-96
Mar 96
Apr-96
May 96
Jun-96
Jul-96
Aug-96
Sep 96
Oct-96
Nov 96
Dec 96
Jan-97
Feb-97
Mar 97
Ap<-97
May 97
9999
•9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
•9999
•9999
•9999
9999
J7999
■9999
•9999
9999
9999
-9999
•9999
9999
9999
•9999
9999
9999
•9999
9999
•9999
-9999
-9999
-9999
-9999
9999
9999
-9999
-9999
-9999
-9999
-9999
9999
-9999
-9999
-9999
•9999
•9999
9999
•9999
9999
9999
•9999
-9999
9999
-9999'
9999
9999
•9999
•9999
9999
-9999
9999,
9999
-9999
99991
•9999
-9999
9999
-9999
9999
-9999
9999
99991
9999
■9999
9999
-9999
9999
9999]
9999
9999
•9999
-9999
•9999
9999
-9999
9999
9999
-9999
9999
9999
-9999
-9999
Jun 97 9999
Jul-97
Aug 97
Sep-97
Oct-97
9999
•9999
9999
-9999
Nov-97 9999
Dec-97
9999
9999
-9999 -9999
J999 9999
•9999
■^999
Appendrx A4
AWiWfcXSV*VW vmm» wwr
Mix Temp (*C)
Humidify [%)
Sunshine (he)
9999
-9999
9999
9999
•9999
9999
9999
9999
9999
9999
9999
9999
9999
-9999
9999,
9999
9999
-9999
9999
9999
•9999
9999J
-9999
9999
QO77O7Q7
9999
-9999
9999
9999
9999
9999
9999
9999
O•7O7Q7Q3
9999
9999
•9999
-9999
-9999
9999
9999
o7o7o7a7
-9909
9999
9999
9999
9999
9999
9999
Q•7O7O7G7
9999
9999
9999
9999
•9999
9999
9999
9999
-9999
9999
-9999
9999
9999
9999
9999
9999
aooa
J777
-9999
9999
9999
9999
-9999
9999
-9999
9999
-9999
-9999
9999
M 99
9999
•9999
9999
9999
•9999
9999
9999
5^99
•9999
9999
9999
9999
Oct 99
9999
9999
9999
9999
-9999
9999
9999
jnOO
Feb-00
-9999
9999
9999
9999
9999
9999
9999
•9999
9999
9999
•9999
•9999
9999
9999
9999
9999
-9990
9999
9999
9999
9999
9999
9999
9999
9999
MirOO
^r-00
-9999
-9999
9999
•9999
Mir Of'
-9999
9999
9999
9999
9999
•9999
•9999
9999
’9999
9999
9999
9999
9999
9999
Jun-00
9999
•9999
-9999
)J-00 9999
9999
9999
9999
oeaa
jjtj
Auf-OO
-9999 9999
-9999 9999 9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
•9999
9999
9999
9999
9999
•9999
9999
9999
9999
9999
9999
9999
9999
(WK
-rm
9999
9999
-9999
9999
^9999
9999
•9999
•9999
9999
9999
9999
nooa
•'rrri
9999
•9999
9999
9999
•9999
9999
9999
•9999
•9999
9999
9999
9999,
9999
9999
9999
9999
9999
•9999
9999
-9999
9999
9999
•9999
9999
-9999
9999
•9999
9999
-9999
9999
9999
9999
9999
9999
-9999
9999
9999
•9999
9999
9999 9999
9999
9999
-9999
9999
9999
•9999
-9999
9999
•9999
•9999
9999
9999
•9999
9999
9999
•9999
9999
9999
9999,
9999
9999
•9999
9999
9999
•9999
9999
•9999
J999
6999Humidity (%)
Sunshine (h<
Jin-03
Feb-03
MjrO3
Apr-03
May-03
Jun 03
JuJ-03
Aug-03
Sep-03
Oct-03
9999
-9999
9999
-9999
-9999
-9999
•9999
•9999
-9999
9999
-9999
Nov-03
Dec 43
-9999
9999
Jan-04
Feb-04
•9999
•9999
Mjf-04
•9999
9999
9999
-9999
•9999
-9999
Apr-04
ViyQ4
Jun-04
9999
9999
•9999
9999
9999
-9999
9999
4999
Jul-04
9999
-9999
9999
9999
-9999
9999
• > > ■'•
vT
Oct-04
Nov-04
Dec-04
Jin-05
FtbOS
9999
-9999
-9999j
9999
•9999
9999
9999
9999
9999
9999
-9999
9999
9999
Mi 05
r
Apr-05
9999
Jun-05 9999
9999
J999
9999
-9999
Jul-05
Aug-05
Sep-05
•9999 9999
9999
9999
9999
-9999
9999
-9999
•9999
Oct-05 9999 9999
■9999 9999 9999
Nov-05
9999
9999
Dec 45 9999 9999
9999
9999
Jin-06
Feb 06
Mif-06
Apr-06
May 06
Jun-06
M-06
Aug-06
Sep-06
Oa-06
Nev 06
Dec-06
l4n-Q7
Feb-07
Mir-07
Apr 07
May-07
Jun-07
9999
-9999
9999
304
•99991
9999
9999
9999
9999
•9999
9999
9999
9999
9999
9999
9999
•9999
■ 9999
9999
9999
9999
9999
9999
9999
9999
9999
•9999
9999
-9999
-9999
9999
Jul-07
Aug-07
9999
9999
9999
9999
Sep 07
Oct-07
•9999
-9999
-9999
9999
Nov-07
•9999.
Dec-07
32.0
-9999
-9999
9999
9999
L&l&lallllANNEX C5
availability of monthly climate data at pawe, chagni, dangila
AND MANDURA STATIONSFftir*
I-SlMM NJt lrr^JS99 49 J PvQff pH9fJ
.\!/nirr) fflTjfrr c* E/ Soadoa / Year
/ 19o;
_.rr —
( 19tfJ / 1964 / 1W5
•g»-------- 1 1%6
1967
19611
1969
1970
1971
1972 | WS 1, 1974 \ 1975 \ 1976 \ 1977 \ 1971 \ W9 \
i' Afwt 7 rmp f"Q / 0 / o 1 o
1 Max Temp (*C) / 0 1 D 1 0 LL LVW) T 0 0 b 0 J Sunshine (hr) 0 0 0 0
0
0
0
0
0
0
0
01
0 \ 0 1
0 I 0 \ U \ 0 \
0
0
0
0
0
0
0
0 | 0 o I 0 I 0 1 0 \
0 \
/ P«e
0
0
0
0
0
0
0
0 j 0 \ 0 0 1 \
0 \
0
0
0
0
0
0
0
00
0
0 I 0 1
/
o \ 0 \
! Wind (m/ij JL^
0 j 0 0
0
0
00
0
0
0
0 e i
U 1 0 1 0 0
i Min Temp (°Q
Mix Temp (”C)
Chagni RH(%)
Sunihjnc (hrj
VC-uid (m/*J
0
00
0
0
0
00
0
0
0
0
8
1
12
12 i 12
12 i 12 \ 12 |
0
0
0
0
Q
u
00
0
0
Q
8
12
1
11 11 12 12
12 1 12
12
u n 1
0
0
0
0
..0 .
0
00
0
0
0
7
11
12 1
0
0
0
0
00
0
0
0
0
0
0
0
0
10 12 12
12 1
0
0
0
0
0
0
0
0
00
0
7
12
12
ll
12 12
Mm Temp (*Q
12
9
9
2
0
0
6
0
0
0
I
10
10
to
s
0
'd
0
Max Temp (°C)
12
12
10
12
12
12 10
6
0
0
0
1
10
10
10
5
0
0
Dingili
RJ1 (7i)
0
0
0
0
0
0
0
□
0
0
0
(1
0
0
0
0
0
0
Sunshine (hr)
0
0
0
0
0
0
0
0
Q
0
0
Q
0
0
0
0
0
0
Wind (m/i)
0
0
0
0
0
0
0
u
0
0
0
0
0
0
0
0
0
0
I Miinduf*
L—
Min Temp (*C)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Max Temp CQ
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Uh m SrOli l Water Kraciuicca (2)
l
IJ-Mw-llFeder^ Dvirjfu
MtauiV} afWafrr eMs^rrp
I fhytMt A’/> /in^MT jad Pnr*.f
Availability ofmonthk dim air data at Pawe. Cliaerii, Dangila and Mandura etationa
continued)
Station
Year
1 1980
1981
Min Temp fC) 0
1996
12
1997
12
12 1
Pwe
.Max Temp (°Q
RII f •)
Sunshine (hr)
0
0
0
0
12
12
12
12
12
0
0
0
0
0
0
0
0
0
12
12
12
12
12
0
0
0
0
1982
0
0
0
0
1983
0
0
0
0
----- —
0
11
9
12
12
7
12
Wind im/i)
12
Min Temp (*Q
0
Max Temp (*Q
Cbafni
^fzzz
Sunshine (hr)
0
10
12
12
12
12
0
0
0
0
0
0
12
Wind (m/i)
Mm Temp (*Q
Max Temp (*Q
i Dangila
RII (%)
Sunshine (hr)
12
0
0
0
0
1984
0
0
0
0
0
12
12
12
12
12
0
0
0
0
1985
0
0
0
0
0
12
12
0
12
12
0
0
0
0
—-------- 7
Mandura
Wind (mi)
0
0
0
0
0
0
1986
0
0
0
0
0
12
12
0
12
12
0
0
0
0
0
1987
7
7
3
7
12
12
12
0
11
12
0
7
0
0
0
Min I cmp (°C)
Max Temp (°C)
1988
12
12
10
10
12
12
12
0
12
12
9
9
9
9
0
1989
12
12
9
11
12
12
12
4
11
12
n
12
12
11
0
1990
12
12
ft
12
12
0
11
8
11
12
9
9
12
11
0
1991
3
3
0
0
2
2
2
0
2
2
0
1
4
0
0
1992
12
12
0
12
12
2
2
0
2
2
11
11
12
0
0
1993
12
12
0
12
12
0
0
0
0
0
12
12
12
0
0
1994
9
12
0
12
12
0
0
0
0
0
12
12
12
0
4
1995
12
12
2
12
12
0
0
0
0
0
12
12
12
11
11
0
12
12
0
0
0
0
0
12
12
12
12
12
0
0
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
11
11
12
12
12
12
12
12
12
12
4
4
0
0
0
0
0
0
0
0
0
0
12
0
0I
."Kirf ■*■•' '•fW'
iv
Sfcrooo Pt ire
J l&tf
1 1998 1 1999 / 2000
T^7
2002
2W3
2004
2005
2006 1
1
2007 200ft i
1
/Min Temp (*Q 1 6 } 9 | 12 1 12
12
12
12
10
12
12
/ A£u Temp f’C J / 7 / 9
12
12
12
12
12
12
12
12
L*"& 4 6 3
-
i 12 7
0
&
12
12
p
11
0
0
j Sunshine (hr)
11
12
12
8
12
12
11
12
12
1 Wind fm/i) 12 1 12
12
12
10
12
12
12
0
0
0
1 Min Temp (°Q
69
12
12
12
12
12
12
0
0
0
] Max Temp (*Q
7
11
12
12
12
12
12
12
0
0
0
RH (%)
0
0
0
3
12
11
12
12
0
Q
0
Sunshine (hr)
7
to
11
5
11
11
12
0
0
0
0
Wmd (m/i)
8
11
12
12
12
12
12
0
0
0
0
DangiLb
Min Temp (°C)
12
12
12
12
12
12
12
12
12
12
0
Mur Temp (*Q
11
12
12
12
8
12
12
12
0
0
0
RH [•/•)
11
12
12
12
12
12
12
12
0
0
0
Sunshine (hr)
12
12
12
12
11
12
12
12
0
0
0
Wind im/i)
12
12
12
12
11
12
12
12
0
0
0
Mxodur*
Min Temp (*C)
0
0
0
0
7
11
9
3
0
1
0
Max Temp fQ
0
0
0
0
7
11
12
3
0
1
0
Lb HI ScOla Water Krwiurrci (2)
iii
13-Majr IIL.r*"p" Mmrtr) * 1T*tf Eanj> itlhttptM Nik !f*ijpft99 a*d Drurmj^f Prynl' f,Vl
r JWW»J'w' *
ANNEX C6
INFILLED climate data for pawe stationFtAra/ / R/paHu # Efhapw. Minrtv) of ITa/rr d” Entry F.ffafwit Nit frnfalto* W Dnsft^e Prvtrf
rb NSrO|a •'wrr Rrv^^
ijfr *
‘'
. ....... ... M P we (1980-2008}________________________
a
Monthly maxim mn temperature at Pawe
_ X[^n {Jhs 290 303 32.
±tein ■ &ILrd- Jjjjgr.Lini
■jkurnum
7
0
3
29.0 30.4 32.3 33.6
33.3 33 6 352
30.9 32.1
2B.9
27.7
32,5
33.7
31.2
ihi> it 'n° *t4^C ,S ^served value. italic w infilled value, and bold italic is 11 ^tirChagni).
tong (erm iwnRc value (when ihtrt w no
13-Miy T1
il .fW W **
:
l>raiue
InfiDcd minimum lemperaturf al Pawc (1980 - 2008)
Monthly maximum fcmpcratu^TT^
I Mean Obs,
Mean Rifled
Maximum
Minimum
Note: non italic
b observed value, italic is infilled value, and bold italic w long term average
data at Pm ot Chagru
Ub Ff.MHa Water Resource* 2)
AprtuvniasRfftM- Afftwn affT'a^r N& Im*#**
ANNEX DI
monthly observed flow for main beles at bridge gauge
AMj**nrs 2|
: J May : 1
tfR/ptbktfEffwpta. Mtrurfi) of iT 'afrr Etht**ii Ntft Inyatoft Jud Drjtnaff Prw.f
t
/Flow
Date
_
Jan-66 Feb-66
Date
Jan-70
Feb 70
Mar-70
Flow 0.3
______ 03
i_______01
Date
Jan-74
Feb-74
Mar-74
Flow Date
Flow
9999 Jan-78 -9999
-9999
F_eb-7B|
9999 Mar-78
0-9
0.3
Apr-66
■9999
9999
Apr-?8
04
-9999
Apr-70,
May-70
-9999
9999
Apr-74
May-74
May 78
0.9
213
Jun-70
20
Jun-74
20.8
Jun-78
4.4
64-8
141-0
Jul 70
16.7
Jul-74
Jul-78
Aug 70
Aug-74
Aug-78
983
17.7
Sep-70
Qct-70
Sep-74
Oct-74
5ep-78
Oct 78
S.6
1.5
Nov-74
Nov-78
676 120,9 1377
66.0
6.0
Dec-66
Dec-74
Jan-75
Feb-75
9999
Jan-67
0.9
Feb-63
Mar-6j
Apr63
Feb-67
Mar-67
03
00
0.1
0.2
Nov-70,
Dec-70
Jan-71
Feb-71
Mar-71
Mar-7S
Dec-78
Jan-79
Feb-79
Mar-79
Apr-67
May-67
Apr 71
Apr 7$
Apr 79
May-63
May-71
96.0
79.2
25.1
9999
0.4
9999
9999
9999
9999
9999
May-75
Jun-67
3.0
71.9
Jun-71
Jul-71
9999
Jun-75
JuF75
1023
2149
1796
34.6
9999
9999
9999
9999
9999
9999
9999
22-8
May-79
Jun-79
Jul-79
9999 -9999
07
04
1-2
9.3
Jun-63
Jut-63
Jul-67
9999
-9999
50 8
Aug-63
1683
Aug 67
183.5
Aug-71
9999
Sep-63
(kt-63
Nov-63
Dec-63
Jan-64
Sep-67
Oct-67
Sep-71
9999
Aug-75
Sep-75
-9999
-9999
Aug-79
Sep-79
Qct-75
-9999
Oct-79
9999
9999
9999
Nov 67
114.7
60.8
___ 63
Oct-71.
Nov-71
9999
9999
9999
Nov 7S
9999
Nov 79
9999
Dec 67
___ 2 9
Dec 71
Dec-75
-9999
9999
9999
Jan-76
9999
-9999
Dec-79
Jan-68
Feb-64.
Mar-64
Apr 64
9999
9999
9999
Feb-68
Mar-68
Apr-68
May-68
Feb-76
Mar-76
Apr-76
-9999
-9999
9999
■9999
-9999
Jan-80
Feb-80
MarSO
Apr-80
9999
9999
9999
9999
9999
May- 76
Jun 68
0.2
9999
Jun-76
Jul-76
May-80
Jun-80
9999
9999
1703
304.1
Jul 68
Jul-80
Aug-80
9999
-9999
Jan-72
Feb-72
Mar-72
Apr-72
May-72
Jun-72
Jul-72
9999
9999
9999
9999
9999
9999
Aug-68
Sep-68
Oct-68
160,6
90.6
Aug-72
Sep 72
9999
9999i
Aug-76
Sep-76
-9999
133
583
182.7 129,6
Sep^fiO
31.8
Oct-72
9999
Oct 80
Nov-68
Nov-7 2
9999
Dec-68
Dec 72
9999
Jan-73
Feb-73
9999
9999
9999
9999
9999
3.1
16.7
Ocv76
Nov-76
Dec-76
Jan-77
Feb-77
38-9
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
9999
Mar-73
Apr-69
May-69
Jun-69
Apr-73
May-73
Mar-77
Apr-77
■9999
Miy-77
Jun’77
Jul 69
-9999
9999
182,8
Jun-73
Jul-73
Aug-73
-9999
Jul-77 Aug-77
Sep-69
-9999
9999
9999
9999
9999
9999
9999
9999
Nov-80
Qec-80
Jan-81
JefrSl
Mar-81 Apr-81
May-81
Jun-81
Jul-81
Aug-81
Sep 81
9999
9999
9999
9999
9999
9999
9999
9999
9999
111.1
Sep-73
9999
Oct-69,
14.3
Nov-69
13
0.5
Oct-73
Nov-73
Dec-69
Dec-73
21/01/2011Bridge River Mean Monthly Flow (m’s'l
F ow
-9999
-9999
Date
Jan-86
Date
Date
Jan-82
Feb-82
Mar-82
Feb-86
1.
