W . R . D . A . MEDIUM SCALE DAM & IRRIGATION PROJECT PRELIMINARY DESIGN REPORT BALE GADULA IRRIGATION PROJECT (Command Area) VOLUME 1 TECHNICAL REPORT Irrigation Technical Assistance Group Democratic People's Republic of Korea Addis Ababa June 1990Table of Contents Page I. Introduction and General......................................................................................... •.................... 1 1.1. Introduction ........................................................................................................................ 1 1.2. General ....................................................................... .. .......................... .......................... 2 1.2.1. Name of Project ;>nd Location .................... ........................................... • ••• 2 1.2.2. Designed Area, Type -f Irrigation and Crop Pattern.. 2 1.2.3. Undertaking Organization and Work Paeriod .............................................. 2 1.2.4* Data and Survey ................................................................................................ .. 2 1.3* Geological Part............................................................. .. .................................................. 5 1.3.1* Geological Caharacteristics of the Project Area.....................................................6 1.3.2. Chute Drop Site........................................... .. ............................ .. ..................... 6 1.3*3. Diversion Weir........................................... ....................... .. ..................... .. 8 1.3.4* Irrigation Canals Nos. 1 and 2 .............................................................................. 9 1.3.5* Infiltration Measurement ......................................... .. ...........................................10 1.3*6. Construction Materials ............................................................... ................ ....28 1.3.7. Stone Quarry ....................................................................................................... 32 2. Basic Calculation Data For the Project Design ............................................................................37 2.1. Meteo-Hydrological Data .............................................................................................. 37 2.2. Calculation of Unit Irrigation Water Requirement ......... 45 2.3. Formulation of Maximum Drainage in Minor Catchments ...... 59 2.4. Formulation of Flood Flow ............................................................ ••••••••.••••• 66 2.5. Water Gate and Lifting Devices ............................................. ,.................................... 72 2.6. Plain and Reinforced Concrete Pipes ..................................... .. ................................... 73 3. Design of Irrigation Canals and Drains ...................................... ..................................... 74 3.1. Irrigation Canals .................................................... ................................ ... ..............
5 *2. Unit Required Drainage ................... ................... ......................................... .. ............164 5.5-3. Arrangement of Drains ...................... .............................................. •............... •............. I64 5.5.4. Cross-section of Drain ............................................................ .. ..................................• • I65 5.5.5* Design of Drainage Structures .......................................... ........................ ..................... 166 5.5.6. Design of Escape Channels ............................................................... .. ......................166 5.6. Some Problems to be Considered in Construct ion of Irrigation and Drain Network ............... ...................................... ............• •<)•••••...................... .............. 167 6. COST ESTIMATE FOR PROJECT CONSTRUCTION ....................................................................... 171LiBt of Figures Figure 1.3.1. Infiltration Test Point & Sample Place .............................................................................. 4 Figure 1.3.2. Infiltration Measurement ..©•••••o*o* o o oe *eeoo***,****0*,*e 15 Figure 1.3 ©3. Figure 1.3 ©4 • Figure 1.3.5® Figure 1.3.6. Figure 1.3 .7 © Figure 1.3.8. " ” ” ’’ ’’ " *......................................................................... ••••••..................................................................... 