10100. 13400. 44300. 75600. u elevations- 1695.00 1725.00 1705 - 00 1710.00 1715.00 1720.00 1730.00 U53 10= 57 COMP 10= 9 1$ SWAGES; 0. 100000. Q CAPACITIES* 0. U AREAS- 0. 1000. 1000, IE ELEVATIONS' •tfCOF 1410.00 1415.00 •OMK COEFFICIENTS FROM RES ” = 51 1.0000 meFftCIEUT, FRCH RES 52 1.0000 14 TO NY 18 TO MY , thCr™^UlU L0CAL "WEME.Ul local flows MCRE READ FROM "IN" CARDS WERE READ FROM ELAPSED Tilt' OR 0iQ0;04 *0 ,NLM- OSS 4O,M11= 39.NI.JUf® 1,lEWRC- t ot*l elapsed CLOCK IM ™; ■***W*MH»*W« **************** 264 PERIODS: 0:02:34 TAMSROTTING COEFFICIENTS FROM RES U TO MY ny. 51 1.0000 ROTTING COEFFICIENTS FROM RES 10 TO NY MY. 52 1.0000 •lncrwntal- LOCAL FLOW Information: • NOTE • INCREMENTAL LOCAL FLOWS WERE READ FROM "IN" CAROS ..«•••— OR ° 197.94 80.27 197,46 166.16 1OA^ u,w a,*? 98.99 107.84 42.97 166.90 79.46 42.90 40.22 351.00 249.60 64.10 249.19 63.7? 34-95 55.89 71.63 21*02 33.77 31*44 33- 7B 42.03 77.22 7.09 38.26 33.16 40.56 76.52 5*29 37,66 10.60 7.94 34.04 16.71 231.45 59.09 44.60 46-22 44*99 34*33 37.95 81.61 0.78 40-85 4,37 39.66 84,32 0.08 40,50 1.16 0.12 14.20 9.13 4.67 8,03 22.49 35.73 37.09 45-02 76-83 96.48 57.95 92.49 42.95 43.76 33.39 3.36 39,16 63.73 92-11 8.20 35-31 5*00 12.30 34.90 128.10 8,06 12.23 17.61 142.23 136*68 23.M 19.34 34.02 231,30 $9.60 29.79 9.86 7.36 1.M 0.12 4.63 11.40 32.40 78,60 156,70 226.88 138*99 85.70 6.16 112,37 195.17 62,60 119*00 48.16 49.25 50.36 46.19 29,23 27.33 190.0$ 44*44 147*90 14.53 isa-ao 221.20 64,00 51.95 96.90 173.09 167*05 42.80 36.94 J5.7O 20.27 72.65 84.71 20.72 29.95 3i,do 13 00 53.02 42.25 39.06 55.89 44.59 84.21 10*42 34.85 11.50 8,39 7-02 5.71 35.03 79.26 7*24 38.01 20.44 16.87 43.54 45.92 34.56 41.55 80.16 4*63 39,47 13.69 31.90 37.72 38.81 74.19 6.91 40 .35 16,97 44>,9i 48.84 34.02 79.53 3.59 40,44 15.57 10.83 6.94 10.30 5.36 4.03 17.63 50.90 153.90 101.00 49.90 63.50 53.09 25.76 30.01 33.38 39.59 93.64 68*72 8.77 40.65 24.92 46*53 32,40 39.77 51.34 90.95 31.30 30*08 13,14 48.40 46,70 93.40 56.43 43.52 55.58 125.58 83*06 62.50 24*73 12.60 19.60 49.88 46.54 85,80 49.80 53.12 55,46 36.94 139.56 78,44 72.25 82.70 21.38 60.43 49.40 52,53 123*70 73.90 111.68 70,46 44.00 45.68 75.22 128*02 114.64 71.60 146.06 7.10 22.27 205.40 59.40 28.80 14,45 10.04 6.45 9.56 4.98 12.21 44.90 43.40 66.70 114.90 63.60 9.80 70. S3 140,73 3.29 26.08 10.60 4*W 13*74 9.44 4,5$ 49,15 29.63 31.51 50.17 107,22 2.76 34*72 4*14 7.40 2.95 10.41 13.69 3 85 41.06 19.63 44.04 60.37 57.85 96.07 4.96 37.38 16,47 97.76 1.98 38.68 10.15 6.86 2.73 44.57 45.84 17.46 41 5 70 102.52 0,81 38.64 17,10 8.61 17.78 70 44.15 46.60 36.65 41.96 55.51 77.96 8.62 33,31 a ? to 50.31 96.30 129.90 71,02 45.40 33.B7 65. n 70 76.17 78.50 24.5? 65.71 80.52 101.30 16.67 1.Z5 12.88 67.90 117.40 151.40 106.85 134.70 U1O 70 80.01 89.21 129*90 6.01 194-30 170-11 *>11 7Q 173.60 97.90 47.90 79.01 45.98 61.12 50.85 53.75 135.51 173.81 224.51 160.51 85.78 134*16 84.20 59,5? 120.77 *®12 7Q 32.41 9.89 85*00 30.25 2?-60 125,80 45.30 45.00 1.16 11,95 63.10 109.10 140.60 180.40 116.90 42.10 46*37 41.68 49.66 46.34 42-84 37.99 BE.47 41.61 «1 71 42.11 23.18 31.61 30.94 26.24 69,10 84.72 18*74 31.38 28.04 5CZ 71 30-62 36.49 5.04 4.59 5.29 31.40 51.81 22*10 39.59 *1 3 71 35.99 34.75 30.65 75,57 4.59 40,25 33.04 6.86 13.75 41*52 50.53 47.84 7t 73*40 5.41 40.84 8.10' 19.83 15*18 25.23 49* IS 61.21 13.27 40*59 26-D6 30.69 6.37 7,54 18.40 52-24 TAMSLOC bO= 12. E ItttIVA 12. OIM IB-* 22. 8IRBIR-T 22. 8!RBIR-T 14. GEBA-A 0 14. G£6*-* 0 16 SOR RAA TR ! Wf LOU OUTFLOW INFLOW OUTFLOW INFLOW OUTFLOW inflow outflow h 1 6<> 53 5 71 14,97 20.96 33.39 40.47 34.35 39.92 51.34 ‘^lOL 54 6 71 53.59 58.35 102.86 105.27 22. M 26.36 34.00 55 7 71 121.20 70.86 171.66 96.23 83.50 15.92 124.90 3*.76 56 6 71 182.80 133.03 285.03 210.19 11 1.S3 57 9 71 135.50 136.68 251.28 251.01 127.80 193.30 sew n 83.10 82.64 151.84 151.36 85,50 129.30 M.30 5911 71 31.60 29.67 55.87 55.06 6012 71 18.74 33.28 46.84 71.24 43.67 16.43 61 1 77 17,06 38.82 53,01 85.27 7,69 62 2 72 13.31 38.83 49.91 87.61 63 3 72 10.64 39.58 48.43 90.66 2,36 0.26 19.07 130.32 87.56 40.99 35.34 36.16 36.35 39.00 ’U.*i 1 ’V3? 132.00 65.30 ’31.5? 24.57 11.50 3.51 0.37 *4,99 28.37 17.09 10.09 64 4 72 37.35 85.26 B nA 22.85 W.&j 3-27 9.68 45.37 3.05 39.08 4.55 6$ 5 72 14.75 37.31 49.56 80.04 9.86 11.63 o.k 37.20 14.75 4 66 6 72 47.03 48.96 88.03 87.16 29.90 30,14 20.35 44.70 44 flO 13.70 67 7 72 101,90 65,05 149,85 94.10 69.60 19,76 104.00 <1*50 « 5 72 133.00 64.94 175.44 75.48 106.00 94 17 16.02 158.50 140..61 ^.60 69 9 72 157.40 126.77 257.67 210.15 97,00 54.33 7010 72 72.54 144.90 14 ?.2Q 73.30 133.64 133.16 26.00 136.45 25.26 36.80 134.60 7111 72 35.50 40.48 69,98 78-85 24.19 38.39 30.47 36.10 37.53 36.1Q 7212 72 17*66 37.95 52.59 83,02 9.22 35.59 73 1 73 27.59 49.18 72.11 13.78 33.« 104.08 4.82 33.08 19.03 7.21 12-81 74 2 73 22.49 46.77 6$, 45 101.42 2.B5 2,02 35.24 36.54 12.76 75 3 73 19.49 45.19 61.39 99.03 4.26 3.02 10-53 9.90 6.68 3,97 76 4 73 20.1B 45.96 62.80 100.04 2.47 36.06 77 5 73 20.09 37,72 3.67 54.43 78.01 14.56 10.28 35.54 21.77 t /ft 5.40 78 6 73 53.09 48.49 92.60 82.51 37.60 26.13 29,35 56.20 2“-0U , 79 7 73 113.70 67.99 162.49 94.10 78.50 54.65 80 fi 73 138.90 17.40 117.80 52.20 60.96 176.46 62.38 105.71 118,10 109.40 Bl 9 7! 170.40 166.00 15.26 M7.70 176.60 296,84 156-IB 123.60 114,82 164.M 8210 n 119.60 119.14 218.64 184,50 182.92 218,16 70.00 171.60 &311 73 64.27 69,26 58.90 104.70 113.2? 1U.29 122,71 97.30 15.39 6412 73 22,19 33.68 52.72 80.74 23.00 109,41 24.53 21-40 5.82 85 1 74 14.49 30.57 8,70 39.70 51.76 13.64 M.BO 8,06 4.07 86 2 74 12.98 39.84 37.02 6.D9 50.63 12.55 5.64 90,20 B7 3 74 2.36 38.09 10,83 39.89 3-51 48.89 10.43 3.2? 91.20 66 4 74 0.26 39.10 8.60 0.37 8.08 0.34 33-46 40.56 76.43 89 5 74 7,48 15.72 39.86 31.47 11.19 17.56 10.38 44.55 65.52 90 6 74 18,59 37.19 27.82 31.71 25.84 59.26 8.12 57.36 16.34 91 7 74 103.10 99.70 43.01 34.41 154.10 140.83 143.20 125.91 IS. M 92 8 74 174.10 98.23 260,40 245,47 241-90 146.60 112.85 234.75 174.18 93 9 74 222.00 176.30 331.90 322.52 306.30 183.50 166.68 339.28 339,01 223.50 224.52 334,20 334.22 310.40 9410 74 124.70 124.24 228.04 227.56 96.70 95.96 144.50 144,09 134.30 9511 74 55.50 65.35 111.45 127.16 10.57 23.17 15.80 18.46 14.70 9612 74 27.37 48.87 71.60 103.70 4.55 32.49 6-80 12.36 6.31 97 1 75 17.10 43.87 58.09 97.30 1,19 36.17 1.79 8,65 1-68 98 2 75 12.73 36.63 47.21 02.60 6.41 38.30 9.59 15.77 0.8? 99 3 75 11.05 37.61 46.80 85. SB 3.58 39.16 5.38 12.46 $.£N 100 4 75 10.80 37.45 46.45 84.62 4,40 39,11 6.56 13.38 6.10 1D1 5 73 16.61 39.18 52.97 83,57 9.45 36.97 14.11 19.71 13.10 102 6 75 46.99 45.B7 84,98 80.15 34,50 30.96 51-50 $0.86 47-80 103 7 75 100.80 68.24 152. 04 102.62 63,60 19.43 95.10 86.39 88-30 104 fl 75 190.60 147.16 305.66 240.6? 64.40 6.41 96.30 84.68 89.4012. OJTFLCkJ 22. Bl«BI8-T INFLOW 81RB CRT OUTFLOW 14. GEiA-* 0 INFLOW 14. «BA * & OUTFLOW 16, we rm 1MFL0U 16. SCX R4A OJTfkOW IB. B4*0 DW* INFLOW 18. dji m Ol/T Fl OU 292-87 107,94 71.25 6531 44.87 181.35 105.00 125.27 102.*4 40.55 3.16 187.46 64.60 157.00 65. B6 137.08 99.50 29.55 77.69 26-16 30.20 92.05 92.74 39.1Q 9.52 32.93 99.09 40.10 14.22 43.66 43.W 30-60 32.04 33.03 33-81 41-03 77-W 77-53 135-78 87-24 35-BO 38-10 47.11 38.93 37.42 41.05 03.51 3.81 30.23 5,68 35.03 36.00 36.92 42.96 75-43 170-46 202-23 202-08 160.24 62.80 53.75 68.17 49.88 46.16 52.39 72.31 5.29 38.93 7,94 75.86 4 33 40.90 6.50 41.12 45.44 46.40 77.66 3-56 18.09 12.43 14.46 13.76 145.BO 92.40 36.30 13.22 5.26 7.36 40.73 5.79 73.78 10-72 33.43 6.05 5.36 71.54 35.20 16.02 32.57 52.70 119.72 61.10 15,76 91.40 96.23 106.60 14.86 48.90 84.90 10,95 159.50 221.45 85.30 148. tO 30.50 127.60 159.76 34.00 34.06 52.00 69.47 27.51 31.75 41.10 82.72 W.08 118.60 48.30 38.20 35.10 49.02 50.20 50,89 48.80 33.50 37.87 57.81 47.95 45.80 15.05 100.44 5,15 33.68 13.96 7,17 43.75 7.73 87.91 3.64 37.93 5A6 5.OB 85.53 3,06 39.17 4.55 4.22 91.04 2.31 37.97 3.47 13.03 21.67 52.24 82.45 140-53 116.B0 51.59 42.14 20.04 13.33 12.10 11,74 10.4B 3.24 40.4? 44.95 46.65 46.70 47.31 77.60 69.04 55.23 65.03 141.63 100.42 3.43 35.34 5.11 11. SB 4.74 139.12 20.80 19.45 31.20 29.00 140.04 145.13 113.57 43.80 20.77 65.50 67.03 91.70 21.53 137.10 60.80 127.30 ao.Qi 137.34 211.41 97.70 153.60 54.74 Z37.1Q 252,04 115,37 81.52 67.60 61.56 56.11 54.22 53.52 251.56 64.10 63,36 95,80 45.79 30.51 35,54 46.94 101.57 88.65 62.07 50.76 114.56 24.73 22-05 37,00 220.20 89.00 34.40 33.09 102.90 11.42 29.3? 17,06 46.02 44.82 42.29 40.56 36.72 41.20 56.24 72-86 97.47 7.13 33,32 10,64 30.99 60.59 123.13 216.79 95.39 36.69 20.68 15.73 10.38 10.77 14.37 27.49 60.11 130.75 15,83 9.B9 37.36 40.40 98.16 2.69 35,63 4.01 3.7? 93.77 2.61 37-14 3-88 3.62 89,16 5.48 36.90 8.18 7.60 42.00 44.19 46.21 75-44 15.64 35.01 23-41 80-33 150-94 178.60 342.88 192.14 96.29 75.73 66.06 68,13 41.40 31.35 62.00 21.73 57.60 65.35 97.60 20.57 145.90 97.48 105.30 32.98 157.40 142. W 135.50 146.20 4B.59 49.59 47.19 63.66 IBB.68 104.74 55.59 48.B6 44.21 43.55 41.57 342,61 103.70 104.72 155.00 143.90 191.66 81.10 M.36 121.20 HJ11 ?B 48.90 107.50 16.59 25.10 24.W 112.60 23.00 U41Z 7B 32.33 100.87 9.57 30.86 14.04 13.03 148,91 112.25 35.60 38.67 M 1 79 2J5.2B 20.25 92.91 9.86 33.33 14.71 13.66 1*4 2 79 147 J 79 15.3B 144 4 79 15’ 7 79 13-66 55.70 64.93 146.60 41.23 14* 5 7? 150 fi 7? 53.01 70.75 152 « 79 I5J 9 79 172.00 140.90 15410 ?9 79 5412 TV 74.9*0 42.40 29.67 121.62 122.73 87.75 63.26 53.50 49-86 60.3B 54.38 52.57 73.91 124.72 245.22 265.73 204.85 125.46 88.80 74.71 95.GO 4-55 35,68 6.78 92.73 92.31 1.09 37.78 2,85 155.02 120.79 26.66 18.34 19.34 12.80 10.59 9.91 13.76 27.28 63.27 91.99 6.28 2-39 37.56 3,58 3.32 2.66 108-40 5.56 32.06 3.33 129.35 17.60 22.90 26.20 7.73 24.40 41.02 42.44 44.64 46.45 42.61 33.91 203-49 47.20 10.21 70.60 65-60 192.44 70.30 4.72 105.10 125.98 79.60 7.91 119.10 97-70 110.60 109.28 41.40 26.10 61.90 57.50 106.25 13.04 27.26 19.50 104.71 5.75 31.76 a.59 105.03 58.68 22.47 13.77 18.10 7.99 24.05 22.78 29.79 40.11 37.40 38.94 TAMSLOC NO= II VI 12. RBIR-A INFLOW 12. IIUIR-A OUTFLOW 22. IIRBIR*T INFLOW CC. BIRBIR-T OUTFLOW i*. GF BA-A 0 INFLOW 16. GEBA-A 0 SOR ria outflow inflow 16. RU outflow 157 1 80 22.59 47.05 65.83 101.79 96.67 94.64 91.19 83.62 2.58 34.55 158 2 80 19.72 44.16 60.57 2.03 34.59 37.72 37.37 3.85 3.02 10.12 159 3 80 15.53 42.44 55.36 160 4 80 16.13 41.35 54.82 1.68 4.51 2.54 6.75 161 5 80 29.31 42.22 66.61 162 6 80 66.78 56.44 111.96 93. M 18.07 41.40 93.20 26.99 61.90 163 7 80 137.80 77.24 191.74 164 8 80 190.10 120.20 278.20 102.37 175.24 260.91 110.00 33.01 25.75 12.51 17.53 9.33 9.71 13.21 30.16 58.92 123.56 165 9 80 140.90 144. X 261.18 101.30 44.60 13.89 102.32 139.40 164.50 151.50 16610 80 82.30 81.84 150.34 149.86 105.97 43.86 16711 80 43.40 53.63 89.73 16812 80 30.20 49.56 74.66 6.50 26.98 31.67 169 1 81 22.55 46.55 65.29 3.17 170 2 81 17.24 43.89 58.23 103.76 100.61 97.50 1.28 171 3 81 15.49 41.69 54.58 92.87 172 4 81 11.42 40.28 49.76 91.22 34.55 36.74 37.74 38.79 173 5 81 66.70 20.80 9.71 4.74 1.94 3.92 1.85 25.72 48.52 69.90 174 6 81 51.97 57.58 IX.81 100.82 105.52 175 7 81 128.70 108.99 215.89 184.78 2.61 1.23 6.35 22.50 40.20 176 8 81 9.48 33.60 60.20 147.10 77.82 2X.12 99.01 177 9 81 200.20 130.14 296.64 194.01 103.00 145.20 34.17 27.74 12.79 11.57 51.58 17810 81 84.80 84.34 154.84 