Apr-82
9999
-9999
May-82
Jun-82
Jul-82
•9999
Mar-86
Apr-86
May-86
0.4
0.3
0.1
0.0
Apr-94
May-94
-9999
7.3
89.9
Aug-82
-9999
9999
Jun-86
Jul-86
ur-86
0.9
0.4
0.3
2.5
Feb-94
Mar-94
150.0
133.2
119.2
25.0
Jan-90
Feb-90
Mar-90
Apr-90
May-90
Jun-90
Jul-90
Date
Jan-94
Jun-94
Jul-94
Aug-90
280 2
Aug-94
130
77.6
199.3
Sep-82
Oct-82
9999
-9999
Sep-86
Sep-90
Oct-90
109.8
33.0
Sep-94
147.0
Oct-86
Oct-94
Nov-82
Dec-82
Jan-83
-9999
Nov-86
5.1
Nov-90
6.8
Nov-94
29.0
7.4
-9999
9999
9999
Dec-86
Jan-87
1
Dec-90
18
Dec-94
3.0
jep-9S Oct-98 Dec-98
Feb-83
Feb-87
0.3
0.8
0.5
0.2
3.7
28.3
64.2
165.2
Jan-91
Feb-91
1.3
0.5
Jan-95
Feb-95
Jan-99
Feb-99
Mar-83
Apr-83
•9999
0.1
Mar-87
Apr-87
May-87
Mar-91
Apr-91
-9999
-9999
Mar-95
Apr-95
1.3
0.7
0.5
0.3
Apr 99
May-83
0.0
11.9
55.4
201.8
May-91
Jun-91
Jul-91
-9999
9999
May-95
29
Jun-83
Jul-83
Jun-87
Jul-87
Jun 95
39.9
Aug 83
Aug 87
Aug-91
-9999
158.7
Jul-95
May-99
Jurv99
Jul-99
5ep-83
200.6
Sep-87
78.6
Sep-91
191.7
Aug-95
Sep-95
127.1
216.6
101.4
Aug-99
Sep-99
Oct-83
Nov-83
29.1
3.8
Oct-87
Nov-87
95.6
283
Oct-91
Nov-91
30.8
8.1
Oct-95
Nov-95
Dec 83
1.3
0.4
Dec 87
Jan-84
Feb-84'
Mar-84
Apr-84
5
1.3
0.7
0.5
Dec-91
Jan-92
Dec-95
Jan-96
04
0.1
Jan-88
Feb-88
Mar-88
Feb-92
Mar-92
0.1
Apr-88
0.1
Apr-92
Feb-96
Mar-96
Apr-96
May 84
Jun-84
0.2
5.3
May-88
Jun-88
0.5
9.3
May-92
Jun-92
Jun-96
_ Jul-84
Aug-84
49.4
Jul-88
344.1
Jul-92
43.1
Jul-96
64.7 Aug-88
394.1 Aug-92
218.7 Aug-96
-9999
Sep 84
Oct-84
76
21
1.5
07
Sep-88
Oct-88
Nov-96
Dec-96
_ 0.3
Dec-88
Jan-89
276.0
68.3
14,2
4.6
Sep-92
Oct-92
Nov-92
Dec-92
145.4
108.7
18.1
5.6
Sep-96
Oct-96
51.5
Nov-84
Oec-84
Jan-85
Feb-85
Nov-88
-9999
_ 0.1
_ Feb-89
Jan-93
Feb-93
Mar-85
00
Mar-89
2.3
1.3
0.8
Mar-93
-9999
0.8
Jan-97
Feb-97
Mar-97
_ Apr-85
00
Apr-89
May-85 Jun-85
Jul-8S
0.5
_4J
May 89
__ 2.4
Apr-93
May-93
Jun-93
Jul-93
0.6
-9999
50.9
Apr-97
May-97
_ 7.9
Aug 85
186.4
287.4
Jun-89
Jul-89
10.3
9999
22S.3
117.6
Jun-97
Jul-97
Aug-89
Sep-85
Oct-85
Aug-93
230
208.6
-21.8
Sep-89
154.9
Sep 93
IOcV89
62.1
13.7
Oct-93
199.8
76.9
Sep-97
Oct-97
Nov-85
Dec-85
88
Nov 89
47
Nov-93
16.2
Oec-89
5.0
Dec-93
4.2
Nov-97
Dec-97
J2.2
126.0
187.1
113.5
1333
537
14.7
4
Append *C1J
Monthly Flow (m s ’)
Date
Feb-Ob
Mar-06
Flow
-9999
■9999
-9999
9999
-9999
jun-06
-9999
-9999
-9999
Nov -06
9999
9999
•9999
Feb 07
Mk-03
Mar-07
-9999
-9999
9999
Apr-03
May-03
Jun-03
Jul-03
Apr-07
May-07
-99991
38.1
203.7
308.6
233.0
Jun-07
Jul-07
Aug-07
Sep_07'
-9999
-9999
-9999
Aug-D3
Sep-03
Oct-03
■9999
9999
-9999
-9999
Nov-03
Dec-03
Jin-04
-9999
9999
-9999
-9999
-9999
-9999
Jeb-04
Mar-04
Apr»Q4
0ct-07
Nov-07
Dec-07
Jan-08
Feb-08
Mar-08
Apr-08
9999
-9999
9999
_ Miy4J4
May-08
Jun-08
-9999
-9999
Ju 108
-9999
Aug-08
-9999
Sep-03
-9999
Oct 08
Nov^OS
-9999
-9999'
-9999
71/01/2011EtM Dm?** tfEftyw. Alrwfr) ^rafrrj^ E*!*?
Efaftn Xti /rr^Xsw ifc/ DrtfMjr Prvp1****=•’
ANNEX D2
MONTHLY observed flow for gilgel beles river near MANDL'RA
tr nc>"urrcn (2)
1
5 Mr-ItFt&af De*vvuth- tfEitoapia, M/wtry tf Wafer & Entr^ Efiaefiua Mfr IrrigatXM jitd DrwuQt Prvpt.r
° Kn^rcct ynearMandura
River Mean Monthly Flow (mV)
Date
Jan-86
Date___
Flow
Date
J an-90
Flow
2.6
Date
Jan-94
9999
Jan-98
Flow 9999
Feb-90
1.9
1,6
1.4
1.8
4.2
Feb 94
1,2
0,7
OS
0.9
7,8
Feb-98
Mar-90
Mar-94
Mar-98
Apr-90
May-90
Jun-90
Apr-94
May-94
Jun-94
Apr 98
May-S&
Jun-86
Jul-86
May-98
Jun-98
___ 12 1.8
___ 18 2.3
15.1
Jul-90.
Aug-90
38.6
Jul-94
Aug-94
Jul-98
9999
104 0
Aug 98
-9999
Sep 90
798
Oct-90
-9999
5ep_98
Oct-98
-9999
9999
-
Nov 86
Nov 90
28
Sep-94
Oct-94
Nov-94
Nov 98
13 2
Dec 86
Dec 90
1.0
Dec 94
Dec-9j
03
25.1
483
38.4
15.2
5.8
2.9
15
-9999
Jan-87
Jan-91
Jan-95
Jan 99
3.3
Jeb33 JdarflI
Apr-83
May-83
Jun-83
Jul-83
Aug-83
Sep-&3
tkt-83
Nov-83
Ctec-B3
_ Jan-84
Jeb-84
Mar-84
Jpr34 May-gj Jun-84
0.9 Jeb 87
0.5 Mar-87
Feb-91 03
Feb-95
Mar-91
9999 Mar-9S
D.9 Feb-99
0.5 Mar-99
03
0.3
0,9
14.0
34.7
377
Apr-87
May-87
Jun-87
Jul 87
Aug-87
Sep 87
Apr-91 9999
May-91 9999
Apr-95 04
May-95 09
Apr-99
May-99
Jun-91
Jul-91
Aug-91,
9999
9999
685
Jurv95
Jul-95
Aug-95
Sep-95
38.1
61.4
41.1
12.8 Oct-87
Nov-87
Dec-87
Jan 88
Feb-88
Mar-88
Apr 88
May-88
21.7
24.7
66.2
26.1
24,5
ISO
16.5 Jun-99
Sep 91 423
Jul-99
Aug 99
Sepn99
Oct-91
Nov-91
14.9 Oct-95 203 Oct-99
2.6 Dec 91
1.3
0.4
Jan-92
Feb92
0.5 Mar-92
5.3 Nov-99
3.2 Oec-99
1.7 Jan-00
0.6 Feb-00
0.4 Mar-00
03
0.7
2.2 Nov-95
0.6 Dec 95
Jan-96
Fet>96
Mar-96
Apr-96
May-96
Jun-88 9 1
Jul 88
Aug-88
60 5
79.1
40.1
26,6
7,7
-9999
Apr-92
May-92
Jun-92
Jul-92
Aug-92
Sep 92
Oct-92
Nov-92
Dec-92
Jan-93
-9999
30-7
57,3
57,0
Jun-96
Jul-96
Aug 96
Sep-96
52.2 Oct-96
11.8 Nov-96
0.7
-9999
15.5
-9999
■9999
-9999
193
6.6
Apr-00
May-00
Jun-00
JukOO
Aug-00
Sep-00
OctOC
Nov -00
-9999
2.5
0-8
1,9
5.1
J)ec-96
Jan 97
Feb-97
Mar-97
Apr-97
May 97
Jun-97
Jul-97
3.4 Dec-00
1,9
Jan-01
Jeb-89
Mar-89
Apr-89
Jun-89
Jul-89
Feb-93 14
Mar-93
Apr-93
May-93
15.9
49 4
Jun-93 243
Jul’93 413
1.3 Feb-01
1.8 Mar-01
1.6 Apr-01
4.3 May-01
19.4 Jun-01
43.7
86.3 Aug-93
75.3
Sep-93
Oct-89
Dec’89
27.4 Oct-93
Nov-93
Dec 93
46.7
-9999
-9999
-9999
Aug-97 9999
Sep-97
Oct-97
30.0
32-1
Nov-97 148
Jul-01
Aug 01
Sep-01
JJct-01
tJov-01
18
1.2
0.9
3.3 14.8 31.7
9999
9999 -9999
11,4
4.8
2.9
1.8
1.1
12
4.8 12.7
28.0
86.2
51.6
47.2
167
6.2
3.7
2.1
14
1.0
1.6
12
37.7 48 S 49.6
22.7 10.0
9999 Dec-97
4.5 Dec-01
07/12/20101
Mandura River Mean Monthly Flow (m’s )
Date
Flow
Date
Flow
Jan-02
3.3
Jan-06
-9999
Feb-02
1.9
Feb-06
-9999
Mar-02
1.7
Mar-06
•9999
Apr-02
2.6
Apr-06
-9999
May-02
1.8
May-06
-9999
Jun-02
82
Jun-06
-9999
Jul-02’
19.9
Jul-06
-9999
Aug-02
■9999
Aug-06
-9999
Sep-02
-9999
Sep-06
9999
Oct 02
-9999
Oct-06
-9999
Nov-02
■9999
Nov-06
-9999
Dec-02
-9999
Dec-06
-9999
Jan-03
2.3
Jan-07
9999
Feb-03
1.9
Feb-07
-9999
Mar-03
1.8
Mar-07
-9999
Apr-03
0.7
Apr-07
-9999
May-03
0.9
May-07
•9999
Jun-03
8.5
Jun-07
-9999
Jul-03
72.1
Jul-07
-9999
Aug-03
53.5
> Aug-07
-9999
Sep-03
S4.4
1 Sep-07
-9999
Oct-03
25.6
5 Oct-07
-9999
Nov-03
5.
7
7 Nov-07
-9999
Dec-03
2.
6
5 Oec-07
-9999
Jan-04
1.
55
Feb-04
1.
99
Mar-04
1.
33
Apr-04
1.
44
May-04
0.
99
Jun-04
12.
99
Jul-04
37.
11
Aug-04
54.
11
Sep-04
39
.66
Oct-04
22.
33
Nov-04
1 5.
88
Dec-04
i 3.
11
Jan-05
1
.66
Feb-05
0
.88
Mar-05
0
.77
Apr-O!
1
.11
May-05
2
.77
Jun-05
12
.77
Jul-05
52
.44
Aug-05
63
.44
Sep-05
105.
00
0ct-05
44
99
Nov-OS
Dec-05;
^<"'"'9 •f f' 'tttr t-Ewp
^raw P’Vtrt
ANNEX DS
daily flow for main beles river at bridge station(t) so urKnjji
«p j&jj p upa/jf Tvic^iO
xiFiXjfj ;*r vc^riw/ 0*|MCM|
UW'ir
5*7?
5715
56WI
5tfi
5S01
5 4«
5 47$
5*0
62»
S.Z*4
*M7
4 383
lW
4 675
44.W
♦ 4»
4 4«5
4 *85-
4M?
4 323
4 273
4 1«
4M7
]965
3 922
3792
3771
3 75
3 32*
1603
3 503
WJ
3.603
>.553
3 46
344
3 42
33
3 25
3W
3744
U25
3,106
2,693
7 974
?1&
2M5
2 427
2.037
2BO9
2.792
7 6*4
2654
2 684
2 6M
?M7
2 563
7 5*4
7M*
2 5*6
2 54*
2 546
2 529
2 425
2.411
2411
2411
2 39i
2257
276
LU
27*
226
7.2fl
228
1»
238
2 78
225
2 75
27«
7»5
2 IM
2M2
1.913
1 813
1 TUB
1 7W
1 795
Apr M4V JkTl
1 796 1 703 131
1 714 1M2 f 491
1701 f 4M 1 517
168-9 1 301 1 M2
? Ml 1 476 7738
i£M 1.622 3.652
f 674 1.9H 1256
1.594 2DO2 40U
i 58’ * 7^ 3264
I W 1 595 3.281
1 491 1 504 3204
1.470 i 581 7 887
1 478 1 6M 3364
1 *M 1 828 2777
1 379 zioe 7 851
1.290 2123 3 548
1 284 1 928 3.411
1 284 1.799 r- 36*
1 2M 1 818 829
1.7M 25 8858
1 284 2293 B 4B
1 264 1 9?3 132?
1 284 2 01? 11 M3
1 28* 2 047 6.654
1 284 ?i?3 0 244
1 ?8A 2017 13 76
1 26* 1.813 19 93
r 214 1 6M 24 M
1.284 1.697 2i SM
JU
**
28833 104 8 13261
3953 «6 4M i»r»
4J.J4 7 139225 1ft«T
»206 205 00* •50.842
36.M7 ■96 IM
01 816 1J9.40Q 141J91
SO 209 110 101 131818
44 04 1*2506 89 296
4398? *69 Mfl 183 064
*2 666 129 488 2W.27T
MOM ■»W4 IM49
Get
Dk
eom
? 50.728 1BM4
1 M5 1 8J4
1.674
29 KB
BO ’’IO 895 HO '3
» KI 67 5 ■07 364
M IM 181711 8LJQJF
317 »3 :X»
*3fiO 2*4 W 'MX9
46 MT 71B3? W 371
91387 191 96 KM6
50 T 4 246 N» M85J
73.434 *rati 4? 129
MW *14 m I70.1M
9/221 IM 487 1B215
74 rw 150 749 128547
« 756 278263 126829
87 474 100.544 90 817
83 97a 297 855 71 M3
136.084 264 40$ !SK’-
82 484 180 241 53 042
M770 1 BO 714
71171 *J»5 3712
M.T21 6 M3 371
71 M2 6579 3803
Mill 5464 348
*9 715 0932 3 41
3*156 IM3 33
32 584 1 U1 3261
H.™ 7 71)1 3125
25 7*3 4-874, 2K3
7244 93H! 3974
20. MB 0 471
1187 5 7M 2 MS
17 2*2 1-3 858 7BW
■00ft 10 704 2702
■4 955 4TW 2W
14 1M 7.113 2583
HIM fl XI 2529
1-5 951 7143 2*11
11222 4.609 237
12.146 6i» 236
11 MT 59?7 21?
10 M’ 5 50J 2139
1CJ77 527 2047
98 5 MT 2X0’
10 '6? 4 WB 2101
11.719 ittZ 1JM
I2JJB *324 1318
10257 4.142 r«7
• ttl *M? nn
6314 3M4 1813
7 ?»5
t 911
12.636 7 378 8.548 3749 * Mfl 19691
47H 3MB 225*
1446 101? 75M W99Q 161.231 1»3’3
’MM4 MS 4MJ 310 625
5.877 3.603 2548
1 7M 25 29 690
138 054
ZMZJ7
t*mum 3 403 2.546 I.7W
3 653 2 15 1 753
!!rt«r ‘Uniw 116DCS Yw r«J
5*oi ‘W*** MAIN SELES *1 BRKXJ£ (1-6005)
T'ypa ■ Flaw lajmscs]
; 11 s^rtutai Eevm^s Are* : 3431 Q|^ tn
1 28* 1 391 1.491 21833 575 WM2
73 ?» 4 M2 26’
83 tt 1686? 6 31
rr JL3? 10. TIN ITO
7.7W 15*4 1116
1 M3 1.410 571
46 833 141 477 93 l» 16 572 4 942 2037
L
«
U4r
4cr
U»,
Jtn AJ
*mj 540
1
2
3
4
r
1
n
7
n
H
y
B
a
11
12
13
’4
19
'9
*7
’1
19
2t
21
22
23
24
25.
20
27
>1
29
*)
1h
11
l 013
1 813
1 AM
1413
1 784
1 701
1 674
1 54M
1 568
1 491
1 478
1 478
1 47fl
’.4?8
1471
1 4fe
« Ml
1 37»
1 367
1296
1 284
1.2?;
1 204
1 152
1 192
1 1i!
1 137
1 201
1 2M
1 284
’J?84
3908
1 91J
1-137
1.139
1 Z72 09< 0 782
1.204 094 073
1.111 094 0 721
1.115 0 94 0.721
1 105 0 94 0.721
1 1» 0 94 0 713
1.1» 0.94 C655
1 IOS 0931 06
1 105 0.073 D.S93
1 10S 0 454 06
0 721 l.Kfl 17WM 57 815 M’Wfl 34 5M 0 555 187 11 5M 8? .an 2WM0 33 579 -
96 282 15-203
0.593 4384 •B*64
0 6 5 5U IB 598
12.529 1M972 MW? -
S0H7 5 43 SfM 73 W*
FS56 |J1 ras 23 579 •
3 684 1 H3 30 512 W08 2M 66 -
1.105
0.8 0M4
1 DM 0791 o.rti
1.031 0.791 a B21
1 02i 0 791 0 931
1.01 0 791 D.M4
0.782 2332 T9B53
D884 2 D62 11 5*3
OKI 7*24 9T7T
1219 4 79? 11254
■ «S 3153 II BW
1.987 1057 49.124
201? W0M 37 010
-!
IQ 774 25351
2347 538* 23781
095 0791 0 ?91 2 331 408 »1»
0 94 0 791 0 721
□ 9< 0.791 0.883
1 M4 3.324 51 I?5
‘.51273 l»918 -
130 OM 94 ASS -
6S7W 0917? -
113501 »*»’
1KLZ11 83.931 -
133 215 6*7*0-
1X363 61.710 ’
378 203 »-&54 -
2112?? *5 5S3 -
146 11? 4J.&76 ■
iWSM 70.732 -
O.M 0.791 0655 3377 2M» MH9 210 3H 54.101 -
1 772 2 447 K043 24J 0*6 74-ftu -
094 0 Ml 0 655
0 w D 701 C 707
0.94 0.791 1.044
3469 3127 93 557 198-711 82 -
0®4
0 94 0 HU 1 W7
004 0.762 1 M0
0»4 0 73 1 MS
0 94 0 ?21 1.117
0 79? 1.173
3 W 2936 ’43S01
5526 3M? 28? J45
F03* 3604 2*7.177
I3B08 4.473 117 813
U 62B fl.16? 142JW
146 357 75T« -
115 724 BC 112
12S.047 /• 409 -
124 5M
M 744 -
134 ft? 54 603 -
4 307 6 <15 132.106 153675 51 «w
D»4 0.73
0.712
0 ?91
0.701
3131 145? 1329ft 16607^ 41616 -
3 09 1207* 160 523
2*1 1 64 091 -
4.050 12413 gzw
s.
0.951
0564
0 FBI
3 733
3 IM
I/T72 103226
78.487
t 03?
? » S>
M M MSIMMM »JMfU-o_________ - -OOOOq „ „
OOQOOOOO QOOOCOOOOOOOOWO OOO
o o o p o p
’?
5
i
<
O O — u -*
mm*
s
• •
OHO
o o
98
r
§§gge«S5st2BsgS2sB=993333g3?
£33
J?
5
5
o a
» «.wOOOOOO woo o coo ~ — •* o o o
M
gmms^KemsgsHaHssmas
o o a a o
Sft£3£5£5
o o o o o
3**33
O«^O
s§t3a
ooooooooo ooooooooooooooo
OOOo
OOOOOOO
ooo
o o o
coooa o oo o oooo a o ^-*s>s*ooow
8ss55Ssisy5i8a8S3s55si?BBB£g
S2’5
mm!siglnsM* = m5«?$§8i
f
5
mmaHSSSl
aS*MNMb>fooo*^
a-&a85» 5
-©ooooo
-
m P c - — 40 N>
M U» L* U»
i3m
wankCTiDCTkfJUS
-• o
4 CT » *J k M
35*8
. cBs I
aSBU 1
fisBBs
hilt
axBSs
«kK£
sttKsSsisieBssfi BsxK“tjy .^aa;
■— „ KJ
g
Msamss
-• -• M O » *J —
O-*0-*U*M(J
s
t?8«
C4 M
sHH8atsm88«8lH8 8iUKKsmhS«afiai5isS*^Sigg5lSeqgisail
« -M C
Ui
—»-»•..
•M » § K X £5358
iaSa £
-m m — -m jC
u w mn m
8355$
sa^stat888*8aiii82s§333C2S22S3«
mHhn2mmgmsm3&i«mgSsfsSsiimhfHSmS&
-- 5-
hmimt&iii'iink lUMnimmmiUt&HSSUl
N - Sn O
tS8S88S5^
agasissKs
&
X
8
** ♦* fc ****-«*V‘<*'«’ - • „ o«»s».Sm . S
>n-
r^MSs
& *5*
u
J[ 8SZ_!5^Sj£^88js?«rSer38S?cf£K9S5
g 8g53fi«2§2&3ff>5I?gSSI
UM •
aitt
.
K
i
ff.
j
f
«5H» 1
!;5K » § 2S5a if 1 i* • >5#iSS^s 3Ufa£bh
f {/■. p o o o
§tti3
O Opp oo o
p o
^£8EK
hj *j w- k> En
O L> Q O
SSH
a o e> o
- - - k°
hj in CL -. »■
OOO OOPQQOQQiOaipiOQtjM
£
P p p d
E3 O O O O
p o o a a Oddo o o o s o o
Eo
Mp
diS?58§§28§§
mre
£
§
ppp
opopapopsaaoa
Si Si......................
o -*• o a
> u* * -■
*= ^33
oacjQoapOooDoaooaapoo
a oa © q op Odppoppopo
J. d?locQoa
M O IS* -J M
Si?S8
K S S-
Sagspaj£s
i9as3IS&Siaa ?
mmimi ssmmsmma
S 38qR88aS8a8*33sataai -* SSS3S
B3t£S
s z3 ES 8 ggm
op
o c* o o
«
f
<*• * r > g*
--J <1 M 1> Q
u 3 p n u
£ £ “ g td £|ftSplldEttjLF«3.
ms*
ammmmshSgShSimiigmF. • ? 3 B
«.