18 • ©19 ............................................................. 20 Figure 1.3.9* Percentage Passing ................................................................................................................. 25 Figure 1.3.10. Figure 1.3.11. ” ” ............................................ 26 27 Figure 1.3.12. Construction Materials(Location) .......................................................................... 36 Figure 2.2.1. Curves of Crop Coefficient(Maize) .........................................................54 Figure 2.2.2. Curves of Crop Coefficient(Barley) ••••••.......................................55 Figure 2.3.1© General Expression for Drainage .................................................... ............................ 65 Figure 2.4.1. Discharge Graph per km2 Agarfa Catchment Area............................................................................................... 69 Figure 2.4.2. Discharge Graph per Unit Rainfall Agarfa, Tenbel, Kubsa ©.............................................................................................7° Figure 4.1.2.1. Probability Curve of Daily Maximum Rainfall(Goba) •••••••• 113 Figure 4.2.1. Graph for Calculation of Hourly Probability Rainfall(Goba) 138Table 2.5.1. Water Gate(Size) ..oo......................................................................................................................• •••• 72 Table 2.5.2. Lift Capacity .................................................................................................. ........................................... 72 Table 2.6.1c Dimensions of Plain and Reinforced Concrete Pipes ..................................................................... • ••• 73 Table 3.1.1. Elements of Main Canals ............................................................................................................77 Table 3.1.2. Elements of Secondary Canal 1. M.C. No 1 ............................... ............................................. 78 Table 3.1.3. Cross-section of Secondary Canall. M.C. No 2 ..........................................................................79 Table 3.1.4 • Structures Summary .................................................................................................................. 80 Table 3.1.5<> Organization of Structures (Main Canal No l) ................................................................... ...81-99 Table " " " " (S.C. 1. M.Co No l) ................................................. 100 (S.Co 1. M.C. No 2) ................................................ 101 Table 3.2.1. Organization.of Structures(Escape Channel 1-21,000 m) ....................................................... 104 Table 4.1.2.1. Calculation of Probability Sate ............................................................ .. ............................... ............Ill Table 4.1.2.2. Calculation of Probability ................................................... »•............................................ .. ........... 112 Table 4.1.3.1. Hydro-engineering Calculation for 8 Types of Drop Structures .......... ........................................... .. ................................... .. 116 Table 4.1.6.1. Table of Drop-cum-Culvert Calculation ................................................................................... .. 125 Table 4 .1.7 .1 • Calculation of Off-take with Pipe or Turnout ............................................. ................................. 129 Table 4 .1.7 .2. " .................................. 129 Table 4 .1.7 *3 • Application of Water Gate ........................................................................................ 131 Table 4 «2 .1.1. Calculation of Outlet Gates .................................................................................... 133 Table 4.2.2.1. Calculation of Inlet Structures ................................................................................... 135 Table 4.2.1. Calculation of Hourly Probability Rainfall (Gob a) ................................................ 136 Table 4.2.2. Calculation >f Hourly Probability Rainfall(Qoba) .................................................... 137 Table 5.1.1. Sub-block Area Ac cording to Different Slopes ........................................................... 140 Table 5.1.2. Area According to Furrow Slopes ................................................................................ 