17911 81 69.80 13.12 69.06 41.90 53.11 87.91 18012 81 28.75 49.91 73.76 4.63 181 1 B2 18.82 41.61 57.25 182 2 82 14.47 39.66 51.69 183 3 82 27.48 32.13 35.82 37.69 22.70 46.22 65.11 184 4 82 11.57 39.58 49.21 154.00 217.10 104.30 19.60 6.94 8.96 6.20 5.90 185 5 82 14.37 39.39 51.32 186 6 82 40.51 44.15 77.84 187 7 82 108.X 84.18 173.98 154.36 105.52 105.38 90.86 88.90 99.66 89.49 85.35 79.71 136.98 35.63 38.70 37.66 32.34 188 8 82 124.60 80.29 183.99 189 9 82 144.90 96.83 217.23 19010 82 101.10 66.14 150.24 19111 82 41.10 51.90 86.10 19212 82 19.49 42.31 58.52 118.01 145.80 101.35 103.12 92.43 193 1 83 12.51 39.69 50.10 3.36 10.42 44.50 71.30 107.50 105.70 93.60 20.80 7.95 194 2 83 13.14 40.10 51.02 195 3 B 7.50 35.66 41.90 146.08 151.52 66.29 23.55 14.73 10.90 8.81 10.91 9.22 15.14 34.66 54.75 135.90 198.77 103.89 22.60 12.41 14.82 12.71 12.22 10.52 16.64 45.06 64.80 95.70 92.95 84.55 23.70 13.84 10.28 10.46 3.27 196 4 83 5.75 35.24 39.99 197 5 83 9.33 38.04 45.81 89.84 90.67 82.86 82.27 85.16 80.99 3.32 3.51 4.11 3.63 5.68 18.10 76.00 100.50 142.50 11.57 11.15 3.81 3.36 198 6 83 17.63 38.84 53.51 12.83 199 7 83 75.50 57.35 120.15 23.19 200 8 83 120.20 71.10 5.26 16.80 70.60 U.ft j.r 50.H 80.50 IM. 40 201 9 83 156.20 89.50 219.30 20210 83 90.00 125.15 95.40 132.40 94.20 57.70 136.X 20311 83 4O.X 46.15 79.45 20412 83 23.41 43.82 63.51 205 1 84 15.57 6.01 4.13 3.96 2.24 6.98 29.70 47.70 71.90 70.70 62.60 13.89 5.30 2.24 2.36 2.76 2.43 3.81 12.10 50.90 67.20 95.30 67.90 20.91 7.58 42.89 55.84 92.32 121.74 122.25 84.95 89.82 93.75 95.71 88.46 86.63 14.91 12.85 5.77 17.19 27.73 34.96 37.74 38.20 40.37 40.81 39.50 38.14 26.13 14.38 6.54 20.52 28.79 34.16 101.60 31.30 11.35 2.05 0.91 92.21 33.03 16.65 206 2 84 10.58 38.65 207 3 84 7.23 37.25 9.06 6.15 43.30 208 4 84 6.29 36.23 41.44 1.46 84.19 1.38 0.62 0.97 1.35 37.09 37.82 40.80 40.29 94.30 29.10 10.55 1.90 47.46 2.01 9.32 9.63 0.85 T.34 1.85 J9.2 4UI U3’ u.'l J.-’ d.P47*1° 19.W 53^ toa.30 145-7° 173-00 66.3*) 30.20 20.27 1333 ns r* #886 U7 9 66 3810 86 3?11 *8 N01Z « *1 1 ST V2 2V MJ 87 M 4 87 215 5 87 2^4 87 K7 7 87 2C8 B 87 W 9 87 BOIO 57 Kill 87 25212 8? 33 1 38 m IM S5 ] 38 2144 « 2ST , 3a 2584 U 259 7 Bfl 2M B 83 19,87 55-80 90.40 111.80 55.10 66.10 54.M 8.55 12.9* 4*82 5,52 13*40 37*6? 91.90 IM.30 149. TO 99.40 39.20 20.20 13,73 11.08 8.03 5.63 15.27 71.03 69.30 125.20 12- fl,R6r^ OUHLt* $9.74 52.00 4^.27 77-73 114.62 39.3* 38.86 30.40 26*25 7*64 19*99 54.56 77.00 93.W 102.62 52.2$ 44,2$ 41.53 39*75 38-72 37.74 37.71 18*20 20.57 48.44 59-46 60.11 51.40 73.90 67-76 32.71 41.01 25.83 5.37 12.71 38.32 63.01 72*71 93*25 57*28 46.45 39.50 37*38 34*68 34.96 36.23 41.27 61.66 30.24 55*09 22* BtRBTH-T INFLOW 49.19 88.55 120.77 170.93 246.12 92-99 62.07 51-63 47.04 44.52 32-00 14.15 36.31 99.30 165.38 212.50 246.52 107*35 69*45 58*36 50.84 46.90 44.61 43.24 22-20 37.10 94.84 134*68 153.01 97.10 128*90 113.36 39.80 51.76 29.82 9.95 23,01 69_60 139-41 192.71 217.85 139.98 79.1$ 56.30 48*84 43.90 41.64 40.90 54.00 120.73 87.94 159.99 22. 81RBCR-T OUTFLOW 88.38 98.47 64*14 119.57 181.73 102.55 92.51 97.56 88.8? 88.94 59.56 14.16 36.57 99.45 122.85 138.87 144.40 87.80 90.80 09.86 09.29 88.87 87.00 87.31 40*87 37*25 83-46 89.59 77.94 92,07 141*14 132.74 74.71 92,02 59.75 9.96 Z3.Z7 69.75 97.3$ 89,36 134,77 81.03 91*11 85.20 63.53 76.74 80.52 84.72 09.63 105.04 29.72 58.73 14. geba-a D I HFLOU 4.11 22.00 78.60 61.60 64.30 19.40 8.14 6.05 2.46 1.20 1.01 2-31 2*99 28*00 57.20 76.40 94.80 43.90 13.70 7*92 3*81 1_86 2*09 1.58 2.05 14.40 41.90 65.50 89.00 33*70 12.46 9*78 9.52 3.47 2.17 2.35 1.05 1*50 62.00 108.40 82.40 74.60 19_06 9*89 6,72 6.12 4.33 1.12 5*60 38.40 85.90 110.50 14* GEU'A d OUTFLOW 39.82 31.74 27*14 15*54 5.6? 28.01 34.99 38-21 40*40 41*89 26.41 2.18 2.96 28.30 18,52 9*64 1.33 25.61 31.87 35.66 38.38 40.07 41.09 41*90 18.97 14.70 31.74 24.66 20.26 28.88 22,69 26.73 41.12 40.32 29.75 2.22 1,02 1.80 23*74 14.30 6.58 19.93 28.34 35.01 37*60 37.50 40.30 40.95 37,89 24.67 33*44 19.00 16* 50R AXA INFLOW 6.16 32.90 117.60 92.10 96.20 29,00 12*20 9.04 3.70 1.78 1*53 3,43 4*44 41.BO 85.50 1U.M 141,70 65.60 TO.50 11.84 5*71 Z.81 3.10 2.39 3,06 21.50 62-60 97*90 133*10 50.40 18.60 14.64 14.2? 5.21 3.21 3.51 1.57 2.20 92-70 162-10 123*10 111,50 28.50 14,73 10-04 9*18 6*46 1.70 6.40 57.40 128-50 16$.20 16* sot ou OITFIOW 13*26 37.7a 104.65 02.91 S4.7D 30.52 17.57 15.38 11.11 9,67 6.51 3.42 4.52 41.90 77,94 10102 123.44 61.88 24*23 17.36 12.48 10.22 10.78 10.25 6.45 21.60 62.65 87.77 143,$6 26*29 20.72 18.02 20,40 12.36 8.61 3.50 1.65 7.30 55.23 143.60 108.26 100*69 30,51 19.79 16.11 15.28 13.59 9.50 14.58 68,1$ 105.15 147.07 18* ■«0 0 AM INFLOW 5*71 30.60 1W.TO 35.60 89*40 76.00 11-30 8.40 3.43 1.65 1*42 3.20 4.14 38.90 79.40 106.10 131.60 60.90 19.00 10.9B 5.30 2.W 2.87 2.24 2.84 19.90 58.10 90.90 123.60 46.80 17.30 13.59 13,22 4*84 2.99 3.23 1.46 2.00 86.10 150.60 114.40 103.60 26.40 13-74 9.33 8.52 6.01 1.58 7.8C 53.40 119.30 153-40 IB. USD DAM OUTFLOW 49,50 42.61 49.46 33,00 23*14 37.35 44*53 46.27 47*77 49.35 31.33 3.26 4.52 39.47 34,09 29.00 24.56 39.8C 42.43 U.78 45.57 47*11 48.69 50.30 23.34 20.67 46.20 43.38 44.79 41.39 30.73 33.58 50,12 48.01 35.47 3.34 1.84 2*57 41*29 41.49 28.23 39.76 39.70 43, sa 45.34 45.06 48-25 49.65 48.47 39.64 5 4 9 7. *Z9B9 TAMSLOC N0= 12. 12. 22. 22. 14. 14. 16. 16. BIRBIR-A BIB81I-T BIHIB-T GEBA-A 0 GEBA-A 0 SOB RU T1 INFLOW OUTFLOW IHFLOW OUTFLOW 1HFLOW OUTFLOW INFLOW ** Ha cx/tflou 1. I 261 9 M 166.50 103.45 241.85 149.02 119.20 34.64 178.20 IX 1 . - 26210 M ' 146.30 145.84 267.44 266.96 100.40 99.66 150.10 iZn x« '91.63 Us 26311 88 57.00 58.28 105.68 109.36 21.22 22.70 31.70 '*•9.69 26612 68 28.41 43.23 71.82 101.60 6.24 31.99 9.33 J *.20 139T-40 265 1 89 19.27 44.59 60.60 97.82 2.24 35.33 1/ /x '4.46 Ca '■ jQ 3.36 Q 9.85 8 AX 266 2 89 13.43 38.87 50.03 87.63 3.97 37.87 5.91 J* 267 3 89 11.69 38.77 48.47 88.03 2.46 3U 38.76 za ' c.48 3.66 in fia 'U.88 3.5ft 268 4 89 11.00 37.74 46.84 85.37 3.90 38.72 5.83 1 '?c.A677 3.4ft 269 5 89 16.09 41.54 54.95 89.53 5.60 36.77 8.40 5.4ft 270 6 89 38.54 48.57 80.63 91.42 20.30 31.19 30.40 '4.72 jc32.5*X6 7.80 271 7 89 93.40 65.73 143.43 101.01 58.50 20.72 87.50 &.2o 272 8 89 164.90 94.43 231.63 128.67 98.10 5.08 146.70 1 2ft 'to.27 •1.33 273 9 89 140.70 85.66 202.86 121.56 81.40 7.48 121.60 136.3c 27410 89 101.00 97.39 181.39 176.49 41.40 36.58 107 no IVr.Uy 61.90 AouA.7HnJ 113.00 X." 27511 89 44.60 56.22 93.42 111.61 11.50 26.40 17.20 4U.50 57.50 •4 27612 89 29.38 42.08 66.50 86.26 15.38 31.92 23.00 co. 34 15.9C 277 1 90 20.20 42.65 59.45 92.63 5.82 35.19 8.70 14 47 21.36 278 2 90 14.43 38.90 50.88 87.12 4.88 37.52 7.32 11 3J.A044 8.06 11 1 279 3 90 7.28 35.33 41.38 82.31 2.69 40.25 6.?a 280 4 90 4.03 7.95 36.06 42.61 83.07 1I ■1 C■fJlU 3.73 U? 3.13 39.73 4.67 281 5 90 13.33 39.87 50.94 87.06 5.15 I• I 1 .fclAo 37.73 4.32 ’'8 7.69 282 6 90 25.69 22.98 44.39 37.22 44.80 39.14 14 2.C9r 67.00 65.95 7.13 62.20 *•* 4t> 283 7 90 59.90 31.27 81.07 37.10 72.50 33.40 108.40 100.67 M.u 284 8 90 152.30 82.46 209.06 106.82 100.50 8.27 150.40 1132 a101 W 100.73 139.60 U.i 285 9 90 160.40 113.19 246.59 175.91 111.70 47.61 28610 90 83.90 83.44 167.00 153.24 152.76 154.40 1 re .. 155.1ft D.i 57.00 56.26 85.20 84.79 Bl 28711 90 36.30 48.56 78.76 97.84 13.19 28.91 <9.20 19.70 22.96 ia in Io. XI 1.! 28812 90 22.36 44.02 62.66 94.97 5.86 289 1 91 34.01 15.23 8.77 JU 39.95 52.61 88.92 14.37 4.55 O.l4 36.86 6.83 13.17 A0.SjjS llj 290 2 91 10.50 38.36 47.08 88.03 291 3 91 1.86 8.77 38.88 2.77 36.98 9.95 44.26 85.32 2.17 C2.SxaD 292 4 91 39.87 12.27 38.91 3.21 10.69 49.14 87.47 2.99 3.90 293 5 91 34.39 38.60 56.43 85.04 5.83 12.64 114.91 5.40 4.59 * >J 294 6 91 31.47 58.80 6.87 12.34 66.48 115.38 6.38 c.p 123.18 295 7 91 17.10 144.30 25.16 117.82 237.72 25.60 27.21 23.80 197.17 kK 296 8 91 47.60 11.44 187.10 118.23 71.10 63.96 66.00 25.11 273.73 173.22 297 9 91 91.10 158.30 0.21 136.20 118.21 126.50 98.10 r.8 229.70 140.97 29810 91 83.70 73.50 2.89 125.10 109.26 116.20 M 62.52 123.62 108.38 29911 91 39.00 24.64 58.30 55.25 54.10 37.3 43.00 58.40 94.10 117.57 6.87 26.66 10.30 14.35 9.50 55 JJ 30012 91 26.84 46.36 68.72 98.01 7.36 32.74 10.98 16.04 10.19 41.9 301 1 92 17.17 41.60 55.87 91.79 6.09 4JJ 302 2 92 4.37 36.31 6.53 12.80 13.76 38.35 49.80 86.09 3.72 36.47 5.58 11.93 5.17 453 303 3 92 8.33 36.43 43.33 84.25 304 4 92 2.43 22.88 39.99 3.62 11.08 5.36 tf.H 44.30 63.32 94.35 7.64 23.37 35.57 16.92 10.61 bU’ 305 5 92 39.71 11.42 59.14 80.97 15.53 34.94 23.22 27.25 21.58 j.r 306 6 92 44.91 48.56 85.95 87.71 307 7 92 27.90 93.30 30.48 41.70 42.25 38.70 m.F 70.10 147.70 111.46 51.50 19.47 77.00 70.64 71.50 J5.» 308 8 92 209.50 138.87 313.07 209.82 92.70 0.00 138.60 120.12 128.70 .. < 21-*- 309 9 92 215.90 160.98 142.40 uc 340.48 259.03 102.50 27.88 153.30 138.77 All w*- 1 31010 92 114.30 113.84 208.94 208.46 45.90 45.16 68.70 68.29 63.00 31111 92 47.70 47.73 87.33 89.28 26.77 26.64 40.00 40.19 37.20 31212 92 26.92 39.17 61.55 80.74 16.76 32.71 25.05 2A.2B 23.26 ■ ihM iujui12. 22. 22. 14. 14. 16. 16, 18. 10. BlNfilRT BIFBIVT ■)RB1R’* GEBA-A D QEBA-a 0 INFLOW OUTFLOW 1HFLOU OUTFLOW X* RU &AAO CM IW DM 46,33 58.55 68.36 50.70 97. BV 66,30 7.24 5.29 33.19 37.30 OUTFLOW 15.93 54.13 95.15 0,20 37.83 14.09 42,2? 46-72 36.?* 28.17 61.40 63,BA 101.66 1.50 35.57 7.69 ]kFLOU 10,04 7.32 0.20 52.69 76.71 14.49 35.82 68.62 35.90 63.20 34.21 0,95 26.10 2.00 20.12 167.40 69.65 104.80 16.65 89.04 07.80 165.93 163-08 334.43 277.76 126.00 77,30 INFLOW 10.83 7.90 0.20 2.24 21.65 94.60 156.70 1B9.80 295.98 295.71 102.60 103.62 198-94 37.51 50.41 199.84 199.36 59.60 58.B6 104.41 108.00 22.15 23.54 153.SD W.OO 33.10 15.63 17017.36 139.39 179.67 153.52 M.59 33.56 145.50 176.30 142.60 82.70 OUTFLOW 40.27 44.50 44.42 43.78 49.16 57.57 44.17 12O.5C 147.61 02.35 78.76 103-70 9.11 30.38 30. K 8774.70 34288.43 34295.45 17.09 17027.01 12-66 15024.63 35.06 38.06 11395.06 11347.68 162U,id 168-6® 342.88 342.61 234.80 224.52 351.00 335-84 326.10 315-41 5.37 9.95 9,96 0.08 0.00 0.12 1.65 0.12 1.84 141-00 141.00 141.00 9.00 93,00 9.00 9.W 9.00 93. DO 57.95 105.83 105.85 35.17 35.02 52.58 52,55 *8.84 50.04 244.00 244.00 244.00 16.□□ 3M.OQ 16.00 245.00 16. QC 245.DC TAMS•USERS. 2 USER DESIGNED OUTPUT IOC NO= CODE = H. HIM 16, 16.TOO 13. 13.0)0 SWART BY PERI 13. 13.090 OD FLOCD= 13. 13.100 1 22. 22.100 18. la.ioo 3. GE8A A 0 SOP UA K0A R 0 GERA-R 0 DEBAR D PERMO YR OUTFLOW OUT FLDU LOCAL Cll INFLOW B1R6IR-T OUTFLOW outflow 8ARO DAW outflow 1 1 67 52.48 21,33 17.30 2 2 67 53.75 25.93 18,80 19.97 25.36 3 3 67 39.94 11*17 5.00 40.22 102.62 96.26 83.57 76.43 64,03 65.29 4 4 67 47.45 SUM ’®*.62 186,9] 15.64 10.00 5 5 67 36.79 14.13 7.30 6 6 67 23.30 27,63 27.30 93.09 132.26 50.03 47.65 253.31 253.95 7 7 67 15.35 81.08 92.90 8 8 67 6.09 131.00 122.2B 127.50 115.97 86.9$ 107.97 107.84 256.?! 253.29 140.40 9 9 67 157.54 335.84 311.50 1010 67 40.22 63.79 63.40 91.11 98-48 56.11 65.86 56.21 78,24 189.33 277.49 804.fla 640.65 167.42 98.91 45.67 59.96 665,79 166.16 249.19 225.30 1111 67 34.08 32.61 30.67 238.83 231.45 262-27 1212 67 33.77 34.04 31*10 267.ZJ 1048.7? 