1
•*» W •-
M
4
» i r» o o
i
esus
*
c*
-•
8
St
*
” a «d z
asm
i
8ga*3
£»«-
oB r» •
w
83 IJ £
10 »~ •“ «
sasea
r- W N «-
i »’«s*?=?’s’ss5s;«m’!‘?sa--------------?--u-
mu
m=?
K4 ZZ1--------------------------------------- O <* r» o i_, -, - -___________
3 Z £ $ 3 5 3-S----3---S---a-- ?----
- ~1 v- o K> «-
O C io
3
•■ a* t- q ♦'- sSSgt?
• » • » •
!
I
« • • » •
XS33
5
oooo
J
$
Ji
iiiiiiuiHiuuiuiujUH!
ooooacjoaoooooooooooooooooooa
i^iir
*~ * *"-
O <3 O O
*~.
o
Oo
o
?**§?
o o
o o o o
1
8
I
St*icr. Nambe- • • 60C*
Ymt 1W
StaiorNiinc MAIN Bf LES x BROGE !*’6005it
m
hi
r
-*
8
8
f
2
5
J
G!
ip
*B
Co
\\'^ Vv
X ■a W
e o o o
OOOOO
OOOOOOOOOOOOOOOOOOOOOOOO
l!
OOOOO
opooooooopooooooopooooo^oooo
H iis
■n
?lg?i
OOOOO
J 55^5
IsseeasaSxSaa^isitciiis^gis^
o
s
5
Q_.o-M
r
ocooooopooooooopooopooopopoooop
I
Hl
X-
iI
5
I
i
• • • • I
8^8
• » • i •
f
5
o o o
SiSsS
v p * O O u»
■M O p * O O O» • fU a - Q _ O O O o O O QOOOOOOO
ooo
282s238£a§a255a2S3§8E5ssSi8is2
u &t. 5««?S
-4 MO
• < • * »
I
£
3!*g?Js
smi
2fc£l3a
i388s2|Sis8ap88i5ais«!e«2c-u-i^^-
a^2SSS»S3a4i*S35^«“5S5^3 ,
c
2S8s%$ «t8 3 3 9aaai«s%t8S88is«a$sa
«
f
5
t
£
K
x3
8
nm
w&*u
55ESK”a“Katt3"*2w*haBH3P-K* *tf“
a a a a q B a b a aas
HM
8
f
I
f
8
33UBIEB' msHBSim&hmh
Ou -•
o ^uppoooopoopuoooooooooauooooo
8
6
a
mssAr
Aug
On
1
?
J
4
5
•
r
i
9
'0
11
12
13
14
15
ie
v
*•
IB
20
21
22
23
24
25
28
27
29
29
X
31
Mur
Fkjw(MCM,
Utcnxjm
Urwnur
Rjncff 'i-m)
Smart Now 110005
v« 1973
SmonNrM MAIN BE l£S U BR ©Gt (11600$; Tbr*-5e Ama 3431 D H krti
Jr
Fab
Aw
Jufi W M Me Oa hm □*T
1
1
J
4
5
e
F
8
0
10
11
U
15
15
<1
'»
X
*1
12
to
>1
27
?1
K
XI
J1
■
1 175 1225 1 175 1.154 1,164 I 154 * 002 1 082 W TD&2 1 Oft? 1 072 1 O1J 0W4 0.S37 D»2fi
9 Ml
3306 -
0 4M .
1436 -
191* ’
S 193 *
U1 -
1.444 -
ij K€ -
U 53 -
19 73 -
16 437 •
<5-836 -
20 M& -
21 819 -
2B4$» -
»277 ■
38.738 -
<2 991 -
H53S
TOW -
a 067 -
31 097 -
42.095 -
41.109 •
45 447 •
38 694 -
35 558 -
46.579
33 301 -
Z2 796’
59«7 -
4* 579 -
3.351 -
17 216-
52 343 -
■
-
JUWl”«X» Y«r. 197e
UMN8EIESW BROSE ("W05)
TrM-Srwsh* Aow(arwcs>
Lacuda ’ IcnglhAM Eoalo-
343’0«qkff
Jin
AC*
Jun
JU
1
2
3
4
5
4.283
<305
Oq
23 585
38 541
71375
39 563
111348
4 666
37 225
’M.495
84 la
3 M2
366 483
30 257
» 327
4*76
39 115
219 122
: *)619
’36 312
**3
e
i
i
4 48’
34 379
1 <1 633
■67 718
114 XM
« 44?
24 936
368 184
97 949
5 484
32 268
368 07
1165V
»
’0
5 48
52 705
135 36
7413
365 601
55 234
264 00*
1«> 259
it
16 05’
’X 15Q
834
’69 172
12 405
52 37
7? 103
’76 903
18311
103 7J?
60 222
302 069
124 OK
»243 22433 2’4C7 S’M
21
22
23
24
a
x
27
X
20 506
37 599
228 MS
7^8
22 217
33 426
123 406
181 041
40 t|
41.307
6405
44 47
97 440
7? 194
34 ITS
125 893
5 335
21 924
53 527
140 651
’60 05
X121
4 526
12 371
•35 356
45 08
”6404
'9 726
45 405
5.081
11 616
44 021
84 71
17953
42 753
a 177
’8604
16 MG
59 721
63 534
71 Ml
4 227
30 45
V45<
»
’35 95
93 356
M 315
30514
»
31
Me«’i
Fk»(MCM)
6 316
X 634
155.972
•01 678
146 465
65 566
6 322
23 04
140 924
91 371
117 556
32 41*
4 905
93 357
122 7fl«
V8H2
*3292
56 342
182 66
129 SM
Mnnrsjr
34 452
156 263
489 237
335 M?
Mrtr^jni
44 47
155972
368 483
249 553
3 802
23 585
39 563
71 365
Hu-ofi | mm |
10041
45 544
142 593
97«6
Staton H^nbtr 116005
Yw~’977
StmonM™ MAIN BELES al BRIDGE |1’60061 Tn«-S4r« Tjo« Flow (cental
L>1V3t uxvuj. Ewvatax Atm 34310 *3 m
J*i Fae Ur
May Jun
Jul
Aug ST> <*’1^-
Jw'1
11lKL5L£5^pRl
£**•'**'
F*6
1
1
J
4
6
QJ3
0 7fl1
0.272
0?72
0-26?
a 21 e
0.12
a.24i
C 1*2
G rfi?
g.i'4U8
0 287
0.BV3
0 789
0 3^7
0 176
0.111
0129
0205
0.306
0 Jfl
2*55
0 61
0.797
D.669
CM1
0.712
1 O1B
1.261
1.016
0 79 r 0 3?i
06W D.478
0 5W JW2
0*92 CM
0 3M 0876
0-3*6 oeoB
0 778 0.783
0 787 22*2
G2fi8 4-2*8
0.705 4X8
1 5M 3 78
2 08 *629
1 624 5W7
1 fi S2E
2.212 3®M
• R« 3383
I 5*2 3182
1 408 3 967
1.1M 3«
1.102 2 962
1.11* 2SH
0 67* 258*
0 723 2 827
30M 8.180
D.530 12H7
04*1 ?□ 734
0.395 10 219
0 35« 8.11fl
0 31 7 071
C275 11271
Q 278
JU M $* Oct
2i 71 MW
35 019 71579
23.018 73 37*
43C17 79 MS
33 OM flflOfl
37 32* 85 845
6022* W3T1
35 M3 5«0CH
28 5*4 72.KM
21571 1*714
27 102 221937
31 7M 'XM7
3* 3D* 99 TftZ
30 517 110 S3'
11AM ?7i m
71 MS 185 8M
44J4J 137 868
29 M* 132 CW
83*05 128 997
61 3M 1»4«
Sfl 354 2O7&*4
145 002 J10-521
182.921 •36 896
79511 M**9
219 237 1I46M
1«^03 210 54®
86 M3 I8T.W
82 869 9«Vt]
•O.ZTS
•W «7 96 398
98 289 7? 487
« 3M 230 111 122 039 1317U2 178.366 t11 iW 162 931 128 TO T04 245 M211 102-413 .’*061
9507* 111 103 165 «?1 M2X
16" 400 ur 262 152 874 1X15
171*1* 95 775 IM -’46 199 5X >62254 77 M3
177 2SB Mi3? 184 478 M650
raise? 62 616
•.’50 853 5*TM 164 071 321*6 134 557 24 847
133*73 run 122.1 M '9 2fe
98*87 113*5 90 229 ITS
« IGO 17511 89 782 *8531
100^8 15J8’ now 14 DM
195 077 tSM* 116 *83 13»?9 13515? 17.007
110U
F** Dae
10 138 3fK 9 34 3.*3O
9777 3361
■ 25? J 2*9 ? 7X 3U
7J79 3.063
6M4 2.951
6.59 2119
83? 2- M2 6-63 2MB
5M1 2 55
5 733 2 56 5 529 2M 5 IM 2M4 5 304 2437 5 >33 2*06
4 94? 2312
475* 229? 45F* -
4 327^
«21T *
4M7 -
4024 •
4 077 - 52XT2 -
!$07-
7 JI? -
5.756-
* WG -
3.942 -
□.ABB
0»7
Q4J3
1.122
O0H
*343
87 832
<20 665
137661
85 956
un -
bur
7 14-H
0 90?
2 339
11282
181.1*7
>23 779
j56M7
178 858
15MB -
rtwiifMi
UaanuFi
- 51*
0.4M
0.12
1 2M
2J217
17 737
J1BJEJ?
226 93?
25CA53
00.116
10-3# ■
2T371
MOM
40 0*1
11£12
3 M2
O*W
0.026
0.111
0.327
0 287
0.321
52 797
J4 3W
1 (51.998
4i M?
4J14 -
0.2*3
0.682
3281
3toi«Z 116DO5
1975
5wr MIT* M*W BELE5 at BfllDGf (114005}
WSrwTflB Figrti icuftira)
-Huh ‘latino* £l««uon. Am 3431 Dsq tarn
Jan
F« Mar Apr May Jui JU MJ
1.096 0 4*2 □ 531 r 40? *335 W158 ■
□ 893 0 W5 D 505 •305 <744 71 M8 ■
Ofl
□K
1
2
3
<
K
g
7
6
9
<0
U
13
OKI 0-351 0538
i5rt
•01325 -
C 905 0315 0 538 1 673 tl 1T5 147 188 • 0.771 0 305 054 1.BM 0 661 MBS - DS68 0 272 0 626 1 786 9 646 $3042 ■ OMMI D24S 1.206 1 9M 9SM 8820?
0M4 0 2WJ 2.117 3.T91
n T2Q -
Q 562 3*31 3 M2 zm a 854 M 7*6 -
0 545 0.331 2.9M Z3*T 86W 80 92*
0S49 0.31 1.811
lflT* 1T72 T5.M7 -
13
•fl
15
>6
17
1-!
is
jn
A-
ji
jj
33
24
as
3l
??
28
29
>0
0.653 0.315 1 19 * <28 23204 106 165 - 0.714 D.3M Q.BTt roars »S1* BI 409 ■ 0.72? 0Si2 □ JIB 22 12B I0J299 93 1*5 - 0 -Ufl o*w 0663 TOM? 301*6 IWJX - 0623 0.485 0 448 10 09 38101 110705 - 0 657 04*8 0.4M 2C249 M> 99031 -
056 0 442 0.412 22.022 101882 103 5M ’ OM 0 448 0 823 29 533 '68 00? IS 178
0 552 0 479 3449 24 08? 86 795 125 506 - O.B15 0415 1.363 248*4 103 1Z332* -
0-72? 0 66 0.23 1 718 19 608 72 057 - O 73 0.714 0 212 1155 10 iae mjm
0.77S 0714 0.272 1 158 6 W *5.0« 9 796 O.flfl •3 342 1 3?4 6M3 47HH -
1.7t5
&'tee
1 F?E □ 5M 3i3l 1 103 5.846 110 511 -■
1.4*7 0552 0 531 1 033 *543 <39235 ..
0 608 •3 443 1J17 10 M 121 ?31
r £28
i SUl
1.539
1 111 1 A3A
r ns T.771
T.72I 1 729
1W
•m
t 771
•771
• 736
1 728
1 TTfi
• ra
31
0 54$
0.46
1187
6 144
69 05' -
T ,721
<■
0 534
0*92
1*87
5.66B
50.814 -
t.?3«
0.4W
1 4*2
-
0 668
0 3M
1.16
8 JQ4
50816 ..
t,
1 T9
1.M5
3.1Ca
2*116
1X106 -
1.096
0531
3.712
29 533
168.W7
0*92
0 212
0406
1X5
4,595 -
0.622
0JH3
0905
7 029
39 660
J101W1'JXXT-^eafs**®061”"6’
Jar
Fet
1
2
3
4
5
6
r
B
B
10
1*
12
U
14
15
11
V
il
it
20
21
22
23
24
25
a
27
a
a
x
31
War
RowiMCU
Meimum
Urwnum
Runoff (mm)
SuacrNtMnbe 1160C6 Yw 1M1 S*5crNwr« MAIN BEUS at BROGE (116006' Tr^-S^iaa I jpn Few (cumecs i
uttuj. •Long.tuj. Etevafer Atm 34310 eq km Jar Fee Mar
1
2
3
4
5
6
7
•
•
10
11
12
13
14
15
14
V
II
10
20
21
22
a
24
»
26
27
24
a
x
31
kW*
RmiMCM!
WiJmurri
M-wn^r•5W
1
J
1
4
5
fi
7
4
6
ia
v
12
13
1*
15
i»
IF
’I
fl
X1
31
Z?
JI
24
25
3*
37
JI
39
X
r
Mar
re.|l*CMi
HtarfidTi
MfWsJ-
Birnf Ir^i)
Umri Nj’-am 1IWC*
Tfltr 1M3
5Lrtm*l*M MA»J B£l£S i! BRCGE <11fl005|
T tpe Pc** < £4*r«l |
' 1 Ldvu E^ncr Arsa >*3’ Q KJ
Jin Feb Mar Apr «•¥
Ju M3
>ip Os Nm* ok
2
3
4
5
4
7
I
I
‘3
'll
1?
13
14
15
U
I7
U
£
J1
22
23
74
45
31
27
21
*
X
31
ON*
0-T01
009*
0.093
DOG?
0.084
D.DD3
0.081
00*3
oou
0075
007*
0.073
0.151 0 067 0 131 0 065 0.12? DOM 0127 0051 0 177 0 045 0.12® OOM 0 115 COX 0 105 COM 0.104 0.03 0 104 0 0« 0.104 0O2fi 0.10? OOOT 009* 0.029 O.D03 0 020 OWJ 0.029 0093 0028
53
□ 093
0093
DOJfi
O.Q5G
0 r53
0 191
0 020
0.045
D.M9 0.04
0«7 0 112
OOH 06*
0014 D911
031t 2131
0.005 1 715
0 005 1921
0 005 15A2
0 005 3027
owe 3.1 B2
0.033 6 737
0.038 5 K’S
3033 4'Ml 9
0 DOB 2.072
DDOft 1.68ft
0005 2.7*7
0 012 5 06
0 118 9*37
0.1 SI 1*.M*
0.130 ’9 366
0.115 11 79*
0 093 5902
0 074 7.114
C-04 31407
0.057 40 755
0052 17 IW
C»1 57 Bl
0 051 28 76®
0 051 23.51
□ 06 44.113
0 045
2044 11.842
0.118 30.953
Q.151 57.81
0 005 0.84
S2M 27 746 IW.493 29 051 4D.G14 60 879
ISW* 2100*1
280*3 370154
419'! MO.TDG
50S21 as we
90 401 77 002
B2JM 77.847
1*8017 08 794
503 OM 7939?
1*7 83 He
36036* 5*95*
144 866 GJ OF
*472 13X
4 4J9 2.415
*•'•
2138
7 994 W321 29*212 rtJit
3253 «35’ 11 771 131386 56 93* 202*34
M2 MO 307
69 514 418 3*4
3I.B3T HO 853
29 29 93801
MM2 raw 46 3B 211429
107 777 180312
B»3’2 35V9U 61 062 243-12 23 36a 215W 20165 130-741
>01466 175413 78 J5 5*7.124
75.18* 251 W 61.827 167.BW 77 7M 152676
74.42 <54 003
343389 *5 043
IK QD 18 83*
198-795 ’8X34
’72-364 15141
911.5*2 152*6
106 ara 18 »1
16206 18453
•0 * 5*4 13 772
1M®7 >2-»
21896* 12216
207.162 12.136
149137 134M
89 If 2318
;4fll?» *82M
14*608 14M
1M318 1?M8
135 15.11B
SD J3r 152M
176-3S5 135*!
151.13* 6 467
4317 1 7M
43M ’•04
4 3*3 ’.JB?
4 3*3 1486
4JM3 TK*
4 3U 1 Jtt
*3*3 1JRS
*3*3 1587
*3*3
44 695 403 5^! 38314 5338
35-56 35fi MS
31 023 127 779
55367 201.794
148M 540-468
•8M»
547*24
M 486 5 182
JM
xo«* 29.1 T
519 839 77 MO
747 83 9307
0 034 &.022 <3230 157 53 151 S'? 23 7»
3252 27 7*3 36 314 499
4343 1 733
4X3 1.842
* M3 1 A36
**» 1 2M
4868 t 118
4 621 1 124
4. M2 OK
3738 OEM
3311 01
3235 3668
2612 i DM
2JJJ7 0.949
J.161 1 032
2377 CIH*
2.774 0.M1
2836 one
238 0 796
2145 07
0 864
3 1 122
t 8*T 354
*585 2-415
2.14* 06M
2J7 1 037
k
21.0l.9M1HHf
f5f
PT
i
&
i
$
OOOOOOQ voooooooooo oo opp <30000
0OOOOOOOOO
£agEg
— SeesBasggmmmifgS^xxsm
£ ??s2
»mmggK«gtemsmm5s*sii?i
$
u <3 c> O o
32^5
ooooopp ooooopoppoooooppp0 O O O
k.. sggg^ggggggggg
0000000
OO0
s
»I
3‘4SS58888^SS8m,
a * 4» Bl/w&wwwwuufc--'
OOOOOOOOOOOOOOO-"?-'^^---—'TZT
«8«5«m^SHh3iSm?!
I
OO
simsieei»hmpmp O OsO O O
oooopooo^ooooo
f
>
—’ 0000»007(9— 0 —- O w 0wO*0* *-* *-» *•*
oo
o oVo#o uO>0 %o -• i-* <-•
f
<
o
o o o <300000000
5
oooo0
OOO0OO
SgSSSS?S2oo22
s
a
glSsg
OOOo
rnn
O00o
ooo
o o o o
POOO2
oo
ooooo
88§8S§§§g§g8gg§S
g ^2g22g§ § §
5 ?§
3?R8??iiiia*£§i8s
a SI ? 3 £ £ £ £ s £
p p -*
s88po
-«j -• -• «> -*
u o C «
iHm
OOOOO^W-*
msm5BaHS£m«m«^fcSm§8
o <3 O O O O
o o o>o-*-o*-o»0<3OOOOoOoOQo o 0
op
0O©O
OOO
o o o0
g?H ?Ss5s
s
»J (B W
f 5
»S8imasF '“ 53g^§ixisiii=gg§§^E
-* ^4 0»
O-uW
ms
o cp a m un
M M -* O O O -• -•
5 ?«8
ggm ilmhmsissi Mis
— M _
~ fl”??*-
« ->4 »
t
n{
Sssm&iEgiisiSg
o-
s 885 ssss^gsss
s
g£S3HI§l?mt3H83
._ _ m s d -• a il 8 2««b»8S#85ss
c OssMx «r •»s^S«8sgc§gs
t
am
mmh^§*s
aSaSsySsaasaS
maaHSgsal*
5 J u o 58S8
S88*S3!£Si;j|!58SS88«t4S88S£8 S
t
*5
>4 O O V Q»
O O -M O
S--i
->4 0 0 0
a sj a »j
-M <* U tu
C* -M O' * uK •* -* -J e*
*•
-4 W W A
0 €•» -» * -W
-* U> M —
1/ O u° 1>
8S5saftS“55 8i ggg
tsBnmmmm
8a
u» u at « -m
N N M J U<
** *» A
«gg-4 •
^.iSI C-.
?.m* tl
a-a8«baaKa«<»a
.-wu- U» V V> V * O. «» • * -M o *
8
$
k
8V»mO O m?hs?m;mK§mss
34!888.!S8S:SSSSSr
SmKX^
sms
$
?