141 Table 5.1.3. Area According to Different Angles Between Furrow and Sub^-block Side ........ ..................... .. ............................................................................... 142 ’Table 5.1.4. Soil Movement for Land Levelling 143List of Tables Table 1.3«1« Infiltration Rate . ?? Table 1.3.2* Laboratory Summary Sheet • •••• ••...................................................................................................... 23 Table 1 .3 .3 • Laboratory Summary Sheet ..••«.«.••••••••• 24 Table 1.3*4. Soil Mechanic® ................................................................................ .................................................. ?9 Table 1.3*5* Soil Mechanic© ............................................................................................................................... 30 Table 1.3*6. Soil Mechanic® ................................................................................................................................ 31 Table 1.3*7* Physical and Chemical Analysis of Water 35 Table 2.1.1. Me tee re logical Pata l) Precipitation .............................................................................................. 38 Table 2.1.2. Table 2.1.3. Table 2.1.4. ” ” ” 2) Evaporation 38 3) Others 38 4 Air Temperature ................................................................ 39 Table 2.1.5* Monthly Precipitstion ir Gere Worlds ......................................................................................... 40 Table 2.1.6. Air Temperature ir. G~rc Sored* ••••••••......................................................................................41 Table 2.1.7. Meteorological beta ir. Agarfa 42 Table 2.1.6. Monthly Evaporation Vet ir fcobe ............................. ................................ • •............................ 43 * • Table 2.2.1. Data for Calculation of Annua. 44 ETc ............................................................... 50 Tatle 2.2.2. Calculation of Evapot ranaj : rat ior. ................................................................................ 51 Tatxe z • z • / • * ••••..•••••••••••••••••••••52 Table 2.2.3. Average Evapot ranapi ratior ............................................................................................ 5? Table 2.2.4. Ma> ;aun Unit teeter haqu; rwaer.t ................................................................ 58 Tatia 2.3.1. hourly Mean Inf i J t ratio/ haU ........................................................................................ 59 Tabla 2.3.2. Calouiatior. of Area fox Difft rant iarta of Table 2.3.3. hainfall Acooraing to G;v«i Period of Time C>
• aa . . tl Tab la . • .4 . he inf a J J Accord i >♦/. to Give/. hr ri uflt i f *! let HLet it l «> 20, jGj 4C AMI .................................................................................................................. ei Tabla z•3• c,a i ou lotion of Ea
. 6 Secondary canal 1 of main canal N 1 4 20 1 . Secondary ' canal r of main . canal ’ H* 2 ! 21 1 Tertiary canal longitudinal section 22-34 13 ia 9 Cros9 section of escape IU* 1 35 1 £ A ■ ••>’■-•'• ' •- 10 - Cross section of escape TI* 2 36 1 AA'Vn 37-39 3 .- '2 Intake gate * -»■- Chute drop fall M r -S - 40'” ’ 1 V- 13 'V ';. 3 . Diversion weir 41- 43 r 3 J ■' x p’ ■ '4 : Drop structure (Main canal) , ( Escape) 44-51 ‘8 *• Ik’ •> <” 15 •' Drop structure ( 3rd ,4rh carat — 52-55 — 4 • i6 A. . ; Culvert (Main canal) r ----------------------- 56- 66 II ’■ 'k4>' ’’I7- Culvert (Secondary carat) 67- 70 4 f.' '■ 1 k 18 '•• Culvert (3 , 4 ^cQjtat ’ rd M 71 - 79 9 ,1 ■. *i . i 19 • Culvert (escape) 90 1 Dr o I rage culver t Open channel of mem canal N® Off > iu*e i>f f tune pipe i secondm y canal) Jh 4 canal 1 n i ti »g ^uiuTable 5*4 .1. Distribution of Canal Structures(Tertiary, Quaternary and Field Canale) .............................................. ................ .................... ............................. • 1^0 Table 5 .2 • Furrow Slopes after Land Levelling .................................................................................... 151 Table 5*4.3. Results of Infiltration Test ..................................... .................................................................... 152 Table 5 *4 *4 • Evaluation of Furrow Discharge Capacity ............................................................................ 