1067.96 304.41 13 1 68 38.26 16*71 10.7D 240.SB U 2 68 37.66 14.20 8.10 246.06 15 3 68 40.85 9.13 1.40 51.37 48.96 639,05 165.86 124.35 122.62 118.15 122.23 239.66 16 4 68 40.50 8.06 0.40 252.01 17 5 68 39.16 12.23 5.90 57.29 255,11 IS 6 68 35.31 17*61 20.60 19 7 68 19,34 34.02 47*70 73.52 101.06 251.33 256.19 258.30 20 $ 68 6.10 112.37 132.50 257.7J 21 9 68 14.53 195.17 203.30 2210 68 36.94 62.60 68.30 274.06 271.75 2311 68 29.95 33.00 111.55 122.44 120.00 91.86 107.75 175.36 157.22 2412 68 30*70 34 85 20,44 413.00 167.83 93.65 70.79 113.00 15.50 25 1 6? 38.01 16,07 10.90 26 2 69 65.7? 39.47 15.69 116.64 121.85 27 3 69 7.10 40.35 16.97 28 4 69 10.40 40.44 12,60 5.60 29 5 69 40.65 19.60 30 6 69 13.20 39.77 60.26 67.72 58.64 73.45 49.88 47,80 121.69 128.72 144.16 197.46 79.46 71.63 77.22 76.52 81.61 84,32 83.39 92.11 136.68 138.99 44.44 167.05 84.71 84.21 79,36 80.16 74,19 79.53 68.72 46.58 90.90 59.09 44.60 46.22 44.99 48.16 49.25 50.36 46.19 29.23 27.33 51.95 53.02 42.25 43.54 45.92 46.96 48.84 49,80 53,12 377.29 239.95 244,39 247.04 249.81 249.90 254.16 137.45 253.52 31 7 69 30.08 46,34 46.20 122-62 202.62 $6.48 43.52 252.23 32 8 69 24,73 55.50 33 9 69 92*10 21.38 111.65 3410 69 122.00 32.53 70.46 3511 69 67.20 22.27 13,74 10.70 44.00 45.68 49.15 252.60 250.82 3612 69 26,08 9*44 262.59 249.69 251.33 37 1 70 4.20 34.72 10.41 4.80 122.70 126.87 124.85 131.68 149.18 118,10 132.76 144.66 140.11 75.63 81.81 107.35 29.63 31.51 38 2 70 32.38 13.69 6.50 254.05 255.63 39 3 70 38*68 10.18 3.10 40 4 70 38.64 8.61 1.60 255.06 170.20 46.70 39.72 49.93 57.57 51.96 48.85 63.99 115.07 116.61 116.17 83.06 72.25 60.43 146.06 140.73 107.22 96.07 97.76 102.52 255.71 260.21 41 5 70 33.31 17.78 12.90 42 6 70 33.87 65.71 67.20 43 7 70 24.52 106.85 77.96 71,02 115,80 44 8 70 16.67 134.70 149.30 45 9 TO 6.01 166.7B 247.17 300.67 365.22 304,36 117.39 265.06 228.82 267.55 273.17 271,67 170.11 189*10 4610 70 59.59 120.77 4711 70 124.00 27.60 45.00 4812 70 44,50 31.38 30.6? 76*17 80.52 89.21 134.16 85.00 84.72 41,06 44.57 45.84 46.37 41.68 49.86 46.34 42.84 37.99 83-47 41.61 25.60 49 1 71 67.60 19.59 36.49 25.00 50 2 71 40.25 104.09 51.8T 271.54 483.37 242.49 238.88 239,80 13.75 6.10 51 3 71 60.09 40.84 15.18 6, BO 52 4 71 40.59 25.23 16.00 62.82 81-82 109.1? 146.67 150.66 148.32 144.34 260.74 115.88 112.84 137.02 124.16 125.54 131.50 75,57 73.40 61.21 41*32 50.90 47.84 49.18 52-26 247.57 248-12 244.96SWV1 05 Sl£ r fl£*£Z 60-013 £9*19 6ZZ8L 02*96 89*78 BE'ftlL 16*661 01*76 6£*9® n*9 » 701 22'092 13*K 29301 £T6L 69’*52 65*91 SCO? 5T221 23 5£L orcs 9S'0$ 96'0£ Z 101 u 9 an 92*152 ££'87 ZS’EB irz2t 89*12 03*51 12*61 £6"9£ 96*85 5 IDI 35*953 IE 87 39*18 9CL2L 05*9 2£’£l ll’6£ 09353 08*91 85*58 20*031 ZL*ZS OS'S 97*31 £2 * OCl 9L‘6£ £4 £ 66 69‘6?Z £6*51 09*36 96*031 Z£'£9 Q£‘6 ZZ’SL 0£’8£ 42 EW 99*152 15*39 OE'Zfi 59L4L LZ*91 01*£ 59*6 £1'9£ U L £6 95*812 «*6E OZ'EDl EESOL S£*£5 OS‘t 9f*31 6i'?t n Sift 92*492 01* ZE 9L'£2l 00*99 £2*09 0L“6l 99*81 zrc 12 Litt 98*5££ 56’££L 95*222 SEIZE 46*52£ 06*5£L 60*171 96*56 i£ aiH 02 21 SI 1T*S1£ L0'6££ Z2Z5S ££'658 w*ooe 33 * 7££ 35 923 92 6 « tO'ML k 0LZS2 81*721 52*102 £8*062 00 363 35*331 0V9ZI 12 t 26 61*001 10*551 88*51 92*621 00*29$ 0£*E33 27*513 ertzs 12*99 1£’9l 02*969 *$'60£ 0£*7£l CT’OIL 6®'99? 22*15 25*59 5L*2£1 63*26 01*83 1Z*1£ WLSZ 26*61 £9*92 srszt 20*29 09*6 95*21 60*753 £6’$7 02*16 36*911 83*81 ori 80*8 41’lSZ £8'91 02 06 Zl*9U zrzs 09*£ £7*01 89*812 60*91 W88 M’SIL 20*95 05*9 55’ 2 L tiziz iS7£ 17*601 15*001 iris 06*6 79*£L 09 292 DD*2t 12*331 68 £8 39 32 01*93 £5*13 99*065 56 96 91*812 S£‘££2 $6*923 orsoi 63*70L 66226 Z0’59L 18*962 80*191 19*621 oLzai £6*381 20*292 21 ‘51 ff£*39 Zl*65L is-sit 06*£21 tr95L 05 192 fi£*6£ 01*16 69*22t irocz 03*911 L2’SOL 95*352 06*51 15*28 SL'IZL 13*011 03*95 S9'15 98*952 85*81 10*82 53*121 zrsi 05"£3 £L’9Z 6Z'1S2 57*17 10*001 OE’OU 92*61 O1‘£ 83*01 6C2S2 S£*£1 £0*66 09* OU 16*81 o$*z 06*6 95052 19*11 31*101 75*201 8£* 61 09*£ £501 £9*912 29*6£ M'lOL £6*101 12 £5 01*2 9£'ZL 36*172 61*H 30*0 02*211 31*89 09'El £0*61 l£*L72 65*£9 58'82 28 BH 02*101 0£*9£ £5’Z£ 97*£ZZ U*5E 9l*££l 55*901 5L*90l 05*31 6£*8£ £1*055 11*98 51*012 28*152 sr»££ O1*6£L S1'9£l 61292 69* El 8i*5Z Z£*f1L £5*90£ 06*611 19*011 Zi'652 SO'07 or I* 25521 Zl*9t2 05*301 21'76 ££052 irsi 9L*£8 20*811 iratL 02*11 09'H 71 252 88*61 10*08 £5 321 13*32 02’ll S£*OZ 22 *£52 61*81 92*59 93*021 11*55 02*1 £9* 11 12*253 98*51 99*06 6i’9U 99*21 09*0 80 8 £5*173 62*21 19*28 EL’lll ELDS UZ*£ 60*01 ZD'912 28 £1 £3*59 26*911 U'19 05'Ll 60*21 £2*072 H*51 9312 S5'£ZL l£"£8 09 £3 2£*ez Bl’£83 60*09 90*SS £0*991 65*691 09 £9 66*19 94819 52*321 9£'L5l 06*6(6 $6‘19£ 5£’91£ 07*231 65'lt1 19* 19L 10'152 £2*105 £8*505 03*381 3£ i*1 £0*06£ 60'£1 61*012 9£*9£l 61*653 02*531 11* TH 05*252 28 »£ £2*96 8$ 1*1 81*772 06 *2 U 26*6£ 59331 O1+S1Z 22'SOL 96*86 29*76 02*££ 92 7* 21*912 9995 2101 n*zit OZSEi 05*37 22 HftS nouuio nouino nouino noiiNi ra 1V301 Wio CMTTB X'ltnie 0 M-Tfijg 0 s-vano a off*1 IOC NO 14. 16. 13. 13 13. ie G£BA A 0 RLA GE8A-R 0 FERRO TH 1 OUTFLOW OUTFLOW LOCAL CU GEBAR 0 I HFLOW GEBVR 0 OUTFLOW 22 birbir-t OUTFLOW baro 3 Oah outflow 105 9 75 3*16 137.08 158.50 SUM 10610 75 65.86 99.09 101.40 ^55 10711 75 30*20 40.10 40*30 181.35 187.46 92.05 10812 75 32.93 18.89 15*50 43.66 327.35 544.26 109 1 76 38.23 12.43 7.00 298.73 26635 110.59 6732 57.65 61.48 116.45 264.75 120.82 111.41 120.19 77.69 92.74 83.51 41.12 110 2 76 38.93 14.46 8.10 111 3 76 40. TO 13.78 7.20 72.31 61*88 45.44 46.46 *42.ia *49.14 112 4 76 40.73 13.03 6.30 75.86 49.02 50.20 *40.57 113 5 76 38.43 21.67 17.80 114 6 76 32.57 52.24 54.90 77.66 73.78 *51.4? 2SC.15 115 7 76 15.76 82.45 90.20 71.54 116 B 76 10.9$ 140.53 151,20 60.06 77.M 139.71 188*41 302.68 5O.fi? Afi.fifi 33.50 117 9 76 30.50 116.80 127.00 *53.45 254.17 258.93 11810 76 34.06 51.59 55.40 11911 76 31.75 42.14 43.40 12012 76 35.10 20.04 16.40 121 1 77 33*68 13.33 8.40 122 2 77 37.93 12.10 5.80 123 3 77 39.17 11.74 4,90 124 4 77 37.97 10,48 3.80 125 5 77 35.34 11.58 5.90 126 6 77 19*45 274.30 141.05 117.29 71.53 55.4) 55.83 55.81 52.25 52.82 121.78 126.55 126.30 128.77 133.75 105,71 129.65 174.68 139.45 127.87 118.45 107.59 119.72 96.23 221.45 37.87 57.81 159.76 69.47 47.95 45,00 117.34 119.69 30.99 33.60 82.72 100.44 87.91 85.53 91.84 100.42 127 7 77 20.77 60.89 12B 8 77 68.70 21*53 123.13 129 9 77 132.00 54.74 216.79 223.20 84.04 15037 276.65 494.72 259.15 116.39 111.11 80.33 107.11 148.97 308.90 257.55 97.99 104,37 139.12 113.57 67.03 43.75 40.42 44.95 46.65 46.70 45.79 30.51 35.54 46.94 263.7$ 453.94 547.16 243.15 244.9J 248.45 250.20 251.87 254.92 257.32 249.97 256 2 T 13010 77 63.36 95,39 100.40 97.70 101.57 251.56 508.17 13111 7? 22.05 36.69 40, BO 13212 77 29.39 20,68 19,70 133 1 78 33.32 993$ 69.77 08.65 114.56 597.76 33.89 102.90 246.44 15.78 134 2 78 11.80 35.63 60.90 37.36 109.06 97.47 244.62 10.38 4.80 $0.SI 40.40 90.16 246,93 135 3 78 37.14 10.77 4.30 42.00 250.21 136 4 78 36.90 14.37 137 5 78 8.60 52.21 59.88 88.70 153.66 110.04 113.33 116.69 93.77 44.19 251.30 35.01 27.49 26.20 89.16 125.04 46.21 252.06 IM 6 78 31.35 60.11 62.20 75.44 43. S9 249.06 139 7 78 20.57 130.75 137.80 134.14 149,68 68,13 49.59 2B9.12 251.86 140 0 78 32.98 142.88 152,20 65,35 47.19 328.06 262.22 141 9 78 104,77 155*02 BO. 90 195*31 97.4a 63.66 356-44 14210 78 80.36 120.79 410.63 324.65 81.26 66.00 68.92 56.59 52.55 5139 409.07 123.50 342,61 148.91 900.60 14311 78 25.10 26.66 323.05 99.34 106.70 191.66 112.25 626-96 U412 78 29.50 30.86 18.34 16.80 107.58 35.60 242.52 145 1 79 53.38 19.54 16.20 100.B7 38.67 246.24 146 2 79 35.68 12.00 92.91 41.02 246.23 8.10 147 3 79 37.56 10.59 95.00 42-44 250.01 146 4 79 4,40 37.78 9.91 92.73 44.64 252.14 149 5 79 3.90 32.06 13.76 92.31 46.45 254.95 10.70 150 6 79 22.90 108.48 42.61 256.42 27.28 151 7 79 30.50 10.21 5632 80,68 149.48 112.29 112.57 114.77 116.20 105.33 88.55 81.42 83.32 101.91 129.3$ 33-91 251. M 63.27 76.00 152 8 79 203,49 24.05 308,96 4.72 91.99 106.20 202.91 231.43 150.16 71.73 55.73 192.44 22.78 298.54 153 9 79 7.91 105.03 15410 7V 11B.5G 26.18 58.68 125-98 29.79 257.60 15511 79 65.30 123.07 99.83 104.32 109.2B 40.11 272>9 27.26 22.47 22,00 106.25 37,40 243.46 15612 79 31.76 13.77 10.20 104.71 38,94 247.9713. GEBA-R 0 local cu 15. 22. !*■ 16- soft RM OUTFLOW 10.1? 13, GEM-fl D INFLOW GEM-t 0 outflow SIRilt-T OUTFLOW CU7FLW *rt ji.55 5.10 49.78 107.95 101.79 9.33 3,90 47.82 106.18 96.67 40.66 18. mro dam OUTFIT 40.88 1 st 3*-^ 9.71 3.50 50.73 114.44 94.W 44,69 li 8 - fld 37H 13-21 37-£ 30,16 7-70 20.90 58.28 117.41 91.19 46,37 5 jj.ql 25.75 62,50 147.17 118.13 93.88 42.45 133.70 269,77 124.25 102,37 36.86 160.10 323.70 155.60 175.24 46.52 145.30 399.13 397.57 260,91 145,71 92.08 129.50 83.62 46.1J ’»!’Jfl 1* ,r □ fl** W „ .ft I*'1 Zo irfl2 ™ 70 2 Bl 17,53 102.3J 45- # 26.9* 31-47 56-92 123,56 146.08 151-52 66.29 23-55 14.73 10.90 8.61 69.50 179.95 17B.35 149.86 61.55 23,M 11.20 6.00 73.53 57-60 51.44 99.66 104.71 108-57 34.57 36-74 37.74 Tfl 7Q- 38. f* f3i 41.71 f o7 74 70S.97 103.76 100.61 2.80 48.55 111.86 97.50 43.06 4.60 53.2$ 115.35 92.87 44.92 2.40 50.42 117.84 91.22 47.35 11.30 60.61 111.66 100.82 44.83 37.28 39.00 41.01 17’ 5 81 73*81 JJS8’ 10.91 9.22 15.14 34.66 54.75 35.40 97.81 105.84 105.52 40.23 1?1 t S' t? 79 63.20 130.74 rt <- 57 135.90 146.30 S3.77 79,96 184.78 S.34 128.79 99,01 37.76 ms 81 11 .?r m SB 198.77 203.80 454.15 286.32 194.Q1 95,14 3- si> 250.60 243.50 33.77 254.97 30.26 254.46 243.47 37736 804.20 389,74 242.90 247.46 250. U 252.42 253.15 SA.41 S7,J1 Si-60 290.00 2*5.46 575.4* ,77 « ” 0A1aGM0t6? 103.69 101.30 274.25 272.65 154.36 96,55 ira'o s' 27.48 22.60 12.41 21.60 8.10 71,68 52.65 100,03 103.85 105.52 105.38 37.67 17)11 81 JlLUJ1!3> J 39. T6 18112 81 35 .82 u. az 9.50 60.13 114.48 90.86 43,08 181 1 Bi 1B2 2 37.69 12.71 6.40 56,80 116.95 88.90 44.76 ,n i R7 10 J K 35.63 12.22 6.20 54.05 110.07 99.66 42.69 «? I £ tjj 28.79 34.1A 33,03 34.60 96,42 112.96 89,82 40.67 b2, “MJ I1Ojru 37.09 16-65 13.10 63.91 113.13 93,75 42.06 20642^qJUr 9.06 3.70 49.84 114.28 95x71 43.57 265,68 270.49 S7.25 243.45 248.95 Z53.56 207 3 84 JLiR >Ai-k 40, 80 J. ft R*. *0,29 57.82 5.13 2,00 47.95 114.17 88,46 44.10 ?&8 4 84 9.32 2.30 52.42 122.67 86.63 48.12 246.73 257.42 9,63 12.40 62.32 131.84 84.19 48.69 264.72 TAMSLOC 14. 16. 13. 13. 13. 22. 18. GEM’A 0 SOR RM GEBA-R 0 gem-r & GEBA-R 0 BlftBIR-T BARfi dim PEANO YR OUTFLOW OUTFLOW LOCAL CU INFLOW OUTFLOW OUTFLOW outflow 3. Sil Ika ■MJM ZOO 5 84 39.82 13.26 7.90 60.97 125.67 88.36 49 5n 210 4 84 31.74 37.78 36.30 105.82 119-84 98.47 42 m 211 7 W 27.14 104*65 116.90 248.70 159*43 64.14 49,46 StO 5n r 212 a M 15,54 82.91 98*20 196.66 112*45 119.57 33.00 273.Q3 213 9 M 5.62 84*70 104*60 194.92 39*27 181.73 23 14 2«,02 21410 84 28.61 30.52 33,70 92.23 106.92 102*55 Ki. IS 21511 84 34.99 17.5? 