*L
X
M » « — — C X £ & M
ii«i&ii*pOO0 - — — -------------------------------------------- — » — —
W » £P
232»3 3fi?3Kw £B»SS
=
ES*S F F4r 7 n “ EE
¥
iv’n 'iV*Y-r I**5
34310 *
Mr, Am AJ Afl SO Oct
Dk
-
U***
1
I
3
4
5
a
T
9
I
♦0
H
12
•3
14
15
1*
IT
■I
II
Z
T
22
TJ
2*
2S
2*
27
3
»
30
31
Item
-*
4 4**
4.30’
4.122
3 9?
J 927
J6
3 nt
3 574
3203
3 1«
3 12?
10 V
2 963
2751
27U
2.71 fi
7 M3
J 4*3
?4X
71*2
2 157
1 963
1 SM
1764
17
1 *07
1.3M
I IM
row
DM3
0751
D.fiM
0.557
0*45
0*27
D.4Z2
a 3i0
03M
0 379
OMt
0 340
a 379
d*m
0.3M
3370
C 344
0 943
0.343
0334
0 279
027
0 2/4
0 301
Q3G5
D.W5
0 301
0 274
02?
Q774
0 301
0 305
0305
0.31
0.339
0 338
0305
02M
a 9M
0344
o jn
0.348
0 343
0343
0 336
O Ji
•3 3C5
Q 305
0 W5
0 301
0774
DZ7
0.27
0 271
03W
0212
a iv
a z2«
OJ11
0JKT7
0 207
0.2D3
0,1 BJ
a i79
Q17B
fl T7B
0 157
0-«
D.11
0,075
DD4«
OOM
0 020
fl 02?
00»
fl 036
0047
Q«
0073
0 073
□ 06
0 041
a 040
a 037
0030
0 030
D.D37
01X7
CM
OD79
0-123
0 131 02 12.213 235 456 49 6M 33972 -2M4 1751
0 119 0 20/ 15709 2M914 M 574 31503 12M5 ’X9
0.0M G 287 18 93 22’00* M'tt 33-7-4 11.923 136J
0 IX/
0»7 -7023 1761M 1MZX 44X3 101
IX
0M7 0 214 4t 187 145X0 73 -Z» M3M t.061 ’.336
D 044 0 262 MA 174 67j0X
M8U 35J1 1 IM
DD2B 027 XX 9» 121X2 114 «J 33X7 5X1 1 106
0j52 790 227 urjrs 48T 15 32 4 W SMS 1.132 CO15 2 7M 209 145 1W309 M2 919 3TM4 S5U 1 IM 001? 2075 161 075 21?4J« 3O4 54Q »111 57W 1-205
0 DCS ?BJ? 206164 ’03 772 BQ 171 29 374 StTS 1 t|7
0 00? 2717 1PC2M 109 W?
29.052 5W 1.187
□ D03 2056 147-30? 10/373 K39MJ 35 11 5 448 1.177
0002 2 W9 0C2W 85 7M W 126 X9M 520? 1 108
3002 3.177 54 000 M 731 15 913 J2M1 5?N i 02B
3 M1 3 213 54 OX 46 JZJ 1002-5 JO IBB 4673 7930
0 001 4 339 M ’45 721326 Trt T50 26 106 4 125 0 774
O.XI 5.796 51 423 f0?2« 22S445 M4J1 3A5B Q.7M
0 DOT
12 5M 111.0*3 ISO 734 29M2 J4X
0 ?2W 46 689 96 32? B1 496 14 »•« 3J1 OIK 0 11 20? 56137 100 514 67579 1T4J7 2JK9 □ JU 0 33 951 tt2« ’M5M 43951 15 5 2-IM DIU 0 12 345 65410 IT? 293 0PXM I2JW 2.717 0X8 0 T2M0 M2 M4 13i 60 107 1ZMT 2_5C O?M 0 44.07 3C3*flJ 153 716 57W0 IT M3 J451 fl 747 0 17 403 321.173 J»3M 5109 12 265 2-12* C BOB
□ '00 302869 1114X 4i7B3 12.5*4 220? CM’ 0 0.9M 30Q«M ■3 3*5 39143 12-5*4 7.M £J03f 0 6 017 33672B MB44 » rifl 12 2*5 23M 0673
0.006 60W 31Dj537 MB93 MJ52 ■Z9F3 *,«5 2373
0 13
135 M8 M 909
17X2
0J17
2624
Lto-lMCUI 7076
UU—JT 444
0 751
Rynif! IH1ITI)
2.048
GM 0.294 0.063 3.672 fl. 709 0 214 DBM 0M4 0203
027 019 D 027
0?M 0.23 0.M2
3D22 7298 ‘5QD33 133 225 119 IM »tat 5.D75 10« □ X 14 909 401 647 J56JM 300 936 67 331 13155 2M4
fl.131 44 0 7 336 033 3?0»3 M».15 40JC3 125X 1.751 6 02 12 Ml M J23 33 352 *1968 195* 6.51 r
aav 5,511 117 122 r 04. OCT K643 *9 33? JJJX ■3 W
siwm r^c* 116005 YaartiMT
5Ukr Nrw UWJ GELES AC BRIDGE [1
r m^SriMTffM Fk»|ftxTwGBj
L-'Ufe 'Umgari* EJtwtttjn Atbi MJlQwjkr-'
JW’ F« Mar Apr
1
2
5
4
5
H
7
I
0
ID
11
'1
n
u
is
’«
i?
14
19
«
11
3
a
*4
25
4
27
*
A
30
11
0 42$
O.4J7
0.42T
□ 4?7
0 427
0 4j7
0,422
0 MS
0 37Q
0 344
0.X3
0X3
C35fi
«X5
0 274
0_27
0 27
0-27
07?
0.27
0-267
0 214
020?
02C3
0.163
0 170
0179
0 170
0.170
0178
Oils
D7M
D.06?
GM2
DM2
0662
0662
flM2
0374
O6Z3
0 6t4
can
0014
0614
0614
0.014
0414
0*14
0 704
□ 704
0«M
0601
0 437
0.83
0 63
3 63
0 023
0.562
0 502
0 473 0.279
D.&3 0 202
OB3 0J714
0852 □ 203
0.752 D.179
0.557 0 184
0.517 0.136
0 « D.151
0466 D.151
0.433 0.131
0 4J9 0 115
□.51 0.120
0523 0 120
0.523 0 112
a M7 0.11
1 010 01X
0 053 0 1B4
0.462 DJ2O7
0353 0.703
011J 53 024
Q.OO B-»3
D’X 73 9«
0179 9.771
a m 7.3M
O1S7 9454
O.1S7 13 132
0 17 57 017
0 M.nfl
G-1Q7 16 104
0 211 77.015
0 741 M09
0.301 44 957
0333 36.132
0M4 46.886
0M5 » 1l»
22 954
5M4 X 4*5
SMB 26 972
53 344 06012
X337
11391 »6I
11-122 Z39M*
20Q.O94 Hi M3
’Mill 7Z3 2B7
14 1OT 74235 146 5M 274 44‘
10227 63443
art? M*5?
•4.204 102 10?
24 14 *4337
1403 107'M
rt.l&2 MOM
37.004 M-»4
ns *M
I33M 5yJCB
*0 F44 61.52?
76 FM ***
M 623 534?5
67426 1MW
89^5 510IX
154.636 ?90 5M
m OX 1V7M
*52 M4 71*4’
55471 5.070
55J5M 5461
S3.M5 5292
30X7 5 MS
46 445 1035
M571 440
91 Brt 7? in 43764 4 971
0X3
a 19
5224 25.514 07.73? 1B'
7343 0.23
a M3 0-233
□.410 0 21?
0 427 020?
0.416 0 20?
0.M3 D.»7
a 353 0-207
0410 0 207
□-477 0203
0.410 D 173
9555 Tfi.602
9 19 20-X7
323B 14 428
10M 30.73*
2.1 M 29 243
3S27 31 Ml
6 403 K.6M
6 7*8 7M12
10 IM MJ15
10.403 13 02E
S404G 107 5*4
M3M 645 730
n.4M 372i?3
WH 2»M«
M 01 * t»«?9
187.6*9
116906 M®3
DO 71? ?A«lT
aa h n ds?
53 711 «9*9
*7.183 5« 626
M47? M137
H 5X 4| IM
HW 40 IM
54 37’ 4507?
50 044 BBM>
524S1 0199V
5" 533 13000?
S3 5*1 M25
»M9 5i2«
40360 47J09
14 X*
42 sn C0S5O
54 417 45 «M
« *4 41017
Win W12«
4*091 M15B
X4M 41X5
«M2 41.645
59 456 48134
52 MS 4 4A4
M 6X 4S30
4| 4 r? 4MI
42901 10M
441974 5.7W
»133 5J53
33M4 £M7
77.107 4S6
22.MB 4536
Ji -45 5 940
1BJX seas
11X0 5 re<
13271 S9M
10JT4 S1M
14? r U3-
TiM 35*4
7 MB 14N
7.285 3414
705 3.1M
6 770 3146
58,144 75*46 9 371 J.1Z?
fl its 10? T
S®5 2M
JIM
oiu
14 27’
64141
»««
52 +49 74 DM
7316 54 271
57495
D.21W 6709 0.4JB 0178
4*32
0 7M
□ Mo
0,162
3652
29 254
54 2-tQ
165.1&*
?4 5M KM*
29317
»?4C?
MM
0M2
T330?
1»
0471
9 741
73.236
172OM
363611 2456*
47 r 2
423?*
56,345 7*.5M
5*95
2*06
0 M2
1.015
0 279
19 403
194 636
MSTD
XCM* 4116V
55.674
4IB5
v433
0.X3
0.11
DOO
6 4»
art?
0 $4
50 '56
126 927
71 J«
3B-fi
0.336
0 137
2851
21-M5
h«iwii 1 Lcrt7*uCe Etavjacr M3’ 0 *) An
Aajj
s*>
1
2
2
4
5
6
7
I
•
10
II
U
13
14
15
ie
17
14
19
W
71
22
23
24
25
26
27
2B
29
30
31
Main
Ctow'UCM)
UflKT.JTi
fc€nr»mr
(mr.)
2 M3 0 742 0.806 >964 0711 0.881
1 TH 0.79® 0.83
1 73? 0 80® 0.596
1 6® 0 756 0666
16M 0 742 3.623 1 se 0 689 0.53
’ 548 0 637 0.48
>5X 0623 0 499
1 4fl4 0.582 0.653
1 441 0 603 0 637 1 372 0 744 0623
IX 057 C589
1 M9 0609 0623
1293 0582 0 623
*272 0.575 0575 •281 0575 0 529 1 19? 0 575 0 517 1 206 0 575 C45 1327 0X2 C474 •283 003 0 468 1 281 0 689 0 433 1 197 0.775 0 427 1 117 QWi 0 422 1 OX 1 009 0 389 0153 0191 0 379 0 891 0815 0 348 0 874 0 756 0343 0815 0 742 0 338
0376 007
0.232 007
0.207 0 06?
0207 0 101
0 203 0103
0 *83 0.068
0183 0056
02 005
0 183 coe
0.179 0077
0.176 0 106
0157 0 131
0 151 0 164
0 134 0203
0131 0443
0 131 0111
0 128 0 85?
0 112 1 109
0.11 1 3M
011 1.31
0107 1 272
0093 1.187
0 091 1 08?
0 091 0 692
ON’ 0 751
0 091 0 631
0 091 0518
0 089 0 395
0077 0343
0 074 0305
0536
29 29709
3*
?M1
27 2M
170 473
2 373 302 014
2 202 187 460
2 083 156 693
1968 168 525 1 899 118 382
2 04 115 349
2 041 264 564
2 357 415 692
2.217 847 778
2083 191 014
1 982 192 047
1 954 185 466
1 85® 280 793
1 751 372.94
2 921 909 3X 13905 517417
16 5 202 525 12 105 120 724 10.721 185.032
16 759 201 038
339 178
206 45
188 44
212 778
230 69
228 186
247.102
363 94?
295 84
840 324
583 480
260 706
26'266
664 4«
249 679
186 578
255 456
467.078
506 603
505 402
318 762
352474
392 99
16 85 164 497 494 376
0.7M
on
1332
3568
2343
075
IM
0305
C 293
0 512
1 371
0 6W
0.293
04
13 394 364 495 8 884 729 802
12 149 1061 615
44 936 601 619 37.74 504 069
33 894 451 22
601 297
521.866
629 634
672.747
317.098
294 003
545 219
573 263
553 <83
7*923
697 778
341 639
230972
336 401
^3485
*35 751
<30 965
8» 1 369
489 827
350.007
218 4*3
227.541
38516-
234 412
*48 115
117.071
•02 50’
115 978
114 352
127 033
99 162
125 046
123 732
106.926
118 320
102 004
K 767
68 797
’0
12*5 USM 13005 *8333 11 T« 106M 10 B?
1.243 HU
H14
8*4
ibcj
iJ*
121’
10*
7K? 7444
$185
“4*
5k
ik
‘k
*«E
lie
‘X
<1S
IT
i«r
u
ik
iu&
ik
jc<
UM
IX
UM
UM
1*’
J21
C 703
1 761
ION
0 57
0 513
0146
0.379
0 378
0 074
0.11
0 49 9 252 M4 149 394 067 275 044 61126
1313 23.962 921 769 1055 469 715 506 183 DW
1 396 44 936 106* 6*5 840 324 734 923 152 OM
0.05 1.751 27 236
OM3 6.99 268 659
166 576 68 797 3265’
307 62? 206 542 53 336
•4'M 4|’J XTO -LM 31271 ir
14* 121 10 *4 H
SukrNurro* 116005 Year 19M SlMrrH«r~« MAM BEL65 * BRIDGE (118005)
I** nowtcma)
• Lmjtuje Ekva&an Aru 3431 0 tq km
Jan Fab
AC* M.y Jun Jul
Aug
oa no. *
1
3148
3017
1 66
C 953
0 589
0J69
8 296
26 295
65 7U3
231 W
2
3
4
5
1 647
0 953
C63?
0379
8 61
19 585
8*52
230 1?«
2
1?
14
19
X
2306
0 427
0 809
14 27
1272
0 422
1 6M
11 666
104.122
331181
223 ?«
2.217
0.76
0.742
1 261
0 696
6 115
7.177
1X311
764M2
135 006
2i«?
1.187
OflM
90 942
7 342
5 07
•09 295
177 617
2Nt
2063
2063
2066
0395
0.427
1 167
0688
0661
C 474
3X3
5X3
102 286
•61 399
102 421
21
' 177
0 517
1 lie
2.299
11.316 -
176 ax
121 906
0644
0.523
0.523
0529
1.623
13 OX
690 364
311 85
67 627
22
1 106
066’
55 203
»
1.111
20 823
350 693
621 411
24
1962
'954
>096
1037
C696
1 9M
6 293
164 456
281 79’
82 ?49
74 872
a
1671
1M7
0 742
0 589
1 7M
5 739
125431
x
• on
9758
0806
0 72?
1 454
9 731
118414
147 151
216 76
59 631
0742
0696
0667
0.53
1.727
15 9M
121.8M
262-418
83 961
If
X
31
•644
3 853
0 614
’62 471
2393
14 432
7 791
162 258
170 119
266 265
’ .’M
0953
0808
335 706
769 2>1
102 838
175
5 939
0 rs«
’N729
112.716
ITS
075
6.652 11 479
88 427
306 379
209 929
175118
1.737
0 433
13.111
27 156
0 742
• 412
173 473
2X23
62 101
€221
3146
1305
3 156
0.796
2.132
OM
2364
10319 -
225 263
154 8^
401.376
166 331
UlfliTw
1.4
8386
X 746
603 344
323 61
25*
•4nk*vT!
173?
1613
IM
0953
092
0053
0 793
11479
27 156 •
789 211
60 165
S5 786
10*
HuraA (mm)
U 644
0395
0.124
2 765 -
2$1Z2
4*479
0 621
175 651
116 96&
0 406
1 861
7 796
9^A4X
0575
JkT
Md
Dd
*00.501
Otfn
0.176
0178
0.1M
0.1T8
5.977
5454
2*5 636
250 M2
1U11* 144 28T
14*65
0.5*8
12X5
?«5I
2M7
0.529
0317
0 1X3
577
242*55
ro
so
21
23
23
24
ft
ft
27
ft
ft
XI
ll
1-Z72
120ft
1261
*272
1-272
1.2M
1M
1477
’ 669
1637
’ 2M
i iie
1 Q3J
1.D16
D 9*2
0*44
Mil
o«1
0*44
00*2
0-6*2
0*7?
1 3*
1-31
1029
0*5t
0.645
0*3
V23Q
S770
1.367
0.742
DAM
DM’
0.637
0623
0 562
0 MB
0528
0iZ3 -
D SJB -
DM* -
0.675 -
0 575 -
0 575 -
05M
0529 -
0 523 -
Q.623 -
0 51? .
0 48 -
0444 •
0*99 -
0.237 .
0-207 -
0.178 -
0.154 -
0 131 .
0.11 0.091
0 0/7 0071
ox 0 047 0044 0026
0 02
Jun JU Aug
8T4»
’8525
63412
Z2M 83725
14*35 1X171
M225 Hi 616
22.003 F3 22*
•1*37 87 027
54 DCS 95 7’*
M.» JM-0W
95706 XI-7'®
637 429
30*1*4
3HX1
MB OX
10*745
*7.26*
M3O
91 51
W*65
06.0M
*104
57*75
69 0*4
16Z&M
16X215
75 1*4
63*7
71039
•2-171
$7AM
48JM
<«2
M-M'
5*4»
5**71
S3 M2
51.01*
38*25
31X*
M*67
36W7
xni
»*i»
2*W3
24 545
Z345B
J4.M4
38.453
M374
20-5C2
19 M8
1*3*7
17X3
172
Ti.OS
1*1»
16 531
15-631
14*06
14 05*
1X3tt
Me
11471 4415
1X243 4323
■ 1667 43
1121 4?n
10 MS 4 ’-44
id «to 4.167
1**13 4434
11*38 444
10235 4 3D
X67 4M6
BSSfi 4*34
1*1 4*47
•33’
<507
7*3* 4463
75*6 4 «
7.295 a
o o> a» o S
ooeo
8£s2
U -4 — »*o o
O
O O O — —
o o ,°
oooo
oooooooooooocaeoooa
’— J»
o> t>
<
o o — o
mrs
^ooooooocooooc
O Wo, o o o— o a— ------ ----
P-^Ot>t» » a» H?B
5£a2SH38Ge8sSS§S
o
<*-«*O->W-»OOC>O o
ass
SiiSKgfiagSSB^s..^.___________________________ ,_o
Sts
!*SBi2K£8
f
r
«SuH
-• -• K) ■•
LU «Q — *■ 2
M NJ N» *J •*
2£ £
f
5
f 5
ms*
u»
S cJ aU-»sX>2aOa»U>
p
p>pWWKJ MMMWU»M
* * i* Q -• Q) U
ssammiiMfisHmms sss&msmmmmsemnsm
9?3*5imm£
&
CK Lu
CT -»
3S
ocoaacKwicJtj-^wSSoa
hasshmhisssHmsmm?
isip’Ss^egsSm^Sm^Hssitgg
^o>KS2
O -4 v» V O
IHH
pSgg?K8g$g8«?XS?
*j
t* •
^^oosnunL--
Helmut
S««8a?i«i ag»ia«?lig5«i
s?SS5SS55*«a»h = X2S
s
-• SB -u *□ 5 as X
8838 .88
mr“
-»4 —•
CT <*
w
- u»
■w u»
ts>
«
ssaaaastaaaats^xa
z=,-;JS****
»*a» t*K
S 5 S a8t 5 588 8 8
X
8
8
I
sr
88855
§ S M 8 *C
sag?-
?’«6?
858aS88,3S = 5sS2C.-~
*hhHminwatmx!uum«
- i 5 % t -2 “ 8 ft ?, * 1 u 'S 11 a 61 * 8 3 « £ 3 3 "i 1 “ ■»
Siii^aESSS.SS
• x h fi " j- ® e Ki K
?
?82Sg§5iS§g“2S3?if«£gS§
w * £ fc *
K
/
¥
M
•'
X
'* V'.ln % •*VSi^.V*n ill - nA -- V4St*mfr. 11 * i3
S?*aZ*Xf*333«£«5£53*?**£$*253*
n i E u s SSESew'viDftiifittSff (SsSEfij 5*^aieS
k199*
. 143” 0
e ^wr
Apr
Urr JU” Jd
Sap On to.
0.338
023*
3646
9 38
Z2?S‘H
IM 212
68*0?
12 2*9
0.31
0 338
4.109
13 926
?M83
US 053
MOM
1001*
0 30’
06»
3988
54 338
81 Bl
174.114
43.M
10345
077*
0712
5MI
40 293
14722
1*7402
44.114
9 58?