153 Table 5 *4 «5 • Discharge Capacity of Syphons and their Number Required •••• 155 Table 5 .4 .6. Distribution of Sub-block's Slopes in Percentage ................................................................... 156 Table 5 • Red Slopes of Field Canale ................................... .. .................................... .. ..................157 Table 5.4.6. Organisation of Fir',c Structures .............................................................................................. 162 Table 5 *4 • W.ajcr Works Sutmrar? ............................................... ,.............................. .................... 163 Table 5/ Drainage Structu** ..................................................................................................... 164 Table 5*5*2- Typical Croae-aect,or of Drain ........................................................................ 165 Table 5*6.1. Organisation of Drair. Wcrke ........................................................................... 166 Table 5*6»2. Canale 6 Stnjct^res Suaaary ...................................................................................... 169I. INTRODUCTION AND GENERAL 1 J . INTRODUCTION This report Is a sequel of the Technical Report on the Pre liminary Design Report of Bale Gadula Project (November 1987), which dealt with the design of Dam & Weir. This report will deal with the command area of the above mentioned storage dam. Design of this project aims at developing and introducing irrigation system into the plain land in Bale-Gadula valley. It is certain that irrigation system in this area is the key to bring about high production of agriculture, which is verified by the data and informations collected. Design of the head work for this project was carried out in 1988. This head work is expected to be a reservoir with available storage volume of 15 million cubic m blocading the river Weivb that has abundant water quantity. for the project the agricultural soils investigation and the quality of water for the purpose of irrigation has been carried out as appen ded in here; (Appendix 2). Likewise, the agronomic aspect has been compiled. (Appendix 3). Ail those data and informations provided reference for the design of the project. Finally the engineering cost estimate has been carried out in an elaborate manner as presen ted in Appendix 1.• >• DRAWING N? TITLE OF DRAWING • F’AGE TO TAGE .' 27 ‘ ' | Chute drop ( 3^ 4^ tonal) 101 r.<\ r “ ^28 ’’’ •1 InleT structure 102-104 t> Intel structure (Escape F2) 105 . ’ * • J . •. V • . '«•’* 3 0 ’ • * | Out let gate ' V ’* ■'*' i•<; r- 1 A 106- 109 J 4 *’ r‘ 31 Rood side drain work no SHEET 1 3 1 4 1 1 ■ 32 1 Irish bridge ■ f Kubso bridge !“ t IK; . 1 1 1 *• ■ 5 ’34 300 x 300,400 x 4?0( Portable lifting gate) 112- 113 114 2 1 ~ 35 L ■; J6j - 300 x 400, 400 x 500(portable tiffing ga'e) Iftstglotlon of go** 400, 600 Instoiotion o* go** 800, 1000 Insrglotlor of go’* ’250 x’500. 500 115 1 ’•■R”. '!■' M 38 ..I. ' 116 117 * 118 Aet* \ 29 Gate o*ail 4Q0» 400 slulc* ao*e 40 W 4. rk.; 1 -vl 1 1 1 1 • 42 1 ?i‘- 45 • 1 *» G •’. u [• I i - • 45 » ’V L *• t .>//., <6 7 "f 4——---------- - -4 - -* “4 *-w------- 500x 500 600 x 600 800x800 IOOC x 1000 119 120 121 122 123 124 125 126 127-128 i?9 j 30 I-<33 1 34 135 13© i3r i3b 139 r ; r ;v I • 47 *'|v’.k-'4e ■* ,[*>■•■ 49 ;.l+rr--r - »» 1250 k 1500 0 1 tor 0 2 tor. 05 ton 1 0 ton Geological te< tun of chute diuj i • d 2 3 -4 V. * *'■ 51 n t _ -- ---- . f ■? .. «» 4« TS ■ 9------ — - ------------J M . » Geological be* IM of division Solti of bale Gadulo Orgoniionon of •iturruiet < 3r d . 4 th canal I r. < 1- 2 - 1.2. GENERAL 1.2.1. Name of project and location Name of project- Bale-Oadula Irrigation Project, Command area. Location-administrative- The project area lies around Gadula Kevale, Goto Wo re da, Bale administrative Pegion, 520 km f-fho Goda Kiflr Hagar 9 km from Goro Woreda. -Geological- between east longitudes 40 21 and 40 37 r o 0 north latitudes 7°O5’ *-~d 7°O7’• 1.2.2. Designed area,type of irrigation and crop pattern area 1 4,500 ha.net. type of irrigation 1 gravity irrigation by reservoir method of irrigation t surface irrigation main crop pattern 1 barley. wneat and saize... 1.2 .J. Undertaking organisation and work period organisation 1 Irrigation ?eonmoal Assistants Group of the DMooratic Copiah Republic of Korea for the deal, A Mediae Baals Daae A Irrigation Project Jesign Jff loe ,WRDA,Addie Ababa. w>ru period 1 fra Jeceaber I486 to September 1490. a 1.2.4.