14-40 66.97 115.93 92*51 "■3*7"3J5J 44 5 n 246.52 21612 84 38.21 15.38 10*40 63*99 121.92 87,56 "J4•6£2r7 252-94 217 1 85 40.40 11.11 4*50 56*00 123.35 83,82 47 77 255-75 218 2 85 41*89 9.67 2*40 53*96 125.48 8fl.94 49 35 ^9.93 219 3 85 26.41 6.51 2-00 34*92 79.46 59.56 31.33 563.77 220 4 85 2.18 3.42 4.60 10*20 10.28 14.16 170.35 221 5 85 2.96 4.52 9.50 16-98 18.59 3.26 36.57 4 52 27.71 222 8 85 28.30 41.90 44.50 114*70 115.55 99.45 39.47 59.69 223 7 85 18.52 77.94 89.90 186.36 117*20 122.B5 34.09 2S4.4a 224 0 85 9.64 101.02 117.30 227.96 107,58 136.87 225 9 85 1.33 123.44 143*40 268.18 29. OQ 274*14 102*62 144.40 2«4J5lJ6 275.45 22610 as 25.61 61.88 69.80 157.29 123-36 87.80 39*30 271,50 22711 65 31.87 24.23 23.60 79.69 114*01 W.BO 42.43 250.96 22812 85 35.66 17.36 13.50 66.51 117-38 89.86 ?47* 23 229 1 86 38.38 12.48 43.73 6.70 57.56 119*60 89*29 230 2 66 40.07 10.22 3.80 54.09 45.57 121.77 BB*B7 C?i,01 x/ J* J 04.46 231 3 86 41.09 10.78 4*10 47.11 55.97 124,66 87.00 l-J ' . Q 232 4 86 41,90 10.25 3-10 40,69 55.26 126*90 87*31 50.30 233 5 66 18.97 6.45 3*M 29.01 60.49 40.87 264.51 234 6 86 14.70 21.60 23.34 23.60 59.90 60_75 124.71 37.25 235 7 86 31.74 62.65 20.47 64.70 159.10 138,52 118.48 83.46 236 8 86 24.66 87.77 46.20 97.40 209.83 137*85 268.18 89.59 237 9 86 20.26 143,56 43.38 270.81 131.10 294,93 148*08 77.94 23810 86 28.88 26.29 44.79 54.80 27O.B1 109-97 124,02 92*07 23911 B6 22.69 20.72 41.39 20*20 257.49 63.62 S' 2MJ12 86 82-95 141.14 26.73 18.02 30.73 254,01 14.30 59*06 241 1 87 90.05 132.74 33*56 41.12 20.40 256.37 12.70 74,22 130*38 74.71 242 2 87 40.32 50.12 12*36 255.21 5.10 57*77 122.53 243 3 87 29.75 92,02 48.01 262*57 8.61 3.70 42.07 244 4 B7 90.45 59.75 35.47 185,67 2*22 3.50 4*20 9*92 10. DO 9.96 245 5 87 1.02 3*34 23.31 1.65 3,90 6.57 8.18 23.27 1.84 33-30 246 6 57 1.80 2.39 11.70 15.80 16.65 69.75 2.57 SB. 98 247 7 B7 23,74 B5.23 93.60 202.57 134.17 97.35 41.29 272-81 24B & 87 14.30 143.60 154.30 312-20 143.51 89.36 41.49 274.35 249 9 87 6.58 108.26 124.60 239.64 103.62 134.77 28-23 266*62 25010 87 19.93 100.69 113.70 234*31 137.74 81.03 39.76 258.53 25111 87 28.34 30.51 34. &C 93.65 112,79 91.11 39.70 243.59 25212 87 35.01 19.79 16.80 71.60 118*36 85-20 43-50 247.U 253 1 M 37.60 16.11 10.80 64.52 120*57 83.53 45.34 249.44 254 2 88 37*58 15-28 9.30 62-16 118*40 70.74 45.06 242.20 255 3 88 40.30 13.59 7.20 61.10 124.62 00.82 48.25 253.69 256 4 88 40.95 9.50 2.40 52.85 124.08 54,72 49*65 258.44 257 5 B8 37.89 14.88 10.60 63.37 122.10 89.63 43.47 260.28 258 5 88 24.67 68.15 61.90 154.72 116.29 105.04 39.64 260.96 259 7 88 53.44 1D5.15 120.10 258.69 176.83 29*72 59.28 265.84 260 8 88 19,00 147.07 161.20 327.28 161*95 58.73 47.99 268*6716. 13. 13. 13. 22. 14- 18. 3. soft ft" GfHA-ft 0 GEHA-R 0 GEBA-B d tUfLOW 356.67 402.95 93.20 58.35 50.68 56.95 54.44 58.69 BIUlR-T OJTFlOW 161.63 149.69 32.20 14.46 9.85 local cu outflow 204.76 401.35 98.95 8AB0 DW 160.40 153-60 38-30 11.90 5,50 6,60 4.80 7.30 10.60 33.70 89.40 OUTFLOW 149.02 266.96 109.36 CUTfiCW 69.63 12-46 10.88 12.67 14.72 32.56 106.58 110.89 117.76 118.63 121.34 101.60 97.82 87.63 139.05 53.87 39.32 41.76 44.91 5L*I 423.41 807-36 88.03 85,37 242.IB 247,50 250-47 250.30 46.04 252.70 80.03 128.27 107.09 60.70 20.30 147.00 127.10 70.80 21.50 25.40 10.20 8-40 3-30 62.09 97.45 190.15 280.35 241.67 119.07 254.56 89,53 115-34 91.42 7>8 36.58 26.*0 31.92 35.19 121.01 112.49 108.25 159.30 97.49 115.61 113.50 118.16 121.45 122.56 25fi-54 250.73 168.08 68.20 101-01 128.67 121.36 176.49 111.81 86.26 92.63 87.12 82.31 *7.35 47.95 43.97 38.64 29.11 29.64 52.35 260,66 270.28 259.44 368,14 245.10 26.3* 14.47 13.64 11.50 11.86 14.29 65.95 100.67 132.10 154.40 84.79 22.96 14.37 83-66 59.86 59.56 243.05 248-43 37.52 40.25 39-73 37-75 55.05 5 20 56.79 83.07 8_90 65-40 104-60 87.06 37.22 37.10 24949fl 251.62 254.49 256.41 39.1* 33.^0 8.27 47.61 50.26 28.91 34.91 36.86 38.88 13.17 9.95 10.69 154.00 168-70 91-80 24.40 10.80 7,70 3.60 60.94 170.49 238.66 294.37 370.71 232.85 120.43 159.22 166.90 127.46 254.77 231.25 T06,tt 175.91 152.76 97.84 94.97 88.92 255.05 260-69 267.65 76.28 107,03 111.50 116.46 118.64 121.16 514,04 462.86 244.23 59.18 57.73 39.87 4.00 52.43 54.56 88.03 85.32 35.99 41.13 42,30 44.71 47.85 48.86 48.91 58.61 56.61 33.36 53.36 78-85 39.36 41.59 44.M 45.64 47-26 248.06 249.42 252.30 253-74 38.60 31.47 25.16 11.64 12.64 12.34 27.21 63.96 118.21 109.26 55.25 14.35 7.60 11.30 87-47 114-91 47.57 41.17 256,19 31.00 58,84 55.11 83.36 151.40 121.15 0.21 2.B9 24.64 26.66 32.74 36.31 36.47 39,99 35-57 76.00 137.60 129.40 256.02 241.56 104.48 96.44 85.31 92.84 260-56 255.62 307.59 287.85 67 l0 + 16.60 12.80 7.20 6.20 4.20 11.20 23.90 43.40 80.50 136.40 146.99 57.61 96,17 120.65 95.49 123-18 197.17 173.22 140.97 16.04 12.30 11.93 11.08 16.92 27.25 42.25 70.64 120.12 61.58 56.31 1Q9.Q0 108.38 117.57 98.01 261.80 266.75 248.40 247.39 54.60 114-39 113.26 121.64 114.15 122.35 119.36 111.50 89.40 91.79 86-09 84.25 94.35 80.97 87.71 111.46 209.82 249.53 242.59 55.27 63.70 34.94 30.48 19.47 0.00 27.88 45.16 26.64 32.71 86.09 116.13 36.00 25.11 21-79 24-65 37.72 35.33 40.38 43.35 43.24 47.48 U.67 47.81 253.37 253.37 251.13 170.62 138.77 68.29 40.19 156.00 35.90 256.52 323.45 199.35 188.54 197.75 2fl. 2B 44-70 25.80 111-53 86.78 114.45 117.81 259,03 208.46 89-28 80.74 44,01 35.66 21.25 58.92 63.45 39.66 42.41 251.88 258.62 320.48 506.48 469.66 243.41 240.95 TAMS1 LOC »0= 16. n 14, CEBA'A D OUTELCM SC* RM OUTFLOW 13* GE6A-R o local cu 13. GEOAR INFLOW 13, GE8AR 0 OUTFLOW 22. B1RBIR-T OUTFLOW IB. Bw,Q DAh OUTFtou s. SUN J13 1 93 33.19 15.93 11.80 60,92 314 2 93 37.30 14.09 9.10 60.48 108.66 118.06 97.89 86.30 1.10 46.62 113.19 109.57 40.2? 44.5Q 315 3 93 37. as 7,69 95.15 316 4 93 35.57 0,95 3.60 48.12 101.66 44.42 43.78 «a* 317 5 93 35-82 26.10 21.10 83.02 122.78 76,71 *9.16 255.0! 318 6 93 34.21 89.04 94.10 217.55 164,68 35.90 319 7 93 16.65 139.39 155.40 311.44 152.22 69.65 57.57 44.17 320 fl 93 77.39 179*67 176.60 433.57 340.65 277.76 321 9 93 103.62 151.90 4OT.C3 407.47 120.So ?t 8.« 258.15 284.05 153.52 295.71 U7.61 32210 93 58 86 B8.59 91.60 239.05 Z37.45 199,36 3311 93 23.5* 33.58 34.80 91.93 97.52 82.35 108.00 15.20 63.47 103.84 103.70 35,06 738.0; KO.80 S1».16 32412 93 30.38 17.89 38.06 2‘0.5? 2*5.40 SIM - 11347.68 17027.01 17029.10 45403.75 45050.56 34295.45 16214-10 95560 . 12 lUX ■ 224.52 335.8* 311.50 859.33 857.77 342.61 315.*1 HIV « 0.00 1.65 0.40 6.57 8.18 9.96 1,84 PWkX= 93.00 9.00 9.00 93.00 93.00 141.00 93,00 AVG • 35*02 52.55 52.56 1*0.14 139.04 105.85 50.W PMIN= 308.00 2*5.00 16.00 2*5.00 245.00 244.00 245.00 1512,20 23.31 0.00 29*.94 0.00«« S,WB □uTPur J u!t SU9UBT Bf PERIOD FL000= 12. 12-290 *** 12- 12+2*° bi^”'5 ft* E* R 1 2 5 4 5 4 7 1 2 3 4 5 & TI A/ ba gg s* *“ ... 9 67 60230®^ 9 X7 - ,0 J? i? 602308.80 1 1 i a? 622385-00 if S 6223*5 60 13 1 Lj'^.OO 13 14 15 16 17 IB Ifl 29 2* LSSizbflS.W a SO25M.50 1 69 6Z23B5.B0 ?5 * rt S ’ JO2J08.8O * £ 422515.80 j 622M«-8C ’^602308.80 26 27 Z8 2fl 3D 31 32 2 69 562154.90 J frfl 622385-00 i. 69 602308.80 69 622385.80 £ 69 602308.80 7 69 622385.80 fl 69 622385.80 233.19 18.54 0.00 0.00 0 + 00 o.oo 0-00 0.00 0.00 0.00 0.00 0.00 0-00 0*00 0.00 0.00 0,00 o.oo 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 12. 12.280 bjwiva SYS E* C 622152+60 562136.30 622393.60 602333.40 622413.90 602326.60 622393.50 622413.70 978571.30 1030442.00 740557-50 622389-90 622398.90 562172.00 622410.60 602336.10 622399.00 602341.00 622419.40 622413.00 602329+90 906170+10 602329.50 622393.50 622393.80 562177.60 622410.30 0.00 602332.50 0.00 622415.00 53 9 69 602308.80 3410 69 622385.80 3311 6? 602308.80 3612 69 622385,30 37 1 70 622385.80 3fl 2 TO 562154.90 39 3 70 622385.80 40 4 70 602308.80 41 5 70 622385.80 42 6 70 602308.80 43 7 70 622385.60 U 8 70 622385. BO 45 fl 70 4610 76 4711 70 4812 4fl 1 50 2 70 71 71 602308.80 622385.80 602308.30 622385.80 622385.80 562154.90 51 3 71 622365.80 52 4 71 602308.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 83149.25 0.00 0.00 0.00 727.13 o.oa o,w 0. DO 0.00 0.00 0.00 0x00 602321.30 622412-60 622409.60 602316+10 622386.70 602756+60 622420.50 622413+10 5621B5.60 622400.00 602333.10 539236.50 602360.60 622428.60 622417.60 601581.60 991298.90 602309+00 622431 90 622406.40 562172.80 622411.80 602324.50 51. 51.160 GEBA A14 ENEHGY G 136152+90 122976.00 105025.50 102342.90 96725.64 59295.70 40352.86 16023.55 131760.00 136152.00 102353.50 88792.98 100597.70 92643+98 107402.60 103058-10 102955.30 89850.75 50864.98 t6196.55 36977.24 97119.68 76206.21 91632.59 99930.55 93732.01 106096.30 102901.10 106894.90 101192.70 79079.01 65020.64 54396.85 85540.58 56655.59 68579.64 91303.70 88770.4$ 101703.50 98321.27 87585.39 86196.24 64475.15 43836.68 15287.85 156152.00 70219.73 82501.43 104106.40 95581.33 107385.60 103287.00 50. SQ.16G viitBiir-A ENERGY G 35586.04 29692.48 28438.40 25184.45 34234.03 54992.13 62103+05 63984.00 61920,00 63984.00 32800.20 27568.39 26643.56 24471.97 27077.90 27278.95 29258,85 34367.93 60607.36 63984.00 44239.01 63984,00 32787.34 30812.62 27629.32 24622.01 25162.37 25966.60 23668.66 19023.12 40495.91 44079.90 42337.11 29142.69 57419.63 55631.38 39575.51 31377.56 34829. Bl 35571.09 28912.70 32030.73 43786-12 51836-85 61078,27 62323.35 35103-04 33218-66 18286.14 22664.48 24406-80 20034+58 22. 22.160 BIRtIR'T ENERGY G 209027+00 174507.10 165046+80 143392.80 176972.50 240224.40 231774.90 254879.50 285299.10 313968.00 159059.20 147813.20 158166.40 145048.90 163155.30 160264.10 160375.00 168195.00 255925+70 267762.10 86968.53 313968,00 169269.68 172841.50 161148.10 145499.90 147087.30 150020.90 131258.40 85060.16 171452,00 158675-70 137348.00 120725-20 282377.60 278780.80 209445.30 166395.40 183303.00 180184.20 136426.40 119086.00 137715.20 154009.80 173699.30 276485-30 170148.30 174829.70 106340.60 138917-20 147577.30 117569.50 $2. 52.160 UNO 112 emcngt s 179580.50 165388.30 133086.90 1357BO.50 133629.80 92510.$$ 91452.63 86021.98 186480.00 192696.00 160379.50 125077+50 129644.90 118038.20 135084.80 133661.40 141245.90 125377.10 81974.93 76647.22 140991.30 140699.20 114669.40 122127.90 128794.40 118967.00 136986.90 135171.10 148994.00 153307.50 122059.10 1234D9.50 123995.90 137858.90 W422.45 B8365.9? 115166.30 112896.60 128571.50 125859.80 116907.40 135317.90 129972.IQ 120141.80 103107.50 192696.DO 112949.70 115899.10 142983.20 121191.10 137926.50 161839.90 16. 16+160 5« UA EkESGT G 33986.83 37113+28 17531.46 23562,34 21750.04 40918.50 48360.00 48360.00 46800.00 48360.00 46800.00 48360.00 26732.36 21139.06 14427.21 12205.46 18956.00 26135.58 48360.00 48560,00 46800.00 48360.00 46W0+M 32741.25 26885.54 19604.65 2j4A89.44 19014.40 30249.55 46300.00 43360.00 4K36G.OO 468CC.OO 40360,00 21007,71 14044.91 16249.47 19125.77 15572 + M 12539-36 26218.06 44207.99 46099.63 48090.64 46800.00 4B360.M 46800.M 48360.M 48360.M 19802.13 24064.46 38433.39 13. 13+160 GEIA-t D ENERGY G 27817.91 32457.04 173262.30 172068.30 159099.60 114385.10 >48347.80 153142.50 266400.00 275280.00 239162.90 184775.60 180611.60 160827.70 175260.50 165066.00 169605.80 158412.50 124684+20 149460+90 246351.70 234036.90 162595,00 172235.40 17BM3.5O 159750.00 180385.80 169256.30 181347.20 190935.70 160964.30 182861-60 197436 JO 200757- ’’0 104871+40 116215.60 150670-60 143617+90 158417.90 149855.20 143184.30 185519.60 200378.10 204499.6Q 201606-60 275280.00 167086.00 167670.80 202327.90 164014.50 181043, BO 181153.00 TAMS> AJ O » 1A O •-Qe>QOp'0G>7ffArM»- yOOB3 4-0r-»-K»OO— :: NOOCinN©-- 6KKSt>O^«0CU>OOni'4Onj«)OO'0* OOOCQ* n rxi o o o •— o 888853 IR I O Al in o ru MmOKNOo 88C r — •« tAQnJN^KO«QK) -» 'd m »-•-«? o -4 ki O»-*©«OAjOI »ak»i^ooo4ooo< , QO^>H3QO'JNQ«o^^^r-^«oNini\«0^^^’-<) QO-J(\?