0J7
1.101
16 140
74.805
”88.663
T4O5U
54335
1.13
0 206
2.554
0 829
40178
111 M7
120 8W
40 771
AjDH
0 241
i.W
4 23®
S3 378
t|1 067
H3.7
ICM
70M
0 233
6 603
7.383
44 MS
1M.M?
M6B21
2*325
8573
0-T11
0 560
13 823
20 2W
111863
170 004
jw
?X
0.211
□ 445
9 313
’3317
333 B»
90007
3*4M
7 354
0.240
3.461
5852
’8.337
40-OM
B8 M8
7483
0_32
5 603
7035
48 007
X7 975
139 M
‘01 JfcT
73M
0271
0803
19 4»
70 *4?
211-084
141.741
36 65
7*83
Q2U
0 84
18 041
44 479
332 CM
103 M9
23 4 7J
7J»
0211
0.344
19511
*5 746
21Z241
25*63
"05?
0220
0275
11 443
50 DM
ITS 98?
84.777
2D5C3
61K
0216
0.237
720
IM 117
129.140
28 r«J
7212
0269
0 214
4JM
71207
mros
7S214
102K
TM
0298
0.233
8330
*20 077
141.372
72M3
15 593
S*«
027
0233
18 032
89375
116680
271 778
-40?
1573
0 237
0.211
24 614
229242
103.3M
1*1 £29
’829?
8 342
QJO?
0.703
11 348
F64G7
140714
•40609
15 361
M 77
0.179
019
13 8»
0 513
1M73S
101 426
20 801
B257
0.157
0.4
■ 657
61 205
■45 007
1M£»
-6820
5 023
D.18?
1 622
r7jM
55 5M
H1 »1
354 592
152M
1«3
0364
1.67*
23.876
Si 354
106.7 H
171595
12 TH
55M
021T
0042
22 517
131,575
170100
107 04?
12. n<
7245
0 176
0171
20 084
134 SW
211 307
0403
11 742
T 774
0.167
2 995
19 793
1344
506 MB
IB 720
11 TO*
5 013
0.164
3 771
19.755
93 002
2«S?4
(+327
13921
UM*
4 r*5
2.098
M085
JM5W
0242
OM
17 966
77 M3
199 299
147038
210*0
Z368
0 827
?3M
33009
207.748
5J3.0C]
mi nr
77 JOI
l&JWT
0 385 3 771 20 064 229M2 530 943 358 SW 122*8
0 157 0,19 3 640 936 S»B2 16214 8004 4 748
C 183 □ 687 9 715 40 54 IM5« in.ce 22.077 5564
ii^nk^Sw 116005
*•* 1995
HftnMv" U4IM0ELES al 8ROGE(118005} ffrrtrajjpi Ffcwttwrwe*)
J *lS: 1 LQHQU* EtenOpn Ivm 3411 D &q lur Jan F« M*r A/v
May Jur
S« Qa NSv Pk
3
3
4
1
i
7
4
9
■o
"1
11
»J
II
18
16
i?
14
ft
?T
ft
ft
a*
as
at
??
ft
ft
>-
1-7M
« H7
1M
1.547
1.BJ4
1«
i s*a
1-536
1 4M
1 *52
1.454
1 513
1353
1M
1349
1-283
1 2»1
1. W
1.177
1 116
•O»
iftn
1 Oil
0952
0953
1 W9
095?
9944
9981
99
0991
V?«6
S 446
1 7&<
Oeei
1 004
OW
D.a?3
OMN
0 755
0.759
asoc
OSM
0 7M
0 742
0 5W
GW1
0 637
0 837
OM'
0 591
0837
06?3
0J62
0582
04?3
0.83
0.073
D.5W
0»fl
C 529
0 617
0.4T4
0 477
0.&63
- 603
0.69?
0-*27
0 467
0 399 0-395 0 492 04M 0.433 0*22 OJW S- 37V 0346 0i34? 0.339 0 372 0348 0338
0.31 0.31
OJS 0.336
0J1
0 31
Q. 338
0.348
0 47 1.12
1089 0-833 0711 0 773 0 082 0.045
OJM
0.500 1.364
1-12
0.31
C 395
0 619 0 1TB
0-514 0.154
0.422 0 153
D.346 0 295
0 305 0 423
0.27 0 523
0.237 0.803
0.207 1.979
Qi79 15524
0 157 i2_2M
0.151 1.7M
a 134 053B
0.128 ON
0,112 02»2
0 107 0212
0 091 0162
0077 OOM
o on o ora
0083 0 06
0 073 0.047
0077 0.037
0M7 0 036
0.134 D Q25
0 623 Q 028
0 631 0.032
0 423 Q153
0426 (tN2
0.344 0 763
0271 1.511
0 211 7929
43 695
0-26 2909
0 674 7 791
0BT6 43695
0 083 0 028
0-196 2.771
16 007 Tie m 1M5M 231 w?
35*55 14tM6
9.871 45 C W
11010 MBIT
308136 129.694
KT.BF izies
127 023 115 DM
0261 IM FM 19.HT 101 31
M.B97 9.1N
69^83 s.n
4 005 S7CS
UJD2 1471
*7 43? 7J04
3.165
1127
3017
2.08
2JT1
11 645 ».717
1515 12*001
30412 ■3011
33 DM iM2M
2**00 45.0*
83 153 56 46?
22.671 3991
392M MM®
38.087 W222
47 371 33B«
i$OM 121 JW
11 584 56 7«
36340 10106’
4»8 121731
»568 76904
W4 456 3WCQ0
3G9.5K 2MB5
790047 •wm
253.623 11I4CS
111.3*7 736 Wl
43.0M 0830
3J7S2 6573
2S.44 0M2
■19.903 07312 225 i ru
149337 13Q479
IM MS 137*37
ram 137 Ml
177 624 H 003
3*14 10217*
143 731 93124
209 73 71578
161M 08 902
Z24 9M 08152
] TO 543 1® Wl
'0.986 4.M1
T7MS 5TO7
21JM 5*M
18.427 5262
15 50- 508
19271
4BD
13932 58 87 217279 87 017
25 765 77.517
48 409 '205H
22 02 H4 537
27.871 170 375
51 437 392921
11J4M 1»UF
1®T» 4T2W
134 6’D 07.940
■91 079 MOOS
119 0» M.ftl
145416 47 *»
H171 *M9
18 ?? 484?
!5 » *507
14 Q21 440
t$4M 43fl*
l*J42 41*4
1M43S 41X23 3 371 4.1
2100 304 429 *39ICM 36 511
T7Q7B 30J
14 Ml $JT?
tt.711 im
1 UC*3 3,635
0«1 35M
53 883 143 2«
56824 B50F
1M.032
39 M4 127.+M
103 333 341504
218 0 302.928
920* 33222
30 11® 99243
131 31B 32 276
1»7S MM
illSM
216 58 101JS?
50C M? 262121
M7 260 c®
IN
3464
8J64 3JM
0.OTF
27 >3
5515
r32o*
1i»9
7337 142M
lit M? B7C<
id? 329*
man 71.007
27 3M
4 IM
2734
2 IM
iM*
2-565
J467
2434
J4»
3-W
ua»
ii»
2911
3 734
1582
2.451
2JQ4
2217
J.li?
2«fl
2. Ml
IMA
tJ?1
i.M*
1 *64
1 76*
hit
LSOS
5 719
11M
1 76*
’ &a
r -•61/2011ifHf rh
<-* <• C 3 --
i
O «D
Sufi-©
Wfff r'f
mJ^H^mrnsssmmsssm
C* «» -4 -* •^->4-w-«4-u-’4-U'<'*-**^a,,*«><>'>,>®«>
iSSSSfSs^SgiisfigliliSSSt^fififiSB
tel ter te W VF tef
te»
** ••
•• • •■ »
o oooooooooooooo
?Sg35SH25S5^3s!f2g!E^SH^5r^
kkSss
um
* ® X * Jf -38-5
SshHis
©oooo
28835e?!SBSa»££S5££££3
oooaooo-*-*oooooc»ooooooooooc=»oo
_ _ _ _ L_ 1_ 1_ i_ ;_ i_ i— — ._ ._ .- -w ._ M. ’._. _u <*, o o t» aa»t-u8853
S- 1/1 -« ■» <*
(J I* * -
oopp-fu-oo©op__p
mSfi
i
»
t
$
shi»
M•O
•U KJ N UU u v> w u> w
ssmhmisis
w W u» w W W UWUUUWWU
£5X8Z 8£3S£§2sz
_. _* o po op op pppppooopppoooooppooo
saiZmaJlimm
mn
3S§5i§z?j|SB°*®^“i?**i’......................... «—
U> U M O "M HS8K
s
f <
f
+ u> O,_M__A__. __ _ 01
-> -* -M
SK O»
O -M--------- ,-r.
_■-«-* o O o O OOCDOQQo OOO-*
OOOOOQO-*
f
SSCSK
U O O IT K>
*? *5
c
s» k» u e
cBsiHgmwsmksmm---H---i-•sf--e-p-Sm--J--Ka--B-sE---K-a--ysm--B-y- iissBa
?t?jS«Si?ss8»J!‘!iS!42S“2«.»5?S
.o - £8 * ssm
• -J* M9w
r ?- f ® - w 9 a
a » « if g 8 ? S 8 S 2
t
OM
M*
*■ — Si 8 t* ma*
saX^E urn
£t£5£ sBis«5si£
sissf' £isss?8 3«.S-S
'A
oa-lb.8 538 S- i R ttSS88B^SeS±.t?
£
«
8
83 5 $5
3t§S5
fcSgSt
_•-»-* U>
ui m & u.
s
r
S
6x!;£l*ia4?.ll5»l$r?s!SMHHlas53 imimmmttmmi*=§»*3«
v * a» l»
bUU
-u i> S i! ■•
nsJri’Si’TFatffiS’F?
• A *
f
M
*iitt
Aa^ 200C
sm* *** efits •< brw ineoosi
im«-5r« 1 j<* Ho- Io/mcs;
Lafcjdo Ew.atior Azaa 3431 0 *3 kw
1
2
3
4
5
6
7
a
9
10
11
•2
U
14
15
ie
17
II
19
20
21
22
23
24
25
2E
27
2*
29
30
31
u.»
Ma^rniXT
Mrwrij*
FLn/l i»mti|
1*364 7173 4 926
11 142 7 142 4 901
11 062 7111 4779
*0 824 8 r29 4.876
•0 745 CM8 4 765
•05“ C 689 473
W,4J4 6 659 473
10 204 663 4 706
10 IM 6455 4564
9 907 6307 4 517
9 827 6225 4 377
9 605 6 IM <377
9 532 6 001 4 493
9 3’4 eooi 4 377
9 a; 6 1M 4 354
9 078 6 197 4 3M
8 957 6 1M 4 331
1747 1001 4*95
8 678 5 973 4 151
8472 5 973 4 018
8404 5 945 3 996
8202 5754 3,953
8135 5.566 JW
7 937 5.513 3656
7 877 5 354 3 656
7 677 5 304 3 656
7 645 5151 3 636
7 613 51 3513
7423 4 95 3 493
7 39*
738
3473
3 3M
3334
3334
3 315
3 199
3219
3494
3804
3 975
3 996
3953
3 698
3656
3.72
4 222
5054
5 435
5102
4612
4 517
44
4 54
4,805
5.469
6 031
681
7 111
7 111
ft 7 25
5417
4613
4 332
3 99?
3 858
3 262
2 6CS
2 674
2 522
2606
2 693
4 051
4 9?
7068
7 516
696
6 719
6 806
692
986
11 592
11 72
9 658
9777
’9 591
14 947
3524
22219
16419
35 903
18 ?M
13 026
27 4V
Jtr* Jul
23 461
18 531
18 384
15632
36 645
289
10 596
33 4 72
110 091
41 246
61 074
35 048
18 94J
22 078
29 641
21 348
15398
18 52
16 166
IB ?81
16 059
15 843
27 93?
58 799
133 437
103 607
100 212
33 065
27 533
6* 018
289 384
^0 588
’84 063
111418
106 66
129 51?
125 879
’26 225
337 051
238 807
<21 315
317 529
668 772
43* 154
222 3G4
360 922
1032 074
444 032
258 843
2M 504
279 043
552 432
290 093
299 043
265 719
407.117
225 956
189 258
’94 505
XM BC1
Seo
’®324?
’^325
’2*359
161 ug
176 678
1®7 9%
U7M3
’34 301
’95 843
’M429
4 «9 625
120 499
137 769
136 062
’38 5W
197 0*9
119 79®
94 698
94 542
101 183
190 99
123 331
99 943
102 669
86 5J1
95 004
68 094
97D69
•29 235
143 4 28
Oct
’44131
**5.215
’50,36.
*«86l
«4lig
’87 80
’10 283
^21 7?
280 7M
130 787
’»«??
*0 557
145281
10113
1»31«
?1CM6
183*79
>55577
153 <*
’41 M
■'33873
1116«
1X525
107829
HI 317
123 654
154 046
127 449
102346
81 on
4118*
M8?i
<4 40*.
*3]
K 21J
547]
X017
41 Ki
MM*
»57|
31.<7
xja
3034
29818
a-u
27-17
am
25 m
24 45’
23 75’
22W
a roi
9142 6‘23 4 213 4 623
a 465 15 342 1*264 11 963
11 384 7.173 49a 7111
73C 495 3 354 3199 7 137 4 472 3 289 3 493
•0 827 39 515 115 ’32 309 002 29 1024a 306 371 827.632
35 903 133 437 245 306 1032 074 2 522 15 396 27 12 ’06 66 8 452 29 852 89.878 241 222
137 158 817 41(24 4W
J57 a? 420 207 ICT 19 Cl.
197 959 350 557 72 sa rrr
86 Mi 8’ 077 »70’ •wr
’04 138 122 474 31441 IMF
Saaon Mj-oer •, 16005 Yw TOC* SUOonNa^c I4AIN BE LES al BROGI (’16005]
Ttot**3erm Type How'o/vtec*)
iJC’Wti* HflHQCce FbviBor A/aa 34310squn
-»*> Fee
May Jun JU
Sac Od
*
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16
19
X
21
22
a
a
2$
26
77
26
29
30
31
1273
12.471
12385
1213
12 046
11 ?95
11 712
11 468
11 425
11425
11425
H425
11364
11 142
11 ’02
11 362
10424
10 745
10 511
10434
10204
10 IM
9902
9677
9 605
9532
9 314
»?78
•a:
»oa
196)
8 993
695?
6.747
8 713
6678
8 472
8 436
8438
8 438
8 404
8 169
7 A3 7
7J72
7677
7 613
7 423
7 391
736
7204
? 328
7204
? 38
? 36
? 173
7.111
6 979
6868
6 866
663
6456
8 455
6 63
653
6 4M
6 428
6367
8 197
8 001
5 973
5945
5791
5 727
5566
5 513
5 3M
5JO4
6306
6256
8426
6 426
64a
6 4a
6.307
6 197
5 973
5 711
5 754
5 76’
5M5
5338
4933
4 067
3 624
3 719
3931
3J24
3677
3 816
3374
3.315
318
3049
303
3 012
2-902
2M6
2 76
276
28M
2.M4
im
2Ut
276
2.743
2 572 21 042 76 55 277 353 502457
2 473 20 793 57 745 779 98 2344 19 65 50 448 434 S53 2 204 19874 49 73 240 01
201 11 659 62 844 172811 1 981 1296 71 475 195 77 1 96? 16273 144 266 2?1 475
1 aa 56 357 98 751 648 »61
1 594 •70 092 118 9a 538 262
2 102 70 175 65 266 274 602
2156 34 831 68 796 ai ’* 2441 27 154 85 725 472199 2 672 S3 129 179712 768 0?9 2.457 26 M2 116 Ml 462M 2854 21 664 86 241 4 73 603 6 708 3’ 492 57609 602 017
442 46 929 i«ID46 346 33
3 719 41 >41 212 938
589 54
3913 57 36? 201 29 234 847
4 616 54 723 521 507 164 7M
6541 93 429 24i oa 212HI
b 7a 124 418 268 612 336 728
718096
7 423 72 1/1 204 AM 311 847
8044 176 73 113639 194 852
2725 13 766 76 975 116 935 226 396 90 706
6.007 50 665 462 BM
2 622
2 589
2 489
2 444
14 122 9? 35 234-051 270 004
13 403 65 MC 145 486 360 258
1658 60 965 220 986
19.777 9541 404 703
7V MJ
737 7M
3M894
321 155
257 8M
167 534
179 665
172-211
202.796
370.67
203 396
*64 153
206 934
219027
153531
139 M5
126 69®
123 11
Iff 31*
110 70S
109 041
114 752
110 716
127093
67 929
65 573
112.81
103 465
120 331
95 71
90 443
I2H7
82 56
78 748
93 126
77 733
79 732
95 343
88 464
MH
82 6M
87 391
848®
71775
00 332
75.648
87 167
6*639
80 321
74.503
66 55
6S.7M
74 174
1J4*
95003
22’223
692 424
251 853
•57 9*
35« 72
733 **
17705
236 549 550013
Mmt
Majynur-
10?96
M 917
7 619
168 029 362 076
Mrrntrr
1773
Runoff
e 99)
8 4»
*8917
e K!
8664
5513
1062
6 *69 576M
’6.2H
663
5304
3N9
9422
5838
*6 524 149 464
444 693 1023 357
177>4
45*<**
19 777 1 78 73
521.507 737 258
2 4M
* 504 HAM
49 73 ’I4 755
502.457 66.573
*33 974
4 749
2 455
4fl« 43 563
17961 2«2Mo h/T1
Mr, Ar
Aug So Oa •to* Ok
*•©
1
3
4
9
•
T
I
•
10
II
12
’J
14
15
if
I*
II
If
X]
11
7i
2*
25
M
21
J
J9
»
3’
MCV
WjUVh
oca
12«*7
12 H
i2<*
12.13
12 0*0
11 r*
11440
11 4»
11 3M
1! 142
11 107
V062
10 »24
♦
10611
’04>
1C204
1C 12»
9902
9627
9 605
9 532
931*
1742
9 076
0 95/
8.74?
6676
8 472
• 43e
ID 553
26 766
1306
87 3 3M 2 509 55 93 124 436 •7455 143 699 42372 145M ’90* 3 315 2489 35 803 '36 222 <09 561 105 368 4061 14 M2 TJTJ 3 199 2 456 60 097 SC 533 '00X9 ’09X7 30 21 •3644 7677
3.161 2369 52 996 143 666 67 174 Bi 07» »4$ *340’ 7613
3 049 2326 66 941 71 113 100 716 17796 3? r 13/24 7.423 3012 2 219 24 5'C 02211 101 840 23 344 39 432 12 773 736
2 902 2 096 22 367 124 563 112903 83214 40 136 *243 7.173
2 866 1 96* 43 777 •9328 160 094 77 077 54 313 12 13 7.111
2 76 1 M2 32 633 101 360 736 210 490 n 23i
0 678 24 308 242 W07 3’iXi •85438 80B«
4.014
3 181 1 662
0 626 12 967 244 5
0.612 8239 294 737
0563 15.17 181296
C523 26 255 7C3M2
225 22 170 438 •
■78 £24 1X156 -
'67 348 132669 •
’4Z037 *40 104 -
3 096 3 181 1 854
3.BM 3 040 • 7$g
0 55 23 002 2H291 731 873 '80472 •
4 018
3 03 1 667
4 151 3 03 1 541
0.517 25 70 220’03
0 51 55M9 2202
0 51 56 323 288 9M
3X648 ir ^3 -
•08 306 1x202
245 16 tn rx •
4.151
W4 08 204 2H •
334 362
2321/7 -
5 270
5.151
4010 2 902 1 54
4 063 2M4 1 467
4.583 2884 1 443
5.078 2 884 1.373
3012 1 565
0 51 40 023 206'54 595 95* •01243 -
0 51 54 65* 17515 3X572 20C <81
0 504 M 139 ♦08179 244 564 158645 -
0 467 78 439 144 5/7
0.473 0$ 656 1X.2X
2666 1 361
2/8 1 35
0 602 42 618 183 79 580 823 •7E396 •
0 841 37 '69 216 479 290 448
730 X8 -
4.028
5.1 2 743 1-283
2 725 '-26
2 622 1.196
2 589 1.175
2.469
1 015 S' 089 1M6T 374 6X 423 42 •
1.798 '00211 236X1
• 687 106 45 *68 f<3
1 071 132098 127066
350 432 292*56 -
2403 209 9*9
0826
143 042
23? IX
538 184
<483
’084$
5 270
3006
3161
3336
0 936
4 756
2 489
2604
1 847
4 767
2 477
1 175
1.305
0802 36 065 W37’8 308 M’
2’4M5 -
232.BX-
<866
<801
<<•♦
2 149 98 666 M5 634
1 798 132 099 449 28
046/ 1 51$ 77W«
0 621 28 757 159 031
•X <5 603 *82-
TSBjr 477 ’3i •
14293?