*e to be useful aud taw juruQ Lw tor iiiu iewala ae.it of igr.euiture. v 1 L>4")
er collected frrw atatlona in adjacent ot border nr tr»M euot ae Ooro. Robe, Ooba« Slnnana anc Oimnr, wMd ar* a« fcll
> proving. Th* soil alaoat C<44 -ata of tjMO# o«a wlxci f •enure crops, xu fl I »*Wfld water jraea a don frm lis a-. Ham and t iw rw la little ea1IRlt) . ♦ • * •/ .4 . IL tLia *rt<. ia i 4. 4 H w* - fa / * aiaae JVi. k ; j 4 (Iwia la a petL i*y r*a£ f J ufi UuH h OlMlil 4 l he H* jeet «iWa . iw4«a j4 aa a a 11-14 < U» area I Li t»La1 la ** I IL» UBUl 1* ut K La lu* UfWuJ'fi I Ur LaL a 4. 1 a ll- a l w * i. „ * i * hiPAh* . 1 > 4 - P1 a4W a aU4 la a-.—a edit -a onl> n. *. x.<. « • • « Z < » t • C *. { 4 1 & . ( #« * j fi. hi t . 61 I 4 < ». . 1 _■ Xh> m c alif »■ J *• u*a-»«i. - » •• I - •■< * >•»- 4 - in the project area but in Goro Woreda 9 1«?«4«6« Sooio-eoonomical data ***7 from the area. This area has long been inhabitated 07 people who are in Oromo race. There are now 5 collective villagee originated in early l'?8oe wftk > about 940 families and population. Moot of the inhabitants are engaged, in eemi-a
.4e ou—apsr
«w«A .t » nri. ♦ i .
and t. .!>¥•> ■ 4^>tV t 1*4 t ••Will aeaaaa at r •
•■ FVr /♦ WM / J .ef <*>< <*< the r . te« f t ig • i . a d *-b-. Lt j
. - «>« * 4 . f 1 i.t c .sUriel*^, eniW i-e> u..fc I I *»i IU« ll-vee I 1 - • 1 «*Vgj • l*€ i »*hm. u*«U u * i » ‘ ■» M» * A w * *- 6 - 1 Geological Charateristics of the Project Area The project area is a hi^h land lyin^ about east part of east Africa and h-ie distribution of basalts errupted on many occasions and ot-er substances and eluvium about the mountain sides. The basalts that are dominant in the area save m ^ny weathered cracks, Urgs in size. The rocks n xve been affected by weitnerm^ processes and tsus se— riouly dimpled %nd the bisil^iyer as the dominant rocks xs supposed to have tens of metres in iepth . Basalts h %ve been weathered at different levels, la tae lower part of the valley boulder tapped *nd < revel snaped weathered zones can be seen but freen rooks ere not found. Bed rook xs Qami.: whxoh xs overixed by aluvxun and *u*'.os with tens of oe t tee t res or tens of xetree of lepta. Line ihxe xa the project a-wa sluvxue nd weathered soils h*we been developed
fine pebbles and boulder seen. Recommendation 1 The propsoed diversion weir will be built on the gravel bed and thus measure should be taken to prvent leaching phenominon. And there is possibility of piling up of sand, silt and fine gravels during operation, for the Asendabo river has a steep slope, which nesessitetes protection from it.- 9 - 1*3 .4. Irrigation Canals Nos 1 and 2 Survey period : Feb. 19 1989 - Mar. 31 1989 1.3 .4.1. The objective of this survey was to observe the depth of ifiltrated soil. 1.3 .4-2. Geological Survey Assuming that cut will be about 1 m in depth, 40 pits were dug by man power within 32 km of stretch to obserye the earth layers. Within the reach of the main canal No 1 more than 4 m deep clay stratum lies posing no problems. But from the diversion weir upto chainage 1 + 300 below the clay layer gravels were found and thus preventive measures against seepage are prerequisite. In other reaches no sandy gravels were seen • Recommendation : In the reaches of the main canal No 2 of which cutting depth will be more than 2 metres detailed investigation is necessary prior to construction and consideration should be taken into about the indiltrated soil. When constructing canals by embanking no problems will sure arise because of clayey soil on the surface. What should be taken into account in construction of the main canals Noe 1 and 2 is that moisture has to be 2$ - % in the soil for compacted embankment. Because the clay in the area is highly porous with eerious swelling capacity, in every case compaction is in evitable7 10 - If not, the canal'bank will be swollen and cracked causing waste of water, further more collapsing of the bank. All this shows that great care should be taken of the construction of canal banks. 