«-rtWC5Nj>J>^--'OU>»rdAJ^6r >J3'J j0«dOT-K.4iA^O'OQN'4'OS*-N’-> C>A.tA*«rA'0K'>O-«0K<>OO^»*4* O O O S- m •— 88888888888888888888888888888888888888"8888888888888 o o o o o o' o o o> o o o o o o o o o o o o 6 6, 163780622385.00 164 8 80 622385.80 0.00 0.00 BIRltR-A GEBA AU BIRBJR-A SYS EK G ENERGY G ENERGY G 622388.90 90850,82 37110*10 562163.30 85082.12 32587.22 622405.90 99190.27 33477.48 602519.50 95081.54 31567.11 622403.50 86799.90 33307.49 602334.30 65528.95 <3088.36 622537.20 32809.70 60928.50 330776.80 46087.48 63984.00 997202.20 131760.00 61920.00 976018.40 115326.30 63984.00 602313.30 68656,46 40940.12 622407.10 83271.27 39093.61 622405.10 90832.60 36715,70 562157.80 87252.92 31272.62 622413.00 99228.27 32885.39 602333,30 98713.18 30745.64 622404.10 89843.16 38275.72 602340.80 70596,65 43957.39 622400.30 33618.01 63984,00 622408.10 30424.56 61384.02 996695.40 131253.20 61920.00 1030442.00 136152.00 63984.00 602316.70 69925,67 40542.23 622392.00 54493.20 39370.04 622388,90 94181.50 32818.73 562155.10 09511.66 23255.24 622396.30 93680.78 36462.66 602335.50 98476.62 W10.48 622415.40 99010.94 31075.22 602329.90 82293.72 33700.00 622416.80 39205.93 63984.00 622361.10 33780.10 63334.09 602338.DO 14677.49 61920.00 622399.80 451B9.22 52173.73 6D2J21.30 70565.95 39620.b5 622392.60 91912.48 33371.63 622406.60 99234.89 31304.29 562157.60 90723.07 20570.04 6224Q0.90 106139.90 28128,59 602337.90 103851.00 26890,41 622413.10 103859.40 30007.98 602348.80 97050.35 29649.04 622393.60 68718,46 45237,84 622B81.30 37819,89 635M.55 602314.90 16646,87 61920,00 622392.60 53949.40 43516.48 M2329.80 73245.8? 35229.54 622387.30 89617,73 34568.49 6224GZ.SO 97517.0? 33034.32 562180.50 93035.39 205)8.75 622418.40 107274.40 293B4-39 MZ344.40 102525.90 27653.65 BIRBIR^T ENERGY G 206433.80 181222.80 186969.60 171299.30 1*0029.30 >73948.40 201472.70 313968.00 303040.qo 309984.70 211620.60 212703.10 204201.30 176609.70 183593.00 171314.10 191895.60 192258.90 295742.30 194680.10 303840,00 313968.00 210682.60 215861.60 184241.00 160952.40 197152.80 168433.80 162722.50 145533.40 261230.40 231289.10 284023.00 207795.30 205521.60 188952.90 181495.50 163203.30 162480.90 1528T5.7D 159473.40 143145.20 168753.BO 229889.BO 232692.20 171717.20 176854.30 189450.10 190987.80 162467.50 166516.20 152576.60 BARD 112 energy g 1H647.8Q 1 06682.90 129429.70 1 15206.30 ** * * &rc S ') 1 16$ 9 88 602308.BO 0.00 16610 BO 622385.80 O.QO 16711 80 602308.80 0.00 16812 80 522385.80 0.00 169 1 8! 622385.80 0.00 170 2 81 5621W.90 0.00 171 3 81 622385.80 0.00 172 4 81 602306,80 0.00 173 5 81 622385.80 0.00 174 6 81 602308.80 0.00 103374.00 130476.20 186480.00 172615.70 101179.20 >09373.10 115009.80 109091.70 SS:S B" 13&1P't, ’5239 L 4661,^ 5ltf1 < ‘S8*O.aD 17135 uS? --4 IS!71-*1 •2M7.63 17$ 7 81 622385.80 0.00 176 8 81 622385.80 0.00 177 9 Bl 602308, SC 17810 Bl 622385.80 17911 81 602308.80 18012 81 6223B5.M C 00 T 0.00 0.00 0.00 181 1 B2 622385.BO 0.00 182 2 82 562154.90 0.00 183 3 82 622385.80 D.CD 184 4 82 60230B.B0 0.00 185 5 82 622365.80 0.00 186 6 82 602308.80 0.00 187 7 82 622385.80 0.00 188 8 82 622355.BO 24.63 125991.80 112835089.690 5 125 742.10 109205.10 71084.45 1O5B93.7O 186480.00 192696.00 102231.70 109822.40 120836.70 113392.70 119719.90 128835.10 1 gj-« ‘MOO.Oq S »s 18169.44 1S1SB7»1a>s isiiM 1S864.41 WJ.X 137723.BO 128445.40 82437.99 25655.75 *642^7; 46800.00 165555,2; 48360.00 127196.K 1B9 9 B2 6023OB.60 0.00 19010 B2 622385.80 0.00 19111 62 602308.80 0.00 91403.91 68163.46 95610.74 48360. OO 154199.BQ 46800,00 48360.00 126151. K ?7J2U.si 19212 82 622385.80 0.00 193 1 83 622385.BO O.M 194 2 63 562154.90 0.00 195 3 63 622385.80 0.00 196 4 K3 602308.80 0.00 103463.90 119490.00 124923.90 113904.OD 134553.40 36791.M 146J«,IE 22117.11 16340.81 14900.66 180 96.00 l*65U,.l 150846-20 1730DC.M 1669K-M 197 5 83 £22385.80 0.00 S6B925.M 198 6 03 602308.BO 0.00 135163.40 140526.50 16706.95 19618.51 199 7 83 6223B3.5O 0.00 164854.51 175568-47 200 8 B3 622365,50 0.00 15163’.5C 201 9 83 6O2JOB.BO 0.00 46BM-00 itwssa.TT 2021083622385.80 O.M 48360.00 19S4fl7.1l 20311 85 602306,80 0.00 133M7.30 119114.20 92102,50 83994.91 109440.20 110379.40 33840.IB 46998.60 47935.29 46800.00 15WIB-^ 2W. 12 83 622385.BO O.M 26457.04 I6i11?-U 205 1 84 622355.BO O.M 206 2 84 562154.90 O.M 207 3 84 622385.BO 0.00 16J553W 150545.10 16WJ35.fi 208 4 B4 602308.80 0,00 117974.50 122205.60 115711.80 134961.50 132161.40 14301-93 11899.33 14443.92 14242.57 173182-2012- SV5 €W S 12. BlEBlfi-A $YS EN G 51. GfM Ali EHEUGT G ENERGY G a i si riM enogy G 8AP0 142 ENERGY g 509 »1A EMERpr G 13. tElAI D ERE Iter c 0.00 622401.30 B7267.92 34542.73 200305.50 112937.00 25468.78 15987750 o:oo 5621W -1 O' 88574.56 27468.15 157949.70 112730,70 20249.43 0.00 0-00 0.00 0.00 0-00 622407.70 43790.95 48436.35 139408.60 123893.60 48360.00 0.00 T030442.00 136152.00 63984.00 313968.00 192696.00 48360.00 o.oo 997202.20 131760.00 61920.00 303840.00 186480.00 46800.00 0.00 1030442.00 136152.00 63984.00 313968.00 192696.30 48360.00 622387.60 W59.14 33357,91 190390.SO 124369.30 12169,54 6023311.50 W10.05 35666.54 193833.00 118819.10 13575.16 622391-30 94183.60 2915629 149009.20 137887.60 40652.32 602332.80 87061.41 21507.29 67646.51 156258.20 46800.00 o_oo 0.00 602329.80 59907.21 43898.66 216051.50 95160.a 46KM.OO 622407.10 79890.36 39766.6? 213456.M 10*750.6C 28694. D8 155189.50 162438.20 HWB.50 171500.00 223057.20 218516,M 275280.M 266400, OC 775280.00 U0510.00 153847.30 ^£j697QO**< **••*••*26345090.0013078400.00620954^0.0039618000.0010923110.00554^ 20, DO 551465.50 0-00 $3933-61 13*152-00 63904.00 6.58 4097.69 245.00 ID.00 1.00 8.00 11678.00 M Q5f>r. 60 81312.02 40365.45 3.00 ZU. 00 308.00 244.00 3B9M.J0 192696.QO 4&3M.C0 275280.30 16557.29 5164,28 2400.71 10660.09 19.00 <0.00 7,00 10.00 191652.70 122277.80 33713.30 171244.20 244.00 245.-XI 245.00 245.W TAMS♦♦•♦•••♦♦♦•♦♦♦•■••♦♦♦♦••••p********************®************* 'ERROR COMPUTER CHECK FOR POSSIBLE ERRORS ***** FLOOD NUMSE2 POSSIBLE ERRORS FOUND- 0 ALLOWABLE ERROR CHECK- 50 »«*«•«>••••••• ♦•♦♦♦•♦•»*«•••»*••••»••■•••■•••• •CASES CASES FOR PROGRAM DETERMIMED RELEASES •• CASE - X.Y, WHERE: X ■ CONTROLLING LOCATION Y • NUMBER OF FUTURE PERIOD CONTROLLING EXCEPT WHEN X®0 THEM, TYPE Of RELEASE IS BASED ON RESERVOIR REQUIREMENTS, Y « Y=OO MINIMUM DESIRED FLOW AT DAN SITE Y=O1 OPERATIONAL CHANNEL CAPACITY AT DAK SITE Y=02 BASED ON MAX RATE OF CHANCE OF RESERVOIR RELEASE Y«03 RELEASE TO REACH TOP OF CONSERVATION POOL Y-OA RELEASE TO REACH TOP OF Fl000 CONTROL POOL Y»D5 RELEASE TO BALANCE TANDEM RESERVOIRS 1=06 BASED ON MAX RELEASE DUE TO CUTLET CAPACITY ¥»07 BASED ON NOT ORAWIMG BELOW LEVEL * Y«M MINIMUM REQUIRED FLOW AT DAM SITE Y«OQ RELEASE TO REACH TOP OF BUFFER LEVEL Y«10 BASED ON AT-SITE POUER DEMA1C ¥•11 HIM FLOW SINCE HIGHEST RES CANNOT RELEASE V«12 BASED ON SYSTEM POWER DEMAND ¥■20 BASED ON GATE REGULATION CURVE - RISING POOL ¥•21 BASED ON EMERGENCY RELEASE: PARTIAL GATE OPENING Yfc22 BASED ON EMERGENCY RELEASE: TRANSITION ¥•23 BASED ON EMERGENCY RELEASE: OUTFLOW-] NFLOW ¥•29 BASED ON EMERGENCY RELEASE: PRE-RELEASE CASES FOR USER SPECIFIED RELEASE CRITERIA (QA CARDS) - CASE » X.Y, WHERE: X • RELEASE (CFS) Ofi RELEASE CRITERIA (IF ANY) Y - CODE THAT WAS INPUT ON QA CARO (OR REPEATED FROM PREVIOUS PER(00) ¥■00 T®01 ¥-02 Y=03 YMW ¥•10 T-20 ¥•22 ¥•23 ¥«2A ¥=25 Y»2A ¥■27 T-ZB ¥ = 29 T-30 ¥=31 Tw32 Y=33 T»34 Y=35 T-36 ¥■37 Y=41 Y=42 Y=i3 Y=XS r=50 X RELEASE SPECIFIED BY USER RELEASE SAME AS PREVIOUS PERIOD'S RELEASE INTERPOLATED RELEASE BETWEEN TWO USER SUPPLIED RELEASE VALUES PREVIOUS PERIX RELEASE ♦ X PERCENT PREVIOUS PERIOD RELEASE - X PERCENT PREVIOUS PERIOD RELEASE ♦ X CONSTANT PREVIOUS PERIOD RELEASE • X CONSTANT RELEASE FROM GATE REGULATION CURVE RELEASE TO REACH TOP Of FLOOD CONTROL POOL RELEASE FOR DAM SITE OPERATIONAL CHANNEL CAPACITY RELEASE FOR MAXIMUM OUTLET CAPACITY RELEASE TO REACH TOP OF CONSERVATION POOL BASED ON HAXIXJM RATE OF CHANGE OF RESERVOIR RELEASE (RISING) BASED ON MAXIMUM RATE OF CHANCE OF RESERVOIR RELEASE (FALLING) RELEASE TO REACH TOP OF BUFFER POOL RELEASE TO REACH LEVEL 1 POOL BASED ON FIRM ENERGY DEMAND BASED ON ALLOCATED SYSTEM POWER ENERGT RELEASE TO BALANCE TANDEM RESERVOIRS BASED ON RESERVOIR LOW FLOW REQUIREMENTS (DESIRED 0) BASED ON RESERVOIR LOW FLOW REQUIREMENTS (REQUIRED Q) BASED Oh D.S. FLOOD CONTROL REQUIREMENTS BASED OH D.S. LOW FLOW REQUIREMENTS OUTFLOW EQUAL INFLOW BASED ON PREVIOUS PERIOD GATE RELEASE TO REACH X LEVEL RELEASE TO REACH RELEASE TO REACH X STORAGE: X ELEVATION SfTlIMG (AT END Of (AT END OF CURRENT PERIOD) CURRENT PERIOD) (AT END OF CURRENT PERIOD) MINIMUM RELEASE MADE D.S. TAMD EM RES. [S RISING D.S. release is less than value xANNEX IF SEDIMENT STUDIES ANNEX IF SEDIMENT STUDIES TA MS-LLG Haro-Akoba River Bajin JnlegritKi Development M.Uer Pin"........." J- -e- IIIJ4 Bfe-. sedime nt atton ... g^SERVOlR L g£COMMENPAT(ONS FOR SEDIMENT MONITORING i 2 J 4 6 'jblc !’ fibk 2- Tibi; 3- Table ■*- TABLES Sediment Rating Curves Average .Annual Sediment Yield in the Baro-Akobo Basm Reservoir Sedimentation Rates Reservoir Sediment Accumulation FIGURES Figure 1 Sediment Rating Curve - Keto River near Chanka Fisurc 2. Sediment Rating Curve - Gumero River near Gore Figure 3. Sediment Rating Curve - Ouwa River near Guliso Fiaire 4. Sediment Rating Curve - Sor River near Mctu Figure 5. Sediment Rating Curve - Gccheb River near Mizan Figure 6. Sediment Rating Curve - Begwaha River near Tepi APPENDICES Appendix 1 Appendix 2 Appendix 3 Appendix 4 Appendix 5 Appendix 6 Appendix 7 Appendix 8 "PPendix 9 "■Ppetidix 10 Appendix 11 Sediment Measurements - Keto River near Chanka Sediment Measurements - Gumero Rjvct near Gore Sediment Measurements - Ouwa River near Guliso Sediment Measurements - Uka River near Uka Sediment Measurements - Meti River near Dembidolo Sediment Measurements - Sor River near Metu Sediment Measurements - Kunni River near Chanka Sediment Measurements - Gecbeb River near Mizan Sediment Measurements - Bitin Woho River near Tepi Sediment Measurements ’ Begwaha River near Tepi Sediment Measurements - Birbir River near Y ubdo TAMS-ULg Baro-Akobo River Basin Integrated Development Mailer Plan IF - ixNnex if sediment stud^ ____ Hivcr B*«n -^MSXtG el a e0 - rated'^ °V ' ' IF-IANNEX IF SEDIMENT STUDIES 1> A VAlt^LE ”ATA data have been collected at eleven gauging stations in the basin. These Append! ords appear to start in 1982 on the Keto River near Chanka, and records al six pie oldeSt , l9gg Al) records stop in 1990; overall only 101 measurements have been taken sU hons start These measurements have been taken over a reasonably large range of for the include measurements at high flows, some of them during the rainy season at jischarg® - 5 e *cesS of three or four times the mean annual flow. Some of the measurements jjseharg65a( ^ginning of the rainy season, when soil erosion and sediment transport ^T^Ted 10 * ** higheSt due to the higher erodabiJity of the dry soil often row data of the sediment measurement were provided with no analysis or descriptive ? . Hence the methodology for sample collection, i.e.. depth integration, collection point. r • are unknown at this point. The largest concentration observed in any of the 101 "asurements is approximately 1,500 parts per million (ppm) or 1,500 grams per cubic meter. Most of the measurements are in the order of 100 ppm with significant exceptions. For example, the Keto near Chanka has a number of measurements with concentration in excess of 500 ppm, up to 1.500 ppm. To a certain extent the measurements on the Ouwa near Gulisso also indicate relatively high concentrations varying from 300 ppm to 1.200 ppm. Finally a third station, the Kunni near Chanka, shows measurements with high sediment concentrations generally ranging tom 300 ppm to 800 or 900 ppm t AMS-IJLG Baro-Akobo River Basia lntetraled Development Mailer Plan IF I3. DATA ANALYSIS Based on the flow measurement indicated at the time the sample were taken convert the measured concentration in daily sediment load, i.e., in tons pe d ^'ble r S rj stations with sufficient data, i.e.. the Keto River, the Gumero River, the Ouwa R ■ ^° S r River, the Gecheh River and the Begwaha River, sediment rating curves w^*?’ determining the best regression estimate between daily sediment load and river disc^^ ^ h Table 1: Sediment Rating Curves 3 River Catchment Area (km:) Mean Annual Flow (m /s) 3 Sediment Rating Cun-e Equation Keto 1.006 17.6 Coefficient Q, = 0.01010 q° 974 Gumero 106 2.05 0 562 " . ~ Q, = 0.00372 q° ™ Ouwa 288 5.75 Qs = 0 00089 q14,9 Sor 1.620 52.6 0 698 ------- Q, = 0.00130 q1119 . 0948 Gecheh 79 190 Qs = 0.00056 q1 0784 Begwaha i 125 3.33 Q, = 0.00110 q1 i45 0.841 In the equation shown above Qt is the sediment daily load in metric tons per day per km: of drainage area, as a function of the discharge module q which is the ratio of the daily discharge divided by the mean annual flow. Daily flow duration curves have not been made available and therefore a strict integration of the measurements that would provide an estimate of the annual sediment load is not possible For the purpose of evaluating the data collected, a synthetic duration curve similar to that presented by ARDCO-GEOSERV in their hydrological studies was used. The results are shown on the table below. Table 2: Average Annual Sediment Yield River Drainage Area (km ) 2 Mean Annual Flow (m /s) J Annual Sediment 2 Load (t/vr/km ) Keto 1.006 17.60 324 Gumero 106 2.05 35______- Ouwa 288 5.80 284__ _____ Sor 1.620 53.60 124 _ _----- - Gecheh 79 1.90 63_^- Begwaha | 125 3.30 85____ .— TAMS-ULC Baro-Akobo River Basin Integrated Development Master PI* 1F-3ANNEX if SEDIMENT studies I. rE5ERV0IR sEI>I*®NTAT1ON sc result are very low, and should be confirmed by doeloping an intense standard th- measurements with proper quality control. o f sample - performed for this study, and with the limited amount of data available, level ol ^'Xjts arc only indicative and the database is insufficient to guarantee that the s AI ct6ar th31 [",'v siii^' by processing these data are reliable. At this level of study, it is therefore e cS pr^2re conservative approach for the planning of reservoirs. cd in various part of the world that the annual average soil erosion frequently [t been obse? va lent of approximately 1,700 t/yr/km2 and can average 3 mm. Not all jxcecds 1 nun. L r ver j and accumulates in reservoirs, generally there is redeposition ertded C reservoir. This effect is measured as the delivery ratio of sediment, ^[ween the SOUrCCof the sediment yield of a catchment to the total soil loss upstream. The which is die ratio delivery ratio is • casing cate of the catchment shape, slope etc. and it usually decreases with Based on the observation that sedimentation in the basin might not of [he country and the world, the estimate of 3 nun of soil loss has * "iXtntil further systematic sedimentation measurements are performed. Based on this adopt ralio; obtained by regression analysis of many large basins the following XX were adopted for the various reservoirs. The in-place density of the sediment Emulated in the reserv oir has been assumed to be equal to 135 t/m , from in Africa and elsewhere. Table 3: Reservoir Sedimentation Rate Citchment Area (km ) 2 Delivery' Ratio (%) Sedimentation Rate (Ton/yr) Reservoir Equivalent Storage (metn/yr) 100 56 297,000 0.22 . _______ 500 38 990,000 0.74 —_looo 32 1,670.000 1.24 5.000 21 5,600.000 4.13 —_IO.OOO 18 9,398.400 6.96 --- -__ip;000 15 15.800,000 11,70 -------- 30.000 Id 21,400.000 15.90 an rage for reservoirs in the Baro- Akobo preliminary estimates of reservoir sedimenUUon ef used to asst rented in Tab \ kiifrev s nd tudies and The east^- lr 'planning of water resources developmen 2 designs of reservoir, however, w . - liable and num Extensive monitoring program must be esta i n var ious 0 Am S-ULG Ba ro-a kobo Rjver Basin Integrated Development Master Plan IF-4WATER RESOURCES .As more data become available, it may dclemune regional variations. IT SEDIMENT STUbVts possible » develop sediment yield equations Table 4: Reservoir Sediment Accumulation It should be noted that the quantities estimated in Table 5 assume a 100% trap efficiency. Th> assumption is only valid for large reservoirs; for relatively shallow reservoirs such as Jtang Abobo the rates of sedimentation might decrease with time as the reservoir fills with sedmieD- TAMS-ULG Barn-A kobo River Basin Integrated Development 1F-5 Master F>ll,nANNEX IF SEDIMENT STUDIES mMENDAT1ONS FOR sediment monitoring 5' ^P^0US Set*" ra£raphs havC hi&hJiphtcd thc oeed for a rTwrc extensive sediment database The 19%- a the data are spread thinh 100 measurements at 11 gauging stations. As mdicated above these Mtr taken over a wide range of discharges, and it should also be encouraged in ^ure"^ ^gns. The first recommendation is to concentrate the monitoring resources at a d* of gauging stations over longer periods of time rather than to attempt the ^^en^hasxnatailLime. ment of the monitoring program will include the selection of river sections where P* e can be accurately monitored and where rating curves are well established. This the discharg^ a detailed review of the flow measurements and their processing io assess n t set of sampling sites should be established, and depending on the availability of A Tand human resources, all the sites could be monitored either every year or alternatively a ^ion of sampling sites could be defined. At each site, a systematic sampling period must be * icmented and should cover the end of the dry season as well as the entire wet season Sampling collection at the end of the dry season will ensure collection of data at the beginning of the wet season when the largest sediment concentration is often observed. At each sampling ioaiion, the objective should be to sample regularly during the wet season including at the time of the peak annual flood, if possible. In the case of site rotation, each sampling site should be the source of a systematic campaign of measurements every few years. As the data of the wet season campaign become available, a report should be prepared for each monitored location. This report should contain all the sampling raw data, the measurements and in analysis of the results should initiated. Hrs strategy will make better use of the resources and will provide a reliable basis to estimate sediment transport. In the long run. the programme might also show some trend which could be •pdicative of the deteriorating soil condition, or of the effectiveness of the reforestation program tor example. pmH SamP'ln8 site selection, the monitoring strategy should also consider rivers with particular .tpon^ °r T*vers wWch are likely to be developed. For example, the Birbir river basin is tonstruqj10 PT0^uce amount of sediment and it is also a river candidate for the 006 of the0" ° hydroelectric f power stations. A confirmauon of the problem should be Pnorities of the sediment monitoring programme, ■Uhilarly thp al loss of Abobo reservoir should be subjected to annual bathymetric campaigns to assess ^^aries th P^tream sampling locations should be selected and monitored on the main J*ludc the estahi’U 010 Mey nvers’ 35 wdl 35 on nt Laid Ln Tonsldiyikml Sediment Rating Cunre Gecheh River near Mizan Figure 5Sediment Load in Tons/day/km2 Sediment Rating C“^cp. Begwaha River n Figure 6Appendix 2 Sediment Measurem^ Ke,° River jppclldix I Measurements appendix 3 Sediment Measurements /J®*70 Appendix 4 Sediment Measurement > River „ a Gore Appendix 5 Sediment Measurements Mcasurements ■ 8 Sediment Measummenr ' '*er „ . Kunn/ R / Append 9 Sediment Measlue m n ^ Cr hebR^^C^ / ^x'° f^ent Measu. nu ‘ B>tin / .^nwater resources ANNEX IF SED'MENT STlJI) iEs APPENDIX 1: SEDIMENT MEASUREMENT, KETO RIVER NEa Drainage Area: 1,006 Km*; Mean Annual Flow 17.6 M /S ''' chank. J D-Uy Stdin L «»d (t/dav TaMS-ULC Biro-Akobo River Basin Integrated Development M»’,e IF- II'' JWx IF sediment studies „sediment measurement, cumero river gore cj> . 106 k^2’ Mean Annu** Flow 2-05 mJ/s 0.12 5.44 Concentration 105.45 46.88 14.81 12,63 Daih Sediment Uglttfeyl 1.1 22.0 43.76 34.38 26.c 18.94 51.05 8.03 10.42 8.60 0?70 33.34 162.35 37.5 83.5 12 19 9.8 bJun 1989 J6Jun J?89 _ _ 75^1989_____ 0.38 1.48 5.31 071 51.08 53.63 J8.68 161,66 1.7 69 36.1 9.9 jjNo'vl989____ ThHwo 0.86 100.64 3.63 7.5 66.04 20.7 if-inNV ATER RESOURCES ANNEX lF SED»MENT STU^ APPENDIX 3: SEDIMENT MEASUREMENT, OUWA RIVER near Drainage Area: 288 km ; Mean Annual Flow 5.75 m /s 2 J Date Flow (tn’/s) Concentration (EES) LOad (t/d . . 20 Sep 1984 14.71 556.37 a 24 Sep 1984 10.17 292.94 ~ - _ • 257 ~ - - - 707Vif~ - 14 Oct 1984 5.99 130.39 67 — 20 Sep 1985 11.96 1206.56 —■—~ / 1 247 ' -- 5 Aug 1986 9.96 — . 19 May 1988 2.77 579.42 139 28 Jun 1988 7.30 ~ 398.49 ----------------------- —_ 251 17 Oct 1988 13.70 329.17 l~26 Jun 1989 7.10 390 727.98 447~ ~ | 14 Nov 1989 7.55 304.38 14 Nov 1989 7.55 199 331.88 14 Nov 1989 7.55 216 ~ 307.81 201 31 Mar 1990 1.94 108.44 18 " 31 Mar 1990 1 94 108.13 18 31 Mar 1990 1.94 113.44 19 24 Jun 1990 2.81 421.05 102 24 Jun 1990 2.81 365.53 89 24 Jun 1990 2.81 344.74 84 TAMS-ULG Ba ro- Ako bo River Basin Integrated Development Master IF-IV planrf «KPsOVBCES ANPfEX IF SEDIMENT STUDIES 3 4; SEDl^fE^T MEASUREMENT VKa RATd ^EAR U]^ *: 53 km2! Mean Annual Flow ],2l m /, Flow (m /s) 3 m Concentration (PP > Daily Sediment Load (t/day)______ 5.09 5.89 65.63 42.71 6.12 4.17 53.13 5.4J 5.4£ 5.50 0.42 2.63 51,05 12.51 42.72 12.50 88.68 3279 28.9 21.7____ __ ______ 28J_____ _ ___ 18.4 J.8 20.0 5.9 32 2.63 2.63 3.47 7.3 9.3 6.8 147 3.47 30 Jun 1990 JO Jun 1990 .25 Sep 1990 25 Sep 1990 25 Sep 1990 480 480 480 2.13 2.13 2.13 620 6.20 620 40.71 29.99 154.76 119.76 124.99 62.86 61.19 58.37 98.44 72.50 92.19 - A ^S-UtC HlroAkobo River B«in lotegraied De velopment Mest er Plan IF-VA.NNE* IF SEDIMENT STVbl^ -------- ----------------- -------------- ------ T?7) p-ilySedhnenf - 1 Load (t/d vi 25 Dec 1988 0.95 56.76 a 28 Jun 1989 2.18 355.39 67 18 Aug 1989 6.53 822.19 464 — 18 Aug 1989 — 480.94 271 ——- 18 Aug 1989 — 475.00 268 19 Aug 1989 6.84 607.81 3?9 ■—— 19 Aug 1989 - 529.38 313 — 1 19 Aug 1989 — 618.75 36 ------- 0.19 38.32 14 °—------------ i OfiJ? Qjufl Lit®- — 23 -------- ---------- 7| rp?.egp|D11Q1QO——-—-- ~2\7j rFcu/'hp[__ —— “• iT[Crcuah *19-f9_0— ~-ii Tun ! 990 is inn 1990 i Jun ! 990 ii) Oct 1939 JO Oct 1989 . 0.6 2.10 29 97 5.4 4.44 35.75 13.7 0.40 17.50 0.6 - 19.38 0.7 - 50.63 1.8 3.20 104.06 28.8 105.94 29.3 — 111.56 30.9 0.84 64.69 4.7 — 64.38 4.7 1D Oct 1989 - 69.69 5.1 26 Sep 1990 3.65 132.19 41.7 26 Sep 1990 - 15125 472 26 Sep 1990 — 108.13 34.1 27 Dec 1990 0.61 109.69 5.8 27 Dec 1990 — 103.12 5.4 127 Dec 1990 — 150.93 8.0 Ta MS-ULG Bare. Aknho River Busin lntesralHi De' elopmeat Master Plan IF-IXWATER RESOURCES ANNEX IF SEDIMF -----------------------------------------------------------------------------------—Sn't»ES APPENDLX 9: SEDIMENT MEASUREMENT, BITIN WOHO RIV£ ' NF-AR R Drainage Area: 220 km ; Mean Annual Flow 1.04 m /s 2 3 “•% Swita,,-, Lo>d£tAiav) iAi»i>uLb biro-Akobo River Basin Integrated DevelopmentttE SOl’PcES ANNEX 1F SEDIMENT STUDIES --------- -------------- --------------------------- -------- ------— sediment measurement, beg waha river near tepi i ppEc . 