2*0.8”
132 M2
•78 X8 -
stftinciiSlfBan Kzrow 11600* *MT. 2004 $(*rNr« MMMBfKES«iWUX5£*HWO6!
Trne-SMWS 1 !o* Jntm)
Aflf-rwJt. C3,j«>***-
ANNEX D4 DAILY FLOW FOR GfLGEL BELES
NEar mandoraFtdmu' Dtwvfi. R/pri*.- EabtofM. Mfwfr) of ITJfrr and E*rr& Er^opuo Xii Irrr&fiM jxd Dna^e Prvftil,.^ 1*?
r
ACT
**jy
J»r> >4 Aug 5* Oct Sos
1.7f2
0 678
0 477
1315
4 576
37071
2056*
1711
1 766
o.eoa
0*71
2*fi5
BW
x.ne
4J2&4
70 414
irtz
j 1?7
1 073
0*26
7 406
5*83
M0?fl
'W*
Tin
■■ ma
0 >M
0 399
5.731
5 471
295*1
27.328
21 932
7 ?BA
17
(1.714
0.492
2804
24.59?
?3 *?
30,174
23 72
751
1 591
06**
1 OM
IDT
57 0*
77 1M
**’*
21 J65
.‘JM
1 512
3.607
3ft*
3049
<8 4*4
4t «O*
77 30ft
24 57J
5901
1 612
ore
2M8
1574
37 MS
93.147
XA2
20. W3
*65’
T 573
0 89
2*02
1 093
22 *81
4? 167
3 Aft
21 It7
fl*M
I At ?
08
i i?7
13M
06’
DAM
3 937
10 063
1.S
0.593
o ni
1 *57
71 .W
•0247
25 742
rsJi?
ftfln
■ 477
O.BW
0*44
1 67*
19M?
»5J’
70 33*
20*^
SfiM
I 33ti
0 73
2M5
1 909
23 0*4
67330
2I2M
22 2M
SM
1 104
0.815
0.53
7 7*4
50 33
MB’S
Z7 7M
14715
STM
■* iT/TsjKB
1
C6»
0.48*
*M1
72*09
3*337
*1.411
7t ret
5 324
f _J5'7
C W3
0 471
7558
23423
XAy
28 CJ
2*25T
4i35
1 777
OftW
0*34
S 603
17*33
7&114
27 36*
1MT9
JiM
T 217 a 7Z2 0 *38 7 231 11485 X917 25 914 !?j7* 45
1 1*3 0 w* 0 *28 13336 22 WS M6M 60 *33 29135 4«M 1,M2 0.504 0 422 5.379 3317* tH JI 31 736 ’530? 4 JO* 0 00* & 571 9.M7 S7W 21914 ftOTti 73 Ml 12 HE? 4 '54
0>.BB4 0 578 0M1 5*37 2*507 *7ft73 23 3*1 12731 * 133 0.975 053 0.393 5537 17417 3*435 MSB I20M *MI
□ .901 94** 0.485 *315 2* 3** MOW 15505 i*.ri5 3844
Q.7$6 O4M 0 47? 3«1 94311 W«5 70 re* ■104: 3.71* 0.83 □ 518 04M 1*15 *6 BIB *0 785 *i is 11335 3«8*
0 fflt 0 40 0 627 3115 >7.697 ££ 111 DCS* 1081- 3 625
D 4 Qi37 1 »2 6.13 26 318 44 rid 27.15* 1OK1 1509
□ &*S 0 405 0.911 3 214 51C29 343*3 X)Mi 1C&26 3*7
0.898 0.4B7 i W6 3.732 lOt.Wi 43 WJ ’0*M 9-M3 3334
3 652
* 098
41***
9A*5
37 Mr
’00 M6
tai.itfi
*5*8
148 985
■i 137
fcrtwNwibor I1WG4 VMf.lMJ GIUGtLBE near UANDUQA 11iftOO* I
'n+S™ Tjfri ; FV* (c^neci >
•™* nongfudt EievMon . atm a7&.O*q*ni
Jn
M»r Apr May An A*
1
2
4
&
5
7
4
»
10
II
13
13
’5
‘0
17
II
11
se
if
&
ts
;<
?4
ifl
2?
ii
Si
JQ
3i
1 5W
1 M6
’ 513
15
15
15
Ijij
i ue
l S96
i Me
151?
15
15
15
1.5
1.5
15
14W
' 40fl
1 32ft
1 315
1 304
1 22?
’ 15J
1 14J
i
1 M3
1 M3
1 133
1 CFT2
10*2
1 052
0 904
0M4
O-fel
0964
0.875
0 819
091
0.W1
DM7
owe
0 53ft
0 93ft
O&M
oaoa
o.u
D 77«
077
0.77
0 7?
0.77
□ 77
O?6J
0 714
0.706
0.7D6
0.706
0 704
OftM
0855
0644
0.644
0 $44
0 636
0443
0.M5
0J45
0 M5
0J45
0 585
D.M5
0 57ft
□ 537
053
053
□ S3
0 523
D*M
0.477
0.477
0 47?
0.477
□ 4?T
0.434
0.428
0,42ft
0428
Q *42®
Q422
□-M7
0 Ml
D.J41
□ 381
0,351
0381
□ Mi
0.M1
0 375
□ 343
0338
□J35
0338
0333
0302
□ 29?
0_»7
0 292
0254
0.250
0250
0 750
OJSSII
0.250
0.25A
•J.230
0 250
0.250
0 2S5
0.220
0 22*
0224
0.224
0224
0.224
0 224
a ?m
0M2
0 487
1407
0394
0.338
0 302
0302
0333
0 340
0.494
0 046
0 53ft
□JK
0.X7
0.207
0292
C264
02M
0 229
0 166
0
0
0
0
0
0
0001
0
0
a&42
0 3^3
0 099
DM7
0 004
0.07’
0.121
J11T
0 002
0X2
0374
0.37
1122
1.11*
0175
2A5
esj
0M3
02»
2111
2.5*5
a.359
i.»i
4.11
4 7*4
1 7*5
1 MJ
2.197
56W
3 472
1ft5*
5287ft
13.2*9
3366
12412
62 M3
539X3
05*7
05*7
3106
BMI
20 720
47 495
a
21*8
2.7*8
302*
3 23?
4 592
5rt?
6 679
12 79ft
30 773
38 JOO
27.171
20.153
J5CM7
14 383
II in
12912
1336'
13 453
11155
1*307
2ft Hi
24*5*
I 712
20 Mi
MOT
46 9*1
21 Ml
17 32*
27 MB
22.19?
M«1
413*8
■2173*
OB 1«
U488
JOflK
yiJ?2
57*4
7BM8
41124
’MW?
■337DB
37X6
21268
X2M
JI 044
2*066
J8M*
M6»
41*31
>9243
5OB35
J943
J‘«
2*487
D.C
KJT
22 891
>7 494
25598
IB 4$r
I8868
212*4
31 M
12 >79
17 7M
1ft 522
1528?
1*636
OH •**
iftfif
IS 031
’9 635
12 792
12 515
23 UM
77461
77 ft*
2713
rn
• fif?
14 43
•2.118
'8 4B?
»JW
*0251
13502
13W8
uwa
n lift
BPS
7 BOB
’»
EM
5*21
ft 116
9 379
655fl
5353
SD07
4b»
44M 1t®
tffiM 3804
J 443 0 757
J3I7 02tf
UW 3fJF
1103 PK-5
3 Ml 0478
1581 3*5
3 B’3 0417
xs? a.o?
J34J 3 Ml
3036 0»
I MB 3ir
IJ« C3W
1 KM 22W
1.179 92*3
1*61 0125
1 M3 0 19*
ij*3 or*
Z*93 M«
’W4 3 86
1707 C. I®
1 mj a. ib
I 4U 0.112
1*40 0’3*
’J« 3-M
‘34' D.ica
1.179 C M5
1C*4 OGfl?
1 03 0 04
9,i»1
13M
37 7*4
12821
8344
3 72
0 832
Qi4?
14«
032
0.31*
0 428
M 7C4
BT632
0 614
1 J*e
£061
1042
0328
0M1
2 401
0 7W
138 M?
23W
ftixf
44«
’.C»
i o*i
0 422
€ 948
15973
374M
6k5»
02 962
1».Z>*
3*
27 85
14 538
*328
I 023
S.511
0 .-Cfl
0428
3054
025ft
0
12+a
693
0
144.UI
WiO
SSft*
2 171
1 227
3.557
CM?
56*5
fl.?K
OM
1353
137 TO
2ifl1flC11 Is
Sulwn ”6004
S’.nlon Mrne GKGH K
rar 1964
new MAMOURA (116000
LitmxJe 1 longrtud* EW*»t>cri Are® 6 75 0 iq ton
jr1
Mar Apr
Jun
Aug
1
2
3
4
5
6
7
•
9
10
11
12
13
14
15
ie
i?
ii
19
20
21
22
73
24
n
29
77
n
29
X
31
Mil
1979
1 595
1 »1
1 511
1 5M
i a&a
1 461
1 3M
1 359
1273
1 19
1 178
1 167
1 099
1 066
1 oee
’ 066
0 94
0 919
0 909
0 841
0 775
0 ?66
07M
0 *W
0 766
0 757
0 704
0 679
0 561
3665
0 565
0 565
0 565
0565
0 565
0 5M
0 513
0 492
0411
C 398
0 396
0 398
0 398
0 398
0X2
035
031
0299
0268
0 263
0263
0 263
0258
0229
022
0*94
0 '9
0236
0 495
0206
□ 158
0 158
0 IM
0 IM
0l«
0 133
0’3
0 13
0123
OOM
0 06
0 066
0C83
0 061
0 048
0 058
D146
0186
019
019
0 19
0 186
0 158
0.133
0.13
0 13
0 126
0 108
0 *08
0.126
0.13
0.13
0.13
013
0 13
0 13
0 13
0.13
013
0 13
on
0 126
0 IM
0.104
0104
0.102
0 085
0.082
0.082
0.082
0 082
0082
0 08
0.065
0 061
0 118
0 742
0 722
0.687
0 629
0 566
0 513
0 <99
0 45
0 404
C 366
0.316
C 31
0 338
0 305
0268
0258
0225
0 194
0 19
0 19
0255
0 763
1 112
1 067
IX
1 742
1 163
095
C 99*
1 046
1 376
1 668
1 455
264
3256
2025
135
1 285
1 347
1 39
1 965
1 571
1 994
4 67
3.112
3616
2 348
2123
3 602
3 583
4 144
4 459
5 394
3 838
3603
327
4 353
6.179
7.115
0 288
9 818
6 382
5 7M
8 224
7055
7464
? 754
11 494
14 299
18 944
23 582
19 743
13 271
13331
26 949
32 637
44 413
4? IX
23 568
17 83*
21 253
26 26
Sec
^?22
7< 444
23«i8
24 509
28 064
31 64)
53 949
56 *8s
51632
52®’a
74 744
9t4‘7
97?
9093
59 018
31 933
35 099
44 9TB
28 634
22 406
Os
M lift
87 8M
52 491
55 141
75.674
65 3
55.991
50 393
54 379
58 432
49 949
<8 067
57 733
52 71
4 M1 809 721
40 207
40 984
37 809
$4 217
51 659 28 593
6 561 X 513
5 572
6 ‘95
55 60 7
52 643
6 9X 44 913
6095
9471
59 872
66 769
51 869
45 148
44 398
33 601
31 177
37614
41 577
48 658
54 661
34 912
29 095
44 62> 89 99
24 U!
21 502
2? 035
’9 643
*7087
*7441
27 762
1???1 15 914
14 507
13454 ’?90?
•)S3e ’3 Ja il??? ’5.|>? 15 0tj 1332?
1334 9435
9X1
• 793 6475 <191 ? 926 ?«2T 7205
711 6859 B«v 8433 « W3 5 KJ i^4
55’4
Uur
1.111
1975
0 382
0 169
0 77
Haw MCM>
3917
25 252
49 184
41 364
*4 24
0 956
0*43
D3M
JX IV
MJUu jrr
-
3
2 063
10153
1 679
87 635
131 734
107 264
M 141
IM' 4f]
0565
0 496
0 742
2.64
9471
Um-j-
65 769
75674
97 7
71 754
5«S JM
0M’
0 i9
0048
RunrC |rvr|
006*
0 19
1 285
5 /M
29 095
17017
5514
7FJ :jm
4 40?
1.419
0 569
0 649
3 056
15 041
100 199
195 16*
158 9’5
54 50$
•2«1 ih
Suter-Kmbw 116004
Yw 1985
Sto-.anNanw GltGEl 01 rear MAMXJRA <1160041 Twit-SereB T*>e How [cumecs)
leVMJo iLongiMfc 9wwtkr Area GTSQeqlur
Fee
Me, J.T
Aug Se©
Oct
Ok
i
2
3
4
5
0 506 023
0 506 0294
0506 0 304 -
0 499 0316 -
0.45? 0X2 -
• 045 0 45 -
7
1
9
10
11
12
13
14
15
16
1?
11
il
X
21
22
23
24
25
78
27
29
29
X
3*
0 444 0 499
0404 0 506 -
0 396 □ 508
0X7 0506
0356 0 537
0 349 0732
0344 0 7M
031 0 ’«
0299
0273
0299 .
03D4 .
0304 -
03O<
0 30< •
0304 -
0298 -
02M -
0 263 -
0263
0264 -
0229 -
022
0 194
0 194
0457 C 296 4 127 • 0 499 0 473 44/9 - 0513 0 506 3781 - 0.558 0 571 3*13 • 0 589 * 006 1.5 - 0 609 1 134 1.175 - 1.208 1 424 0 644 • 0615 1 461 1 585 -
* 068 0 662 1 364 9 515 - 1 065 0.746 1 359 3 HI - * 068 0 757 1262 3J39 - 1 088 0696 1 089 5 429 • 1 111 0629 0 94 5.06 - 1262 0536 1 006 2 859 • i X6 0334 1 662 3 21
i 651 C 304 2284 -
’461 0304
26-
0 M 0304 3.54 - 0 432 0299 3X9 •
-
•
-
*
0846 0266 3 IM •
1 006 0 263 6 076 • 1 394 0 263 20 361 •
0526 0263 4 15 0396 0264 2152 • 0404 0 425 4 178 • 0 444 0 444 1444 -
046 0 3M 4315
045 0 35 3 526 -
0 45 0 31 3.112 •
045 0.299 11 M2 -
0<5 4344
•
•
•
•
•
•
*
44 77/
46 X2
47179
56 51#
65667
72 338
74 94
M255
79 028
72221
68 069
83.45*
36 063
42 20
46 3«
36 699
31825
35 927
y 145
I 198
I*®*
UMT
How MCM)
G 139 -
-
0 406
3.17 -
-
C907 .
8.491 •
•
UrWn._n»
OSOt -
1 261
1 2M
20 361 -
■
FOtoFOty*|
0 IM ■
C 261
0 29b -
■
1344 -
1 866
12 58 -
*
D_ Append l» J>4n
nm
r»i
*: Ut to a ‘ji * u « -j a * «t
\\\\
1 iV
.1
I
£g»fs s«£
’
iV
s ll
siHI
s1H
-Mi
«s
p p ■— o
O P o o
QD o U Q U
a o c <5 o o
$ s s s sr
> CP <3* a P w
'■ -*• W U» pj-
iisat
"P - K. -4
£
ar
1
V
-DO0O
eassi
oOe OQQoOa
*3 <3
0 £> O O <□ d Q- C?
«n LU I JI i_n -J.
LFI o kJ U —
u O U -4 CX
_._*_ ^oDoaoeiaiooGnoeinci
* -*p*»Wi*’4i»».hhijD*fa QuMgi8tt Ki U U W -> -•
J
8-^ KB
cptss^asaa^st
aS £as8s§i8s?L~
KoK 2
§S§£S
M Ch fa M U !u M
f
5
t
S r> Oj S» fa
bs
sgm^m§mhisa“$H8gh§8cS3fe
■a * 3 ni ®
hsh
fltais4R*W8 eSfte«yB8§B.«Mt)iaa’5«tsa 8
t
H
8e*jS4
sm=
Sla£$3Jie5isi3£SE?^h3i^^’es
8?i5» HI*!
Sa£S£5i3ilti-aBElSEi¥M&t|lf~G?-pxia b s 3 t■LU M
B 3 4 i! IC
e® Sh a
MySiU^tSSESS:
SpiAMi/icJ-* —
iS’
1
B§«?g
fa
J
KCC?&.tBS£&
S S fig H
uf V £ Oi
s53lh
1
_ >^*
1
i
ssssmH^umsmmmm
Jfc-a-*B* *■*■•■" M" M» •-■ Ml »M U1 a M o --< « » « E» fc •*» ■»
-» O • M
=r-ss
■O
iBssmmsmemgiHmSIfms;
j- — - ■M M Ml M H fJ >Q MMMMwUl.UWMwu»
£
If
8
?
¥//y**<£'£J£<*£jW-’£5£ J?S£Sf S^MMSS.? , _ " *» S — •» w e-r-n.*-r-»w-»«»-» -• w» — - -
1
£2353
i F U fe? v ?Q’ ? 'i» 3’4ZrUU*
<• jjj *•
°H7
V **
»»«■«■»•-•»••<• «s /> «i *■ o n ®
*7
r. c «n
5 S«
ko6vc)KmO
n w ®’-£»£3fiirf',r2J:z2f — JC
85ZXS8?S85S8g8aaSISSjS
M __ . ^1 «
JT.
A rA art art W1
«D CM b- w o
i
3
J
5
3
n
iJ^S’JiEaSSSSErESS??^':5s?3s3;^ a33?K
BogmuammH&iammos
SR«SJisi>!»« 3g«Sa»W = aK»R3XSMHBSK BSSttt
B
33«SB o J? r» g
sike
HmmimimimisHEm.f
*5?5*?SSB£S83Bi!53S*
»*#rw&iif*?-?' *
2
- «r *3
"" fffiSiyJsBiijJBSfiirfBMas
K Se'aX9;a8S9XX9XSti8g9
msssija s;s;«i?s's
8
ES23Js a 5£“R
; s j ic ; s ? s : ;s K» u s s s
fS?xgi3£i£5SSff9e^SB^^S?SSSe
8£8gJ££Se2^SSSXX!^ Syj;SSS«ftSS
52r5§
R58X?
'immnmtiimHHm
----- ------------ — ..
3 3 3 < 5 ri
— a
s M?.
■
sssis^a^sssig. i5sS:H»3p33s« = §
¥RKR-R;s;ss?sas?2 33*8S25SS£S «‘SS
si£2§?53£§&
£i
5ay?yi'lBP5^ = §3E
fciiii
S«tR8
i
J
3
sas-a
CM
—’ «, rf) o r.oDCcrpO'-
r
K - r- — »- m rtRsaSRgs’ts
•o<
<3 b b
s-2 ''f;
N *■
Jt
•■ n n r-
i
!»sgs s£ S§£ i 'r«°s
5
3imBmm88£E5§9?m5H5m
H
S88?l ’HI#
- 91^5
5??§S?®JSgR§Si?fi5«Sx5RSU§§^35?
ooodcrtooodo ooooooooonooo>-r>arJfnr«n4
&8a5s
o r« n o «n
5
i
od«*-oc>ooO tfidoodooo oooonooooor*
cdooooocoiNoOooooodoooooooOoood
ss3S
c c OC «).- H J JDJ
oooooEJJEES
ooo
o
* *- «- — — *>•- — ^ — *--- — 000000
«R2?-
o — r* o
:!H3
O •- O O f> ( rO js•- sn sr* s«r -- cm •- O ■*
SssEss-SI
OOOO
ssm
oooooo
O O o OOOOOOOO O O OOoOoOOOOOOc OoOo o
*
I >J
!
j
o
e
a«£E =X;«85«S38??SE’
OOOO
do oooddoooo
ooooooo oo o
oao
ft *> •>> £
Sasas
5T j
ow - Ofl
5?«H
t
u.
*
=3
l
s
6 SSSJSSso
a
c
I MS If
(IfB r’i
ssaaa«aswBa»
ft
’s= ip
H
O» O KJ a - U< ® KJ K ® ?^£ K8
KJ KJ KJ M KJ KJ KJ
•J u> —
sSH
aSKemsmssEmsHsmsimH
S§°giis«8i«Kfie552i§§?§§
s*
Is
<
I
X
ooooooooooooooooooo
oooooo
sssssSS’ftS’SaSaxSsSSgSi
osassss
V -M -q -4 -M *q *«4
KJK>KJKJ-«p-»KJMMKJK>MM^ KJMKJ~K» pOp -»->-*.*
m23
t*
o
F
3
KJ o o •* o XS8S ?