4.4 2,90 74.37 18.6 - 4.66 85.82 34.6 4.90 97.24 ]6AU£jz52—— J- iQgg 41.2 i ]g AygJ^-—----------- kn Am? 1988 ' 20 AU^J_Zz— -- ----- V^a.io 19887 22 AiJg L —— —— *>0 Inn 1989 Tf>J 1989 _ 17 —■--------- rTlTu 1988 3.38 71.50 20.8 4,20 97.24 353 5.77 78.17 39.0 3.14 68.59 18.6 1.41 48.48 5.9 1.51 134 38 |115 rNSec[9X9 - 125.31 16.4 ! ] Dec' 1989 -- 146.00 183 njFeb 1990 1.00 26.88 23 Feb 1990 — 7625 6.6 21 Feb 1990 — 37.50 3.2 13 Jun 1990 6.12 117.50 62.1 23 Jim 1990 187.50 99.1 3 Jun 1990 ■ ”1 221.56 1173 23 Jun 1990 1.36 103.44 122 23 Jun 1990 — 97.50 11.5 23 Jun 1990 90.94 10.7 25 Sep 1990 2.93 132.81 33.6 ^2lSepl990 — 177.50 44.9 >51990 — 121.56 30.8 26Decj990 1.23 115 94 123 Dec 1990 — 109.06 11.6 «DecJ990 131.25 13.9 -=5 _Jjt®_|_990 T AMS-ULG Baro-Akobo Ri*er Basin Integrated Development Mister PlanANNEX IF SEDIMENT STUDIES wkterR£SOWCES APPENDIX 11: SEDIMENT MEASUREMENT, BIRBIR RIVER NEAR i: 1,563 km ; Mean Annual Flow 29.6 m /s 2 J Drainage Xrc> Date Concentration 292.81 309.69 6L2S 68.44 61.56 Daily Sediment Load O/day ) 801 848' J55_ ' 37 _42 38 IF - XUgggOURCES ANNEX 1G WATER RESOURCES COST ESTIMATING ANNEX 1G WATER RESOURCES COST ESTIMATING 1AMS-ULG Ban>Akobo River Basin [megnited DevdopiBcat Mauer Planxnzc ANN EX 1G WATER RESOURCES COST ESTIMATING __________________________________________________ CONTENTS production 1 , VIL WORKS UNIT PRICES ' ReView of Cost Experience in Ethiopia I ’ international cost Experience COST FUNCTIONS Srrii • - - r i i •4t—-iJ ■ ■ »■■ ■R 3-1 3.2 33 3.4 3.5 3.6 3.7 3 8 39 Dams .................... ................................. Spillways..-....................... - p ssure Tunnels and Shafts re Irrigation Tunnels Canals -4 .a-..>.-, -i»-- Power Plant Transmission System Irrigation Infrastructure Access Roads i ii 4 i — - r . i*i - -i ■- - 4 OTHER COST ELEMENTS 4 1 Physical contingencies 4 2 Engineering and Administrative Costs 4 3 Foreign and Local Cost Components 4 4 Operation and Maintenance Costs (O KU I 4 - 4 4 1... TABLES Table 1 Table 2 Table 3 Table 4 Civil works Unit Prices Tunnel Support Classes Transmission Line Costs Irrigation Inffastruciure Costs FIGURES Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 F'gurc 8 Figured Figure lo Figure 11 F’gure l2 F’gureis J ,gUre 14 F’SurelS Embankment Dam, Typical Section Rockfill Dam, Typical Section Dam Cost Curves Typical Spillway Profile Spillway Cost Curves Typical Section of Circular Tunnel Cost Curves for Circular Tunnels Typical Sections of Horseshoe Tunnels £ost Curves for Horseshoe Tunnels Typical Canal Sections Canal Costs as a Function of Size Canal Costs as a Function of Discharge Capacity’ Penstock and Manifold Cost Curves Power Plant. Costs Switchyard Costs Ta MS-ULG Baro-Akobo Rhrr Basin Integrated Development Master PlanWATER RESOURCES ANNEX 1G WATER RESOURCES COST ESTIMat 1. INTRODUCTION Most of the cost estimating at the master plan level of studies is based base of unit prices derived from international competitive bids for similar and other developing areas This data base of unit prices has been developed ^ 'n of projects and is continually kept up-to-date .All cost estimates are ex 3 ranSe data 0 dollars (US S) at Jan 1996 price levels The applicable exchange rate a, pr esscd , in Us 1 US$= 6.33 Birr ” ’ that date Was In order to simplify the cost estimating process (in view of the large number of under consideration), cost functions were developed for the major project featur Pr°^ec’5 expressed costs in terms of the principal characteristics of the feature These cost f$' are described in the following sections The cost estimates themselves arc included in the 'project profiles' for each option consideration, (see Annexes 1H, 11, IJ and IK). notions C oaro-AKotx) River Basin Integrated Devetoproen* 1G-1annex ig water resource COST ESTIMATING cfVlt WOBKS UNIT PRICES Review of Tost Eipericnce in Ethiopia is no recent expenence of medium to large dam and power plant construction in “P°n whJCh baSC Un” PnCCS Gll*cl-G'be hydropower project which was Xa p! Sly constructed under a special arrangement with the North Koreans is not a useful ^urcc of cost data For small dam construction, data from the Midmar Dam and Abobo Dam were examined JS well as the cost estimates for the Dire Dam This data was obtained from the Ministry of Water Resources Unit costs for the Midmar Dam (contract dated Sept 1993) and the Abobo Dam (contract dated Jan 1994) were found to be generally consistent when expressed at comparable price levels Selected unit prices for the Abobo Dam convened to USS at Jan 1996 price levels are as follows - hem Common Excavation Rock Excavation Impervious core Shell Fill Transition Material Rip-rap Concrete (025) Formwork (plain) Reinforcing steel Unit price 2.0 to 4.2 5;m3 16 OSnf 5 3 Im3 53W 16 8 SW 26.6 J/nr' 169 7S/m3 31 3 I/m1 247.3 IT bid a^°Ve Unjt P^es for earthworks are generally comparable to international competitive intePnCCS Those for concrete and formwork appear to be somewhat higher than 3pp^aUOnal prices- whi'e the Price for reinforcing steel for the Abobo Dam project Dam S tO be aboul 35 high as international prices. The price position for the Abobo depanPrOJCCl is frrther complicated by the fact that the Contractor is a government ^owed f™ 40(1 il 'S nOt ClCar h0W overhcad costs a"4 corism,ctlon «PPmenl «°Sts are ^T ’ t k PPM'S ** -- -J recent expenence in Ethiopia on underground civil works costs. Pl ^ Celling, cavern construction, shaft construction etc. above *scussion it is recommended that the cost estimating for the Master E 'hiopia ,CS bc based on international competitive bid prices, adjusted to (he conditions in TA MS-LLG Integrated Dndopment Marler Plan 1G-1WATER RESOURCES ANNEX 1G W ATER RESOURCES COST re __________________ ___ J 2.2 International cost Experience TAMS maintains a data base of unit prices for waler resources civil w experience from a range of projects tn a broad range of developing co 1 Ori recommended that these prices be used but w ith a 1 0% across the boad 11 is recognition of the high transportation costs associated with constructio 'RCrcase jn Akobo area Q IFl Ihe Bar&. A listing of the principal unit prices recommended for the study is given in Tabl are at Jan 1996 price levels and exclude taxes and duties e 1 TTicse Table 1 Civil Works Unit Prices Item Unit Unit Price $ Common excavation <4 3 83 Rock excavation nf 9 60 Mass concrete 3 't m 100 00 Structural concrete 142 94 Tunnel lining concrete m’ 186.83 Form work m1 27.01 Reinforcing steel T 1238.05 Borrow excavation, earth fill m1 3 61 Borrow excavation, core 3 m 400 Fill placement, earthfill mJ 4 00 Rockfill j m 6 77 Transition material m3 16 22 Drainage zones m3 26.11 Rip-rip m 11,20 Tunnel excavation m 69 78 Rock bolts m 67 53 Shotcretet 50mm > m2 28 14 Shotcrete(lOOm) nT 56 28 Steel rib supports m 225.10 Canal excavation m5 2.50 Canal earthfill nf 5.60 Canal lining concrete (including formwork) m 120.00 NOTE: The above prices are at Jan 1996 price levels TA.MS-ULG Baro-Akobo River Basin Integrated Development Mist® 1G-3rQOURC£S ANNEXIG WATER resources cost estimating - ---------- ----------------- 3-1 Two basic dam types have been adopted for the master C OST FUNCTIONS P»ms i D ar ^hfiU dam and centre-core rockfill dam Typical sectinn/ r.k estu™«. namely £wn on Figures 1 and 2 ' P Sect,Ons these two dam t^s read sheets have been developed which compute quantities and costs for CompuLcr - for a wide range of design conditions, foundations conditions and these d ji ns The major parameters that can be input into the spread sheets topographic roncu( no are- Dam type Dam height Valley width Dam crest length (or valley side slopes) Foundation excavation depth Upstream slope of dam Downstream slope, of dam Dam crest width Core width To illustrate the process, dam cost curves have been developed for a range of variables A selection of these is shown on Figure 3 It should be emphasised however that these cost turves are illustrative only The actual dam costs for the various projects under consideration have been specifically estimated in accordance with the specific design and layout condition applicable to each project These detailed estimates are Brien in the project profiles. U Spillways w todle tte K„tc for master planning purposes all spillways base ptn was assumed probate flood For gared spillways a Hood =»<*•'!!' for estimating purposes the spillway cost w , broken doom to Sue elemems as follous- Excavation costs (which are very she spec Headworks costs Spillw ay chute costs Stilling basin costs Spillway gates Tllcvolurno of spillway excavalionuas computed for each op’'on&0,n •> t . twines T AMS-ULG Baro-Akobo Rher Bisin lniepated tievtfopmenl Master Plan 1G-4WATER RESOURCES ANNEX 1G WATER RESOURCES COST ____________________________________________________________ _______ JSTImattNg Costs were developed for spillway headworks and stilling basins as a function discharge capacity. Costs were developed for spillway chutes as a function1 discharge capacity and spillway length s Pillwjy A typical spillway profile which formed the basis of the cost estimates is shown 4 The resulting cost curves are shown on Figure 5 3.3 Pressure Tunnels and Shafts A variety of pressure tunnels are used in the projects These include diversion tu 0,1 figure level outlet tunnels, and power tunnels. Shafis are also featured in the works nCS lou j‘ access to gate chambers such as in low level outlet works and power intakes and* ? surge shafts to power plants 50 15 Again computer spreadsheets have been developed that give costs per metre of tunne fa a range of design parameters and ground conditions r The typical cross-sections of the circular tunnels used for planning purposes are shown on Figure 6 The parameters that can be varied are - • Tunnel diameter • Overbreak depth • Concrete lining thickness (including zero) • Percent of reinforcement in lining • Support classes to suit ground conditions The support measures include combinations of rockbolts, mesh, shotcrete and steel rib supports The various classes of support that can be adopted are summarised in Table 2 The resulting cost curves used for circular tunnel cost estimates are shown on Figure 7 These costs apply to tunnels with normal invert slopes For inclined shafts the costs were increased by 60% and for vertical shafts by 100% 3.4 Irrigation Tunnels Any irrigation tunnels used on the project would be horseshoe-shaped designed to ho^ partially full Cost functions have been prepared for this type of tunnel in a sinu ar to the circular pressure tunnels The typical cross-section of the tunnel is shown on 8 and the resulting cost functions of Figure 9 3.5 Canals r y a range cl TAMS basic unit prices were used to develop canal costs per linear metre, or, sizes and topographic conditions The variables that were considered in eve cost functions include TAMS-ULC Baro-Akolx> River Basin Integrated Development Master 1G-5lVAT u resource annex ig water RESOURCES COST ESTIMATING _----------------------- ------- ------------------- - - * Depth of flow ’ Side slopes of canal * g|ope of terrain ' Concrete 1'ning thickness (including ,he of no lining) * proport’Of1 of common and rock excavation The typical canal secuons used to develop thc Cncf Typical cost functions for various size canak k h,ncr,Ons are shown r used to develop cost fonctions in terms of can i Or 11 This which are showm on Figure I2 For from 1 in 5,000 to 1 in 10,000 j.6 Power Plant ^es S PUrpo* a range of canal slopes 10 °f The features included under power plant compose. « Power intake • Penstock and manifold • Powerhouse, including all equipment • Tailrace channel Other power plant features such as dams, runnels, shafts and power canals are covered elsewhere, Power intake structures vary widely from scheme to scheme and cannot easily be standardised For this reason separate intake cost estimates have been made for each candidate scheme Penstock and manifold costs have been computed assuming the penstock is designed to take the maximum internal pressure with a factor of safety of I 5 Normal yield strength sieel was assumed (Yield strength - kg/cm2) and a minimum handling thickness (t=D/jOO) was assumed For master planning purposes a maximum velocity of 6 m/$ was adopted The resulting cost curves as a function of penstock discharge and design head, are shown on Figure 13 Powerhouse costs have been estimated using data ^search Institute (EPRI Report EM-3213) • kenerators, transformers and all associated mechanical . bv theU S Electnc Power include die turbines | ncal equipment . C ect hea7rh0US€ C°sts expressed “ 50515 PCT ’nstaUed capacity 35 “ ori the turbines The cost curve is shown on Figure 14 dCSlgn Transmi i ss on System i^anSrnissi°n system associated with hydropower development is in two components, '^ar^ and the transmission lines themselves T AMS-Wn Or) Irrigation infrastructure includes main canals, secondary and tertiary canals land land forming, drainage system and pumping station costs Main canal costs arc C'eailri8- section 3 4 The other elements of irrigation infrastructure have been estimated *n hectare basis and vary with soil and topographic conditions The costs 3 ptl summarised in Table 4 The pumping station costs shown in Table 4 were based 310 expenence on similar projects. 3.9 Access Roads *AMS Access roads associated with canal construction have been included in the canal costs Access roads to other project features have been priced on the following basis - • Upgrading of existing roads and tracks 40,000 US$/km • New road construction 80,000 USS/km The above figures compare well with the reported costs of improving the Gog-Pugnido Abobo road which amounts to 2,000 USS/km TAMS-ULG Biro-Akobo River Basin Integrated Development Master PIin 1G-7kesovrces annex ig water WWCrck cost est]matog VA 0tbek cost elements physical contingencies H „.vsical coming^'1 [or most of the cM works h,„ bear s« a 2W. Thc oriv Stion is fo' P"werLh™“ COS,S’ ™™«™ Uno costs, pumM ms,s d ^•tchyard costs, for which contingencies have been set at 15%. 4 j Engineering and Administrative Costs The costs for engineering and administration have been assumed to be 10% of instruction costs including physical contingencies This covers the following items - Feasibility studies Detailed design and bid documents Supervision of construction 4J Foreign and Local Cost Components For master planning purposes the following cost breakdowns have been assumed for foreign and local costs Major Civil Works Irrigation Infrastructure Transmission Lines Meth + Electrical Equipment Access Roads 75% 60% 85% 90% 40% Local 25% 40°'o 15% 10% 60% F °reign costs include all foreign cost components of locally procured ^oods and screes 4 4 rv Pcration and Maintenance Costs (O+M) O+M ^sts have bwn O f construction costs, as follous:- ^mhJnnelS’ r°ads eIC Tc [ ^ssion Lj Systems anical and Electrical Equipment % of construction cost 0.5 10 1.5 30 TAMS-ELG Baro-Akoba River Baain Intrgnicd Dt'^lapairnt 1G-8—-■a < a MS-ULG Baro-Akobo River Baria Integrated Development Master Plani V KC2iiK OV XikJV', CjAV\ ROCK BOLTS SFtrO 3PAOWG (Mf »T««k ***CH NIB «PAC IMQ |M| DESCRIPTION \ i I 1 ! ..I I I 1 Shotcrete over % d funnel padmater 112 Rockbolt per unit length , of tunnel I B 1/2 Rockbolt per unit length of tunnel 1.5 Mo support except occasional mesh and Shotcrete No support except occasional rockbolt (SPOT BOLTING) Pattern rockbolts plus two layers of mesh reinforced Shotcrete to Shotcrete and Rock boiling over 50 % of perimeter A 1 1 100 2 — 1 J I Shotcrete and RockboHmg i over 50 % of perimeter r B 1 50 2 00 1 crown and walls Pattern rockbolts plus one layer of mesh reinforced Shotcrete to crown and walls Steel arch rib pattern rockbolts plus two layers A 100 15 2 1 I I I of mesh reinforced Shoicrete to crown and walls Steel arch rib pattern rockbolls plus one layer of mesh reinforced Shotcrete and Rockboiling over 50 of perimeter & Steel rib pattern W 8 x 24 with MG 8 x 12 steel cnannel lagging @ 0 5 in Shotcrete and Rockboltmtj Over 50 % of perimeter A , 0 fiO 200 1 1 Shotcrete to crown and walls Steel rib paltern W 8 x 24 with no logging i Nolo.1 Rockholt longfh “ 0.5 X runnel Dlunfoter TABLE G-2 TLWNtl SUPPORT CLASSES Tl IMMFI -►I WWdTABLE G-3 TRANSMISSION LINE COSTS 1 PLANT OLTPLT MW LOAD DISTANCE km i , 100 132 kV TYPE 1000S km 230kV i TYPE 1000$ km 345 kV TYPE ' ICOOS i •km E’jkV type SC 100 SC 155 100 200 DC 175 SC . 1“5 300 • 1 sc 100 DC 175 1 sc 200 20G DC-SC 2”5 > sc 175 r5 175 300 100* ?00 200 300 100 JOO 200 DC' 315 DC “SC 275 SC 175 2 DC 350 DC 315 SC 350 DC 315 SC 350 2DC 350 DC 315 sc 350 3DC 525 DC 315 S'* "*T ---------- - —■ — sc 455 300 DC-SC 490 sc 350 sc 455 100 2 DC-SC i 450 DC 315 sc 350 sc 455 1 500 200 3DC-SC 625 SC-SC 490 sc 350 sc 300 2 DC 630 DC e i: sc [ FGEND : SC - SINGLE CIRC LIT DC • DOUBLE CIRCUIT BOLD - PREFERRED OPTION NOTES: 1. ALL COSTS ARE XT JAN 1*96 PRICE LEVELS 2. COSTS ARE FOR STEEL TOWERS OVER AVERAGE TERRAiXTABLE G-- [RRIG.aTIOX LXFRSTRI CTl RE COSTS ."hfj . wersasbimh conditions . Lnv bush conditions - h’-sh condftlcr.s SC? iM - For grant; .'rrigatiGG - For sprinkler irrigation ^.stoning Distribution system (2) - Gra’> its irrigation - Sprinkler Irrigation DtuiilUgi' KystiTT: • For gravity irrigation - For sprinkler irrigation ’ lowi protection dikes (3) Pulping stations............ ^oies:- sen o •t 2C00 « a. U ZuC-603 TiS m 3?fj Sikw L, A 'l L'Gsts lij'g Jsvi *5®^ ■* 'j t-oT =.\ r ^^tnnut’hn system costs include canal roao£ Within ;Be irris***0 u,rejs craieooR dikes taken us 2.0m hLhWATER RESOURCES ANNEX 1G W ATER RESOURCES COST FIGURES — J Diver Basin Integra TVMS-ITG Baro-AkoboMtlWHE U — T Earth Embankment Dam TYPICAL CROSS SECTION Lc = VARIES VALLEY SIDE (7) IMPERVIOUS CORI DAM / SLOPES (?) EARTH FILL (T) RIP-RAP BV-VARIES -H VAR © filters & DRAI NS Cut off Depth.Varies KY 05/02/96 EARTH-50.WKAL• SSlof*14H n OopHnofCutofllre"^ - Sm *5 ROCKDAM W»/? TTJWfl T f 5ftwf f of * J Tunnel Cost lEstimate / Meftsi i_e«igth With No Concrete Lining A HI - A III - B V-A V- B - VI - A VI - B TUNNEL1.WT4Thousands FIGURE 6-7 COST CURVES FOR CIRCULAR TUNNELS I Sheet 2 of h ) Tunnel Cost Estimate / Meter Length With No Concrete Lining A HI - A III - B ... V-A V- B _ VI - A VI- B \ V O« l_»mnr.«»pllnn Of L»fJpuII T yp"For DescrlpUon ot Support Type SetThousands COST CURVES FOR CIRCULAR TUNNELS I Sheet 4 of 4 I Tunnel Cost Estimate I Meter Length With Concrete Lining FIGURE G-7 qL pof O<»crlpl»on of Bupport 1yp« TableFIGURE G-«41 horseshoe tunnel - typical SECTIONilFIGURE G - 9 (Sheet 1 of 5 ) COST CURVES OF HORSESHOE TUNNELS With No Concrete lining a. 15 ’ 14 t ! : T- 13 I - —-- - I---- r III - A - Ill - B V-A V- B -VI-A VI- B Por Description of Support Type See Table S - 2 HORSE-1Cost ($) Per Meter Thousands FIGURE G - 9 (Shppt 9 a i COST CURVES Of HORSEsSe TU^ 6 With Partial Concrete Lining (Bottom Half only)Cast (3&> P*er IMIelnr Thauaanda rlGUQE G - 9 (Sheet 3 of 3) COST CURVES OF HORSESHOE TUWLS ° With Full Concrete Lining Tunnel Finished Diameter (M) For Description of Support Type See Table 6 - 2. HORSE-1 W.MCANAL-FWK-'FIGURE G - 10 (Sheet 3 of 31 C TYPICAL CANAL SECTfQN b Canal Section in Flat Plains | *1 I i 1 _ .-1— 1 i J 5 50 35 J 20 25 30 35 X-Axis 40 45 50 55 60 65 70Cost ( $ ) per Meter Length HGURF G - IT (Sheet 1 of KI)- - - - - - - - - - - - - - - - - - 57 CANAL COSTS AS A FUNCTION OF SIZE CANAL ON VALLEY SLOPE (15 %) With Concrete Lining 1.400 - — -------- — - ----- ---------- ---------- W = iOD 200 ------______________________ 1____ 1____________ __________ _______I 0.5 1 0 1.5 2 0 2 5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Water Depth ( m ) For Cross Section Detail See Figure G - 1Q_ ' °S/24/96 CANAL-S.WK4Cost ( $ ) per Meter Length FIGURE e- fl TSfieet 2 6f 10) h CANAL COSTS AS A FUNCTION OF SIZE CANAL ON VALLEY SLOPE (30 %) 1,900 1,800 1.700 1,600 1,500 1,400 With Concrete Lining 1,300 1,200 1,100 1,000 900 800 700 600 500 400 300 200 Water Depth ( m ) Section Detail See Figure 6 - ‘ ky \ 06/24/96;iflO 3 OC>J canal costs as a function of size CANAL- on VALLEY SLOPE (45 %) With Concrete Lining ------ --------------------- — i------ __ WVtoo — -- FIGURE G - tl (Sheet 3 of tOF' c ' .’«» _ _______ ____ __ I ~-------------- ~~A — Water Depth ( m ) ^ or Cross Section Detail See Figure ® ’ CANAL-SWK4Cost ( $ ) per Meter Length r-' aC^AL C STS AS A FUNCT| G - 11 Sheet 4 of 10) ------------------- ° ON OF SIZE cL 800 CANAL ON VALLEY SLOPE (15 %) With No Concrete Lining I KY \ 06/24/96FIGURE G -11 (Sheet 5 of id) '—2— CANAL COSTS AS A FUNCTION 0F $i7f 6 CANAL ON VALLEY SLOPE*30 o/ o) With No Concrete Lining I I I 1 Water Depth (m) For Cross Section Detail See -Fiji* •» canal-s**4Cost ($) per Meter Length FIGURE G - 11 (Sheet 6 of 10) (45 %) 1 2.400 2.300 - CANAAN With No Concrete Lining 2,200 . W = 2.0D 2.100 2,000 1,900 I 1,800 1,700 1,600 1,500 1,400 1,300 1,200 1,100 1,000 900 I 800 700 600 500 400 200 Detail Seer FIGURE G - tl ( Sheet Im «a .__________ - CANAL COSTS AS A FUNCTIONi L V ' CANAL IN FLATWnT With Concrete Lining <30 Water Depth ( m ) - For Cross Section Detail See Flgu* 6 - • % CANAL-F WK4KY/06/24/96— FIGURE G - fl ( Sheet 9 Of 10 ) 7~ CANAL costs as a function of size CANAL in FLAT PLAINS (ABOVE GROUND) With Concrete Lining I I ! >l i , L i 1 i 11 i 1 -----------/v“ —7---------- - Water Depth (m ) For Cross Section Detail See FI(M* G - CANAL-AG WK4FIGURE G - fl ( Sheet 10 Of 10 I \ CANAlW>®'» GROUND) With No Concrete Lining KY / 06/24/96250 FIGURE G - 12 (Sheet 1 of 3) CANAL COSTS AS A FUNCTION OF DISCHARGE CAPACITY lined canals on sloping terrain DISCHARGE CAPACITY IN m^/s259 FIGURE G - 12 (Sheet 2 of 3) CANAL COSTS AS A FUNCTION OF DISCHARGE CAPACITY UNLINED CANALS ON SLOPING TERRAINunit cost IN OS S/m 260 FIGURE G - 12 (Sheet 3 of 31 CANAL COSTS AS A FUNCTION OF DISCHARGE CAPACITY CANALS ON FLAT PLAINS DISCHARGE CAPACITY IN mVsI II261 FIGURE G -13 PENSTOCK AND MANIFOLD COSTS 1. Naxiurmjmriter-fidl head [mJ 2 Costs are at Jan 1996 price levels .k ’i;262 FIGURE G -U POWER PLANT COSTS263 FIGURE G - 15 WATER SUPPLY COSTS AS A FUNCTION OF NET AVERAGE DAILY SUPPLY CAPACITY § X sn Nl 1SOJ 1INH Mthi