KJ O -M -W *■
-* o o —■ <□
StaSfi
aooooo
S £5S
5
J
a 2
5
i
a w K ««
ft i M s 5
iiiks
•<
<
t
kj
B-* — o -4
O ir - O
Cl>O>D<'®M-*»JtPV
M*a4*W0*4»
-»^KjKJ-* — -«KJ
w MM ■•
ssmmmESgm&^sismgssifS
b
o o o o ooooooooo
L» °
-•uioooooococpoopooooooaop
•d * C «J -•
© -M "J -M •*!
— C WW.U— «4 W — KJ KJ >AU>.*WwAK)O_O
aU|lJi-.^»^ 'aCJ',aUq\)C» -
»- W
D
oopo
*
ooo
-M K) 5 ^SS^aUIOCCjKJOC^B-k-kKJ
xogS3
5
S°?5i
- l. *□ m
-• -• -• — Jk
«OSO-»Ol»-»
-• — - - ■ — — ^ uKjK)»->«a>u
o>5&u-*iJ«)5k>-m
*
-m
-W -M KJ
M O O S -«J M
v< s o * -* -•
-■ » m -W -» 4*
m
j'*
ir » ?« ►
«r <7» i" -*
o
§S£SiOa£S.£«ici!
• ••I
simmis
KSR^XaBiSliaat ftRS «6SU«tu,SSSS!j.
mr
► I* C* -M -M
r>. • i .----------------
X ft
»« S3 ■W U £ AMMAMSl/Aui
>
£
SHaSsSSaSSSgH
*^ ►* i ”* "* —
» 8 X P. ®. 9 - 2 ?
K 3 '. U X « a •:'4“ 8'i £ X r.'i
ummumms
SSBg^s
• • i
smssm
a •uS — a» 10
t> M i
mu
^SfalSSsi^SSSsSe
r?
§‘
------------«-»--«-J--<-J------
Z
S’
*■ --•x
Ttt&£
»V€r.%
i if
8
t
«J5?gfsg?aESS
K» M
■» -u
sssss
-4
t» -»
. «>
*%*****
C* <■> •» K* •• <•
k3z %"
£
z k v uxxttz xb^n j
HI
i/ n
m
i
~ fe te fc M a * tl a ‘J a «
\W
- U\ *iV
AJ AJ A V U f* MMMftUIVAftMWMkftM
ttSH ^xSS3SmgS?Sxxxg££§£S3iiggS^
h AO sj
-n
t» M * —
oooooo
I
’H<
5J
*£s;2
Is
QOOQOOOO-*
oog°8IS:88S88 82
aOl»»NMNMSMMNJ
Ssiiimmi
£ U £ ft
5^1-
u -u
hm4mi
ssica
>4 O A —
2S??g ?e«$s
» O t* 01 M
£2?S5
k.jk; §SI?8
5*5§§???££iiiSt
5s
o
3
O O Bi O c>
sfi°55
A A O (J
■M -* •* •»
YomSmo-*«>*a
?es a
SiSrS
WtS8K«3S36K8|S8 88CtttS5iX2'!iSS8i1S
¥21
SUj
a i8?i»s
£?3
j«
Is
XKS«K88 tft8Kaa l!E»B£$88aS£^
SSaSSSS Bg tians? n hi j
am* »
SIK8e2
x
«mo mmssis
*CHfifc2ISSSKeSM&W MKK8aifittt
Hie sismmsSmsissB
VM^egg'jlSKtllfcSK
mia“mms
c«sk
SSBigiB Eiafi-
8^it * a nss.
*a
G*s
qaatsuasi^Kiits^aattBietic^sfiie •-“ milBlimmMmttlU ES?
21535
• e
- -• 4F —
IS M ft ie a
Ellatt
«
f
5
t £
X
&
tjar Fab
Apr
1
2
3
4
5
2288
22M
1 361
2435
2 273
1-34
37.905
3M
2 162
1 34
M 543
57 4i2
3 528
2 167
1 34
32 977
fi 1 64«
3431
2 153
1329
12 116
12 216
23.567
92 755
«
7
9
9
3 526
2065
1 253
23 4M
’73 661
3 546
2051
1232
760
56 6M
3 528
2 037
1252
56 620
MO®.
3411
i 939
1 252
43 313
•7 242
113 537
•0
3373
1 643
1252
9 675
’*061
11
12
13
14
15
3 256
i 829
1 242
33 052
324
1829
0996
•0 526
’01 664
>221
’ 816
028
749 355
311
1.75
0 976
162 665
3 073
1.816
1 098
75 65
te
2M!
1 629
1 068
50 039
I*
"24! !*
IT
293
1 603
1088
57 961
11
!•
XI
21
22
73
24
25
21
17
2 825
1 648
1 086
107 37
t't
2M8
161
1 088
71 796
’42W 1IM
2 791
1 537
1 088
* 336
lip
2 70C
1 525
1 088
36 671
’^2i< tin
2 773
1 525
1 078
56 662
25 x ’.yj
2 672
1 513
1 021
192 441
”IV
2556
1 442
14 260
1 011
10 693
11 06
119 453
”«! in
2524
1.43
1 002
109 674
3»W«
’•5* 1’2
29 749
2 428
27 955
69 912
1’23J *j£
1 43
0948
11 972
17 141
79 6'9
wia
2 3M
143
0 937
7 764
17043
10W 4HI
2fl
29
X
31
2303
1.43
C 928
23 667
56 62
19 021
46 «97
1031
2 2M
’419
0 867
9 545
14 533
Bf4 49
7288
0 608
4652
12 267
MASS
14061
0*2 <55
2 268
08
4395
104 140
4MI
MMf
Rmv(*CM|
Uurr-
Mrunirr
(m)
29
1.78
1 06
1 185
4793
12 852
7 767
27 965
86 196
5i !*e
4 459
2 692
47232
’I TH 11”
3 072
12137
32 794
74 901
3 548
2X867
•33 559
7 288
121 M6
<1315 W
’ 361
2 173
29 749
77.955
91 466
249 355
123881
102’31
JIM !’>
2 288
1 419
326
08
0 499
7 004
7366
23 436
M 893
21.411
1 "3B4 ITS
1’ 506
6606
4284
4 551
19018
48 584
110964
342 028
196014
167 4’S
•LIT Aft
Swor hKmtxr 116CW I'm.- 20C’ GlGEL K naar MANDURAf 116004!
TW-Sanaa Typa Fb.|Gnea:
'Longrtube EJavason Arw 675 0»qUn
F aft Mar
Apr May Jjr JU Aug
Sap
□d NW *
1
2
3
4
5
6
7
I
»
10
II
4 737
2 79’
1 623
1253
1.179
1.156
0.606
08
4072
21 062
43 97
51 164
4 737
2 573
’ 623
4 376
26 591
36 542
67 043
4 5M
2624
’ 623
08
4365
21 759
47 541
59 073
4 575
2 426
1 623
• 096
0768
059
10 47
12^0’
41 571
47 667
4 562
2.396
i 623
1.106
6-32
22 629
46 456
65 113
4 415
2X3
’5692
43 253
79 498
161
1J3’
1 242
0562
0.562
3 373
4.37
82 507
2 2M
1 537
3 221
29 6M
46 719
49 238
<237
4215
4215
4.215
4.193
2266
1 525
1 i«
0 562
3715
91 314
43096
2 266
1525
1.14
1327
0 562
5764
36 948
45 364
50 747
53 83
46 516 <5 44
2 273
1 513
5 268
2 162
0576
0675
20 908
47358
42*61
6 731
40 679
'2
13
14
15
16
17
16
19
X
21
22
23
34
25
24
27
26
29
X
31
1 442
0996
2167
2167
2153
6 403
21 *06
48 446
1 419
0 937
0 768
20 633
43 035
37 672
4 021
1 351
0 037
069
0675
16 766
216’
56 541
33 981?
375
3666
1 351
0J37
7J16
43 74
2 065
1 406
0 937
25 766
44 ’35
0 641
5306
44 901
35M
2.08’
1 361
0 926
2006
12 311
36612
$7 466
94 397
42 094
3 524
2 037
1 34
0 876
2 5©
’8 346
72 652
$4 307
35 676
3411
1 052
1.34
0 676
12 726
65 442
52 327
52 2*6
3 373
1 925
1351
0928
2295
1.416
13967
54 05
36 586
324
311
3092
13618
43462
34 678
1643
1629
1616
1 431
0 926
1 621
>4 073
32 077
1 55
□ 676
2 471
17 433
41 331
30 926
0 667
2.126
23 862
30.097
49 709
1.739
49 566
32 662
3 W2
• 737
1 467
066'
266©
32 567
45 894
30 743
3»;
25 951
56 406
51 2«
• 724
1 34
0 656
2 51
48 622
28,536
3 002
• 724
1 263
o.Boe
06
0-9
2042
16
36 522
37 651
32.fi*
69 2*
3 0H
1.711
1 242
13 428
31 784
163 697
2665
•635
1 169
• 636
6 405
20M
•623
1242
0*06
1 659
10 627
30418
24206
36 486
39 69’
49 O*4
23 O11
56 68
52.817
2 5*4
1252
0656
2 733
16 1»5
54 437
25-3*
29M
293
1 203
0 854
564
273*
15226
38 614
52 547
61.405
1-318
btam
Aow(WCM>
Mranu*
Runoff i*nr-!)
3 707
993
4737
2W
14 211
2 069
5064
2 79’
•623
746’
1435
3 842
1 739
1 169
5692
□ 966
2566
1 327
08
3717
1 555 12 225 4 165 31
564 36522 0562 3 221 6 171 46944
37 667
100 686
91 3’4
12 8O»
146 464
46 471
120826
94 397
32811
192335
0_Apcandt»_l>4n H n rirCNfM cm cm cm cm cm cm cm e»NNrtt4«NrN^Hc*r«No
e
Sim
CM •» p» O p
5
sss£2^£5:m ?«m«92iem£m
►- *- o «a «P «A tn «= *- <•
*»
S?hm?^5him§3?sRHmi«R?
gti3«S«t53CK?S»tr?feS*25^ZZ?5?5<*w**m"
S“25i
w) < »>• < r
W t4
SiUS
ttjcHs
S»385SS«; CmSUUCmSISCiiaP
;OX£
’IS’R
l33«82»llSE3l!l?»IBSI®B5aai8§l»
8S3HStf»?SS5«RRlCRRRa8»''J(?fcS8R5S;’'
P3?!RtC! M
3»31$
ppp
HsB~85?
iP
j 8 t B33
wp»rttftv>«»ow«i»- «ri yq «i
-w
?«?mms;83
,r>...;33 Jf
3S5E
3 = 5?
« r i f*
t rtRZR’^RSSl -----"-’-s-l-axs ----i-gB--- si-^--f-t-S--gx^ ----R---s--------------------S--4- 5|5it2lli|53I5V8Sa8Bgl?aa8«8^ai^
gg
28 ?5?SRg?
S 5 S?
SjSBR
3
5
i
5
28=23ig§8=E?5§S3
ow» McnwMwnnMMcifl*
A!
pi
cm cm cm N
^5s??3?
eioooooo^-’-t-^o OOOOOOOOO
cimimillli&ll
- ----------- —
o
aO
E
sm
cm cm pi c4
CMtM- p- •" P-
-W « ° «
£3?2S
o <^ »■ o n
25835
ssm
r- < CM •- K
o
2
5I
sl??8«g8Bai58«55=cS5=323:55s
» in r
?’S
1!
Hi Ul -.
\»i \ Vv\\
crMmcrvmrc\mr«cm'^cmcmcmcm
•
CM
UiiHHilHmi&Hil
**Mwr, rinrtnrmnnrtrin n m <.
«c»
CM CM CM «M> <• o c
» » » » O> Ol (JI
a-M ->• *«
tn w v lp u> w
OOOOOO
M
'■J
its
u ro u
I mh< i d
h
» 2 h h
OOOOOOO
OOOOOOOOOOOOOODOOOOOOOOOo0o
<55
fc o — p —
---*0000000000
‘§S^?8E5355S
ams c p o p o
J* O — LU -
imiimimsmsamssss
UH
o
JS
w
3
i
>5SSKgS5s»S»»4si^5E8"8SS«S>5SSS?S5
38SSgg gg|gg Bg
2i 25
oo
<* s
SSm
©opo
ooooooooooooooo
$
f
*>
8®*
S
®* M »M> UW> M-
'•» 0> C_
gsa
5
mst
iJ.SSK
ass*
a ■ A k i rtk «r» «n —a f*
m
b ma
Cl -4 U>
mnOiiiOmsmfmgsmsi
ti’S
-*»
L - a J»-«uDcO3cnS «b»J<>5^-4>ov
=
?Kg«KSS
*-S-£-82*?S
8
U U A l£ a> LU LU
W tF tJ CU GJ 4»
CR *U
z
I*8!®
■j 5» 55 SstSaUHUslHUmSB
...... ’shsJSW
-*4>KaataKK>
• 2 r ;
-- *1 -J O
^ISSS
i^stl
au°ic
— a*. »- '* >
sicxagsa-itp 3 s«8e sass-s sass csss U43ull«*SnmSlWlaS33«SSI2
eases
asm
8 O £h w
Ss^bb
f
K £ £ 2 •_- 555ifi55pS55sbfail"5SZrSSSSrSc *EjS""
Ju
Oc
□k
' ,. -
1
3
3
4
5
I
?
1
1
10
II
•2
•>
U
15
if
•7
!«
If
20
21
n
n
24
25
3
27
3
3
»
JI
HtBlMCM
I4HHIT
iAwmt
Sa*riV*b* H60D4 Veer. 2007 QLGE18G w UMOURA (1 !«0W)
'r^-Srm ’ypt Flow (cunees)
UtryirtB Op/mot Ar»» fTSOsQlun
Jw
F«b
JU
Ort
J*
1
2
3
4
5
I
7
4
0
W
H
U
13
K
»l
17
14
15
ft
21
22
23
24
23
2t
?>
21
?3
30
31
2',C’/20*1IIIOO* Yw
saw GKGtl M nwrUNCUKA 1116004) Tr^S«WTlP« Mw**
UI/LO lLOfl«ja« Ftovwton 676.0 »q»«n
jpn F«0 Mar Aar
Jun
1
2
>
4
5
6
7
8
9
10
11
12
13
14
16
16
17
16
U
20
21
22
23
34
n
29
27
21
»
30
31
Mev-
Ro»(MCM]
MtuTtfrr
lAnrrxn
Rtmc/I l’nm|
S«a*cr NjT>b<- 1160C4 vMr 2009 S»«iorNafM GlLGEL BE r«r MANOIIRA(116(XM) Ttra-Sertes Type Row /rrcjufrM jkJ Drurfart Fntrf
’ J 4 SrOla \X 'atrr Resources 2)
uM'Wrr, ^IT jfrr d-Ew®
H Ay. Jn/ZAwy j%nr
ANNEX 06
monthly flow estimated using a regional approachJ'rtJerw’ DvoctjUc Rrt'abb, iff E/trtfHL Atfffify offT'alrr & fc*rrg) EfNapwi i\'/Jr /rn^ifimr urn/ Drjtj& Pnta
I b J’4 ScOla Water Rmourcc* f2)
uft
weir and itoragf dam (mV')
%
,Ces 2)
iJAUv-ll
IFuM
f.'ta N/*
e'Ethnpia. Mtmitn •fV’dtrr& Emttq -«<< PnffH4T IW
Natural flow ettimated for right diversion weir (mV1
HL.__393
_ 18.8
HZ 1 41.2
118.2
48.2
103.3
L’b F4 SfOl j Water Rewurccx |2)
uVJ 7-?“T"
ANNEX D7
Gl'IDE FOR OPTIMISING WATBAL PARAMETERS 5„„ a ANDFhM Dntmih- fyM. of Efhnpoa, Mutufrf of ITtfrr «*• Ena^ Pr^ftT
ANNEX D9
^UAL DAILY MAXIMUM FLOW FOR GILGEL BELES NEAR MANDIRA
IJ-MiT II•/ E/httyu. Mtwtn *f atrr Etftfgf
/•.’AMfM-’t Nwif < rnfo&i>< mJ Dnaugr ProttJ
r
l b M SrOIa Water Resource* (2)Annua' Maximum Instantaneous Daily Flow
--------- GIG EL BELES MANDURA
Flow
3
Year
(m /s) Date
1962
-•
^963
-
1964
--
1.965
-
1966
--
1967
-
1968
-•
1969
-•
1970
••
1971
-
1972
--
1973
--
1974
--
1975
-
1976
-
I1
1977
--
1978
--
1979
-•
1980
•-
1981
--
1982
120.8 20/08/1982
1983
138.8 02/09/1983
1984
97.7 13/09/1984
1985
--
1986
377.5 17/09/1986 I
1987
270.1 15/08/1987
1988
255.1 14/08/1988
_ 1989
341.6 23/08/1989
1990
395.5 30/08/1990
1991
221.7 14/07/1991
1992
219.7 28//07/1992]
1993
162.9 30/06/1993
1994
130.0 05/08/1994
1995
198.1 07/08/1995 1
1996
__ 1997
99.1 14/08/1997
__ 1998
1999
-
-
1,
— 2000
249.4 12/09/2000
2001
2002
163.7 27/09/2001 1
—2003
190.5 19/07/20031
—2004 L 2005
161.S 02/07/2004 193.1 24/09/2005 ]
714)1/2011Ftdern!
Miautr) ITa/rr and Entrjp
Ethncu* Mr and Draiiu* PryrfANNEX El
SUSPENDED SEDIMENT CONCENTRATIONS FOR LAKE TANAlrn ^bl>* *** Pn’*V P’*t>Con-rrtT.ilW''
&U ' -+ ' ,Kr>n.1rtr»' urtjrnBtn
J4h*r
Wageeh M«g«ch _
Basin
2__ “~_1 _ .
_
h
Nteg*c __ Megcct) _ Migebh _ Gilgel Abty Gilgei Abiy
Gjlgel Abiy_ Megech
Meg«eh Mugech Megech Megeth Megcu'h= Qilgri Abay Gllge'Atiy Gilad Ahey Mcgech Megtch
Mfe-jcch_____
— -
AJF8ZO AjaZO
A/ezo AjflZO AztiZQ AznZO
504
452
M«ro¥ifli
MiffliWi
Arezn
Az® 2b
Azeic
Azezd
350 ______ S3?
—
Azeza
Arezo
MflfHtWl Memwi
Merawi
Dill
21-Feb-PO 21-Feb-90 21-Feb-9C IO-Aug-90 10-Aug-90 10-Aug-BO
1B-Jan4X) 15-Jin-OO
02 Aug-90
27-May-92
27-Miy-92
27 May 92
14*Miy-93
14-May-93
TA-Mfiy-OS
D7-May-B3
Gavge / heloht iffil
0.74 O.M 0.74
1 29
1 29
1 29
2 45
2 45
2 45
0 75
0 75
0 75
0 B3
0 33
0.33
050
3id Coocerttra
187
177
230
6,307
mint
177
U7^Muy-93
07-May-93
0 50
0 50
Azazo
be-Qct’94
t 00
Flaw Imlfcl
0 04
0 04
0.04
B.«
896
896
195.94
IBS 94
195 94
005
005
005
0.19
0 19
0.19
359 3 59 3 59
261
Depth
(ml
OK
a o?
004
0 62
am
0 35
750
5 60
490
0 03
0 10
0.17
0 33
3 36
021
0,77
0.67
0 45
057
WkWi(m)
0.7C
1 70
250
800
12 00
1600
14.00
20 00
41 00
0 40
0.80
1 20
1 10
2 30
2.50
a.oo
16.00
22 DO
2 20
2.755
3.673
3.4M
368
366
315
455
629
529
175
166
172
253
229
AZ«JO
AzeiC
[Ofl-Od-94 1 00
OO-Ocl-M
M'5ep-03
1 00
2 00
261 □ 58
2.61 036
4 2D
8 20
189
254
0M/&4 ’Mam Belts Main Hefes Ma^n Belts
MetStofll
Metekel
MetekeF
oe-Sep-03
2 BO
150 22 2 26
150 22 9.17
9 75
19 50
912
1,239
(JB-S-ep-03 280
150 22 1^3
□M/CM
Mam Belts Maul Belts
_
Mam Betas
Martekel
09-Sep-C 3
3 04
t4fl.7Q 1.68
29 25
W 75
950
1.406
Mdikel
OMop-03
3 04
Meiekel
OB-Swp-tl J J 04
MB 70 BS4
146 70 3 23
20 SO
31 OO
1.333
1,202
22U.'CM__Gummara
Lake Tina
16-Aug-O* 4M
Gummara_
Lake Tina 16-Aug-04
496
T17 TO. 3M
117 10 4 12
11 7Q
27.70
3.277
3.443
Gum min
Lake Tana 16-Aug-C* 496
221/04 __ Gumman
Lake T»nn 17-Aug-04
6 23
117 10 290
207 80 5 52
34 70
11.70
2.605
5,442
Gum nun
Lake Tint 17-Aug-W
6 23
_ Gummin. Gtiqel Abay
"Giigei Abiy Giigel Abey_ G«ig^Abay' Giigel Abay GHgal Abay Grigel^Abay Giigtl Abay Giigni Abay G*g«l Abiy_
G *S*'
_/G iky* | Ably _ Megeeh ___ _ Megech
Lake Tin*
17-Aug-M
6 23
207 Ml 5 67 207 flO 3
27 70
34 70
5.85J
4 815
2
224/04
228/04
229/04
441/%
4*4/05
WTO
Menawri Merawi Merawi Meriwi Merawi Merawi Merawi Merawi Merawi Merawi Merawi Merawi
IB-Aug-04
IB-Awg-04
IB-Aug-04
22-Aug-‘34
22-Aug-04
22-Aug-04
2 3-Aug-04
2 3-Aug-04
23 Aug-04
17-Fai>05
_2' —3
- __f “
-
-J
"-3’~ ■ — 2 ~
__
_ jdagtEh
G^el Ably
- GOqbI Abay_
- ^*9*1 Ab*y
_ Megecr
—
Azezc
Axcec
Azttzo
Me raw
Merawi
Merawi
17 Feb-05
17-Feb-05
11-M«r*0$
11-M»f-05
1FMar-05
07-Jun -05
07 Jun-05
07-Jun-05
2 11
2 11
211
196
1.96
1 B6.
2.30
2 30
2 30
0 41
041
0.41
1 09
1 09
1.09
045
045
0.45
149 53
149 53
149 53
11943 11943
119 4-3 17949
179.49
179.49
2 77
277 2 77
0 11 0 11
o iT
3 53 353
3 53
2.10
149
1.01
T 36,
1 25
15 40
30 40
45 40
1830
30 30
1 07' 45 30
1 90
1 55
1 07
0 39
0 44
0 42
0 30
0 35
0 34
0 44
OX)
0 76
15.40
30 40
45 40
7.20
14 20
21^0
1.00
2 00
260
7.30
1430
21.30
3 552
r
ISM
3,219
2,721 2,535 2.220 3.827 3.469 3.145
122
121
125
300
389
2.192 2.154
r-iio Samprm
—
2 168
—----------- —,
V2/O5'
173^5
M*g»Cb _
M^gech _ jMegeeh
MtgicjC —
- M^©Ch_
- _.Gumma*
■?s:River
Basin
F^d
3__
1
2
3
1
2
3____
Ub Mr 112/99
-—— —— — -
. -— —
Oat o 17 Ju4 06
Gauge 1
freight Im)
Plow
Gummiri Gummart GlMTimRCB Gummara
Gummara
Gummara Gummara
Lako Tim
Lake Tana
Lake Tana
Lake Tana
Lake Tana
Lake ana
x
Lake Tana
--
18-JU-06
18-Jul-06
18-Jul-06
28-Jul-06
28-Jul-06
28-Jul-Ofi
3 89
4 12
4 12
4 12
4 34
4 34
4 34
50 12
62 99
__ 62 99
____ 62 99
?3 7q
7370 ____ 73 70
D «w>
——Im)
?32
3 35
2 58
2 77
3 3? ___ Lg —_?53
-
1 0qq
20 00 ^■--3000
—--bo !yi
"ti;
hl
^,Appendu Fir „^'
Alfctoj **T>rr H
N'* /"*’"'<
Pm**' A’1*/
ANNEX Fl
ANNUAL DAILY MAXIMUM RAINFALLFttM Pt wrote RtpM'i tf&tapa. .Mwtrj of IVafer & Flurry Erttoftuif .\'tJr imgutm aad Dnaa^gt Prjtti
rs <’Urcrt (})
nh jr;_
i*n
ir]
jo*
j3/Dtu'L9r;
si/flVSTlJ DJ.W,•:■?_?< UW:9?4
II Wl/fc
11/57/1571
o*j,i n,|jj
IE/QK/1911 Siftwsjm
!V^1TO
.WilM
A-Vot; 1 w
"LWu1® EH/n7, nai D1/01/IW
W-IW
|TWtM»
jw/twi
T7 ,* «.
gr.WiMt
rtiWur? Xtf/I'
_1W4
JWiJ
J*M_ !•«
-
W«
*te
_ 18OJ_
- ^pJT
-«*L_LtoT 5«.b
15,7
«.i
**5
5*J
GJ*
ria.'at/jwi HAW15M
r.*?
- jfcK’-
——*_
u 5£l
. j&iwim
.. H.'LI¥mqq'
_
JQQ!
_
*• Jl?20CJ_
- - jjj^ag/jHQOjii
-IjJWkh
JT/WWl
5* a__ i*/oapMH
jyajftBos jMfl
lw? iyij
LMwiwg
!*/£■/2JTT
wne/itR
ML^e/TOCC
WQiftE. iLj^/jgg»
iVoyroua
iMowim CWW owwm* J VM/1 *15
JWW SuOfc/1***
aw.w
LH.L& -DOJ
zjjoiZzmi m^azzogj ITWrtOl
t&gLTO« uai/m jyw/zxi?FdbtfaM A'li /miw/xw J*d Pwap PnjttfANNEX G1
MONTHLY WATER LEVELS FOR LAKE TANAFtdrru/ Df/nocnjfa RfpMc of Ethiopia, Mim/fn' of IP.afrr & Entrp Ethiopian Nth Imgotton and Drutnage Pryrrf
l>b IM SfOU Water Rc«ou May 76
jun-64
1785 45
Jul 64
1785 82
Jun-68
Jul-68
1785 48
Jun-72
Jul-72
1785 23
Jun-76
1785.89
1785 54
Jul 76
1785.68
178593
178545
1785.74
1785 99
Aug-76
J 786.58
Sep §4
1786.89
1787-45
Aug-68
Sep-68
Oct-68
Nov-68
1786.59
1786.91
Aug-72
Sep-72
1786 31
Sep 76
178702
1787 28
1786 78
Oct-72
Nov-72
1736 27
Oct 76
178682
1786.94
1786 52
178609
1786.63
1786.35
1786.18
1785.98
1785.60
1785.43
Dec 68
1786.30
Dec-72
1785 91
Nov-76
Dec-76
Jan-77
Feb-77
178657
1786.34
Jan-65
Jarv69
Feb-59
Mar-69
Apr-69
1786 11
J an-73
1785.74
1786 14
Feb-6 5
1785.93
1785.76
Feb-73
1785 60
1785 96
Mar 65
Mar-73
Apr-73
May-73
Jun-73
1785 43
Mar >77
178S.77
Apr-65
178563
1785,50
1785.38
1785 23
1785 58
1785.47
May 65
May 69
1785 12
1785 41
1785 34
Jun-65
1785 50
Jun-69
Jul-69
Aug-69
1735 12
1785.44
Jun-fil
1785.73
Jul-65
Aug-65
Sep-65
1785,58
1785-57
1786.37
Jul-73 Aug-73
178539
178607
Apr-77
May-77
Jun-77
Jui-77
Aug-77j
1785 79
Auf-61
178663
1786 19
1786-55
Sep 61
1787 27
1786.57
Sep-69
178689
Sep-73
1786 57
Sep-77
Oct-77
1786 95,
Oct-0
Nw-61
1787.14
1786-82
Oct 65
1786.63
1786.48
1786.29
1786.09
1785.93
1785.76
Oct-69
Oct-73
1786 63
Nov-65
Dec-61
Jao62
1786 58
Dec 65,
1786 33
Jan-66
Nov-69
Dec-69
Jarv70
178668
1786.40 1786.17 1785-98 178583
1785.6?'
Nov 73
1786 42
Dec 73
178617.
Jan-74
1785 99
F
_ eb 62
1786 14
Teb 66
Feb-70
Mar-70
Apr-70
Feb 74
1785 82
Nov-77
Dec-77
Jan-78
Feb-78
Mar-62 Ar-62
1785,94
1785.52
Mar-66
Apr-66
May-66
Jun-66
1785 65
Mar 78
1785 76
1785 59
Apr 78
, May-62
1785.62
1785.45
1785.39
May 70
May 78
Jun-70
178548
1785.32
1785.19
Mar-74
Apr-74
May-74
Jun-74
178545
178536
1785.41
Jin-78
178639
1786.66
1786-39
1786.17
1785.98
1785.79
1785-62
1785.52
1785.42
Jul-66
178S.57
1786.20
Jul-70 Aug-70
1785.37
Jul-74 Aug-74
17fi5 83
Aug-66
1786 11
1786 57
Jul-78 Aug-78
1785.75
1786.47
Sep 66^
Oct 66
1786.72
1786.64
Sep 70
1786.67,
Sep-74
Oct-74
1787 10
Sep-78
Oct-78
Nov-78
1786,84
Oct-70
1786 63
1786 96
1786 76
Nov-66
1786.44
Nov-70
1786.43
Nov-74
1786 60
1786.4?
Pec 66
1786.22
Dec-70
178618
Dec-74
1786 34
Dec-78
1786.26
Jan-67
1786 03
Jan-71
1786.00
1785.84
1785.67
Jan-75
Feb-75
Mar-75
Apr-75
May-75
Jun-75
1786 13
Jan 79
1786 07
Jeb 67
1785 83
Feb 71
178598
1785-81
1785,59
178538
178531
Feb-79
Mar-79
Apr-79
1785-87
Mar-67
1785.69
Mar-71
Apr-71
May-71
Jun-71
Jul-71
Aug-71
Sep-71
1785 73
Apr 67
1785.56
1785.38
1785.27
1785 44
1785 S3
67
Jun’67 Jul-67
1785.29
May 79
1785.44
178524
1785.52
1786.29
1786.83
1786-72
Jun-79
Jul-79
1785 38
1785.56
Jd-75
Aug-75
1785.61
1786.50
1787.30
1787.18
1786,80
1785-59
1786.53
Sep 67
1787.02
Sep-75
Ajg-79
Sep-79
Oct-79
178623
1786.63
Oct^67
1787.02
Oct 71
Oct-75
1786 59
Nov 67
178671
1786.46
Nov-71
Dec-71
1786 50
Nov 75
Nov 79
1786 26
Dec -75
1786.51
Dec 79
178641
1786.18
07/12/20101786.90
Jut-M
Alf-M
Mir 99 Apr-99
Va» ?3
pig ! I®*
1786.73
L
I
I,
LAppendix Eljul-05
Water level 1786.11 1785.93 1785.72 178S47 178531 1785.04 1785.31 178589
1786 35
f
Oct 05
1786.54
NovDS
1786 38
De<-05
jan-06
178618
1785.96
1785.75
178501]
1784.97
Jul 06
1785 23
--06
1786,24
Sep Q6
1787.05
Oct "02.
178629
Oct 06
1787 06
Nov-02
178606
[ DjC-02
178581
Nov-06
Det-Ob
178692
1786-69
Jan-03
1785 55
Frt-03
178$-33
_ Mr-03
1785.09
Apr-03
May-03
iun-03
1784^1
1784,57
178439
___ Jul-03
1784 79
^jug^3
1785 60
_ Sep-03
1786.43
1786 64
_J5*£3
178647
1786 25
^Jan-04
1786.02
1785.78
^Dr-Cn
ms^
ngs.29 1785.07
<*pjx
‘^£04
■^Ocvaj <§-ik
178^89
1Z?122
178^46
I7g£59
178649
A^fcTl”
07/12/2010PtM DtmomOic ****< ofEtb^a, MtmrtVf cf Vatrr and Entr# Efhwpia* Nt/f brigiTnn and Druinap ProjectMt* VW *'atrr & E*v
ANNEX G2
daily water levels for lake tana
IJAfajFc&ru/ Dr*ocrufic fap*Me of Ethiopia. Stmrn of Wafer <> Energ Ethiopia* Nth lengatro* aad Dnhnagr Pryea
Ub P4 SrOU Wuer R«
3«
3tl
1*
7«
J«
2M
1*7
1*7
JJfi
1*5
2*4
JU
J.U
lli
1*1
2*1
7«
3 7*
3«
3.71
1.77
J71
£71
1.7
?«
2*7
Iff
IM
2 05
J si
1*4
If)
14J
7*1
7*1
16
4.«
J 57
2«
£57
254
2*5
J»
JM
a.8i
J *7
J«
2.47
147
J 47
J«
1*5
J *5
34*
J 42
2.411
1.4
JM
1*7 Z» >«
JJl 3 15 1*4
2.12 J u 2fi4
Ui 1.14 2.H
J JI 3.14
j.in
JJ1
ill 101
3*1 2 U aaa
Hi 3 u 3 fll
1.1 712 ZQQ
13 Hi J 02
JJ 1.1 an
Mi On Hiw OK
LM JJ* J 44 LM 125 £M 1* J 37 IM 111 1.W
JM 3 J* 1S5 UI 7» £M 34 154 111 IM 7M Ml 111 LI 2*4
17 141 551 111 in in 142 UL 11* £11 in M« 3 11 *Jt in
a n 341 H? 114
l»
22*
*;*
34 iflj
1 L2 JO?
>J7 212 J 52
JM >14 1*1
7 75 J 14 j.m
£»2 £3 I4» 115 U LB 111 JM U4 UH
ZU 2M IM 144 m LJS3 IM 2*7 IM I4| 3 31 1*1 JU i*» LW KJ u 3JT»
11* £>L 1 S3 JU
JM
JU 315 214
ILS >w 153 3 46 1*1 3 t j
2.3 2M 111 *4 IM IM
2J7
J 16
l.»
?M
IF
LH
1H
JH
IM
JJ*
1 33
J 11
2J1
J P»
2J4 a ii ZU 3 21 LM TM
IM US
7 7* 114 1 33
UJ J IS a
2*3 21*
j«
3 Ji
ill-
1JJ a ii
1J1 2.1
1.1* 1 U-
71* 711
1-5* 741-
JJJ 1 MS 3J7 1ST 14* ui bin 1U I JU 155 LE-
£74 304 117 UH LM ZU 147 ItK 1U IM Id IE
U LU LM £1J i*j 117
!J3 111
III 141 i TJl
2J4 LU sja 141 J.W 1*
UI 153
£4 U
i*
LI !■ I. ft
7.75
J 15
2.71
Jn
7 77
15L
2 51
23
3*1
)tt 11 LJ IF J M
JI*
7I
£44 !.M j.» 321 u? 17?
2 1* JJ3 ■
1.17 3M
2*7
Z*t
at IM 179 JJT J„
151
JM 111 LP 177 2J7 J it
£53: J.IM
1W
*»•
JIM JWL
12M 242* 314 LUI
iis
£*■ 1*5
HUAl-’sST!
2.15
2.71 -
J 12
] 1*
I*
14
LU
1 JI
LM
WniFMH
242
15
£l>
2 Of
IS*
144
121
?*?
in
511001 r«a 1»' *-*» ■wme urm m *m«r nAH 1l "*-b***i *W* WrtrL>^|-WH|
Lbr^Mdt. Ana ! IM t» G krn
t
2
1
4
&
4
2
4
1
ft
II
H
11
u
ii
14
U
14
11
ft
n
n
ii
14
n
M
i?
ft
ft
ft
ll
ira
*■»
2.74 2A3 i M JU54
172 2 51
171 2.51
J 7 Ul IH LM
141 133
7.4 144
2.M 1*1
2 » 1*1
1J7 BT7
ah
2 -»
in
lli
a.» > «
LU,
zis
IM LU
1® LI
l.OJ 241
!M LM
7.oa 271
LH3 2ft
K* l.H
JM IM 145 IIS
JOI
IL
J ffi 111
701
2 H 7 M 202
I*
LI
JM 1*2 17 LT1
.is »1t
m ILS
7 69
£U
IS
*-»
2 M 7.1* 7 01 1J
in
in
iji
111
247 14*
7 17 7 14
2 M 114
IJT 111
LM Hl
7S7
2*1
U5
L^
Ll
1*7 147
2M 1 4?
145 2.41
au 2.44
2*4 24*
1*3 144
2,43 1 14
2-13 144
2«1 144
UI 2.41
241 2.1!
11!
714 £11
a ii
J 14
LV 114
1JJ 2.17
174 in
IM l?
MJ JU
ift LM
III 147
1*1 K5
MJ |13
3J1 1C4
U!. LU
£12 IM 21 197
a ii
Mf
£5 2 1*
13 £11
a,n >J1
i.as 111
u £11
u 11
2 in
£W i n
1J4 LB
a •? LM
IM LTO
i.n ih
i n LT*
L»4 17*
I M lift
3 M 1*1
LM 171
1*1 >«2
1*1 1*1
1*1
li
3*1 LS>
l-H lot
JJ* 1E5
121 1*5
UI LM
3*1 Ml 134 105
in
IM
2**
J Al
2-17
134
2J<
115
111
J-M
IJJ
271
2A1
745
2*4
2 41
2.41
J 42
14]
i*i
1*4
L«
L»
1_*7
in
in
ui
i*i
1*»
LM i *5
ZA 1*
JM IM
1ST MO
£1 100
J_H ]*
JM XtJ
114 UJ
M £15
£1 1J7
£13 Li*
JJ5 1/1
JJl 1H
JJ in
JU Ut
LM JJ*
1J* IJ1
JJl 171
241 Hl
JU 144
341 L5J
Ml £54
ii 1*5
ii* L03
JU 5*L
2.1
2» 7O»
£15 J«
l.U 1«
111 in
LS i*a
l*
l-M
ill 2*t
L*4 2oa,
m 3*1
i« MT
J71 L»
ul
II
J
1J4
t*
2M
ia
J.-4* 117 111 15
LSI
jji 147 U
171 1*1
3
1*1
371 2*>
1.31 ;»?
1J 7*
u 214
1*4
IJM H*7
1* IW
uIt
M
7*4
in
M*
J 11
JO*
in
UM
LJH
s
31.7*
J«
JJt
10*
in
us
IB
11*
3JJ
f
a. 7 s
14*
LU
JI?
m
10?
In
IM
JN
ia
Ml
IN
Lrr
J
J,71
3 5*
2.11
1W
Lil
Ml
ID
141
J
JS4
1 35
J -15
3 01
l.?2
LU
209
LU
JU
in
in
2 01
1«
LSI
MJ
IJ
♦
1.1 J
1»
JM
114
u
lit
LB
1U
IJ
10
7 71
2.54
13*
114
IW
Ml
111
Ijj
JH
!£
lu
JM
LS
i-Jl
ll
1.1'
J5J
7M
7 11
7.1*
L17
MJ
11
1«L
i.:?
13
|H
351
IM
MJ
?Q1
1*
147
II
M5
11
)M
i L5
Ll
jH
152
LM
LU
1
Ll
111
114
4
IN
1*1
ill
M
153
J 11
Ml
IM
US
3W
IB
4ft
JN
I*
111
d
In
7*4
3.52
1J
Ml
I.M
194
Ml
l.w
4 GJ
IN
in
ill
J*
2«B
144
Ml
MJ
t.N
tJJ
2 35
111
4«
in
in
13
ll
J4T
L*»
r?i
3 ll
LH
,3Jt
Ll
IM
l«
in
1U
1W
d
ii
J *7
J 44
227
M2
IJ*
IM
JJU
>M
4 Cl
*n
IB
14
3M
2 *4
J 1*
7 12
1M
II
Ml
L«
4
*74
IH
IM
N
3*4
3*7
225
Ll
LS?
LA)
141
MS
MS
171
1H
II
JM
P
J A&
1.44
135
7«
IM
tn
141
347
Ms
in
IM
IID
7 *7
7.44
7 35
JOT
!M
L»
JJ
11
Ml
1.73
n
1 91
*tt
IM
Li*
723
107
IM
w
in
l.M
MJ
1*7
a.n
Ml
li:
jjja
JU
MS
IM
LOT
IM
2.M
IAS
IM
JH
ill
4
ii
1 Ml
744
U*
10*
Ml
a
1*
Jf7
154
IM
1.11
1
Tl
JBJ
2.43
2 31
2«
1.12
Ml
?C
1?
JU
LF
111
LT!
]|
7 Ml
IM
371
7 0*
L»
2
LS7
1 73
>»:
ID
11
Fl
1*1
142
IJl
7JM
191
107
3.17
1-7*
IN
Ii3
Ll
111
H
>4
13
2 AB
111
in
J.J»
ira
1H
J 4*
171
1_M
ll
7 51
21
Ml
J15
17?
Ml
Mi
LUI
23D4 MW LW5 LM 1 W5 >J2» i m I7W Mil liu
7.F*
2 yr
7.41
3.3
J 3*
J 01
ML
ID
412
IM
Ml
Ml
7 55
J.4J
12
a.n
1J2
UH
lJi
Ml
IN
IIJ
LM
IH
luw;Miabvi 1Uj»L
tartm
LME1 AMA HR WH|H DM
■*&*» Ictal T