1.3.5* Infiltration Measurement 1.3 .5.1. Objectives The objectives of the filtration test were to clarify the infiltration loss and permeability in the canals and fields. Two methods were chosen on the site and tests performed on the main, secondary and tertiary canals and fields according to the colour of soils. First method was taken by laboratory of the WRDA. (See Soils and Land Suitability of Bale-Gadula Area Report) Second method was taken to determine the infiltration rate in the irrigation canals assuming of constant flow in the main, secondary and tertiary canals during the whole irrigation period. 1.3*5 *2. Test Equipments 2 concentric doublering infiltrometers with different dia. have been usedj dia of inner cylinder, 30 cm dia. of outer cylinder 70 cm height 50 cm.Installation of flinders For the purpose of measuring infiltration rate digging of I • earth -was done with diameter of 1 m and 40 cm in depth and bed horizontal, and at the cetre the two sylinders were driven A c into to a dpth of 20 - 25 cm. Around the inner Cylinder fine earth was rammed slightly to keep water from channeling out and 2 -3 cm diu. pebbles were spread in thickness of 3 -4 cm to preserve the surface of the soil. After that on the inside of the inner sylinder a ruler or a hook gauge was installed. 1.3 .5 *4 • Procedure Having placed the sylinders we waited for 3 days until full saturation took place in both inner and outer sylinders and began measuring. Some places were impossible to take accurate measurement due to swell or crack of soil and thus suitable sites were chosen for the test. Intake rate was collected per day not per hour, of which period was 30 d£as, daily once at 8:30 am.(2:30 am. by Ethiopian time) As the initial intake rate was high, water filled the sylin- ' ders to a depth of 15^mm and as it went lower, to a depth of 100 mm fixed. During measurement inner water went down slownly and outer water permeated both vertically and horizontally at a faster speed, which necessitated adding water into the outer sylinder so a6 to preserve the same water level as the inner one. In the initial stage water intake increased and decreased soon after a certain period of time narrowingdifference markedly bewteen intakes in inner and outer sylinders. After meaurements from all the places in which tests were carried out paraffin-wax coated samples were collected at the depth of 20 cm and 50 cm and brought to the laboratory of WRDA for physical analysis. Following are the places where infiltration tests were performed^ - Main canal No 1 - Secondary canal of main canal No 1 - Secondary canal of main canal No 1 \ - - Main canal No 2 - Secondary canal of main canal No2 - Secondary canal of main canal No 2 - Main canal No 2 - Main oanal No 2 Chainage 0 + 000 Kubsa village Down Kubsa Sole Metena Sole Metana Alemkerem Dorene Chainage 24 + 150 Brown colour Black Black Black Brown Brown Black Brown- 13 - Results Initial infiltration rate Has very high in every place • This was because, as mentioned, above, the earth is highly porous with serious swelling capacity due to the soil characteristics during dry and wet seasons, and wide cracks made us take long time for the test, which made impossible to collect correctly measured values within a short period of time, i.e, 30 days were needed in every spot. Fixed intake rate is 4 - 8mm per day but it has been proposed to apply to the design the values recorded within 10 - 15 days after beginning of measurement because 10 - 15 dajs after beginning of measurement the infiltration curve becomes gentle as seen in the figure. On top of that there is no whole day flow in the canals but day light irrigation only drying canals. From this point of view infiltration rate of 20 - 25 mm/day has been proposed as suitable •4 •b' ■z BALE GADULA PROJECT Poi™ Figure 1.3.1 Fbiri z. \ ° Po inf 5 I OPoinf 6 GADULA Point 12 NS SYMBOL DESCRIPTION O • INFILTRATION TEST POINT WATER SAMPLE PLACE * ■ 4 / i » PROJECT TITLE DATE SCALE TEAM BALE GADULA IRRIGATION 4/1990 |: 125,000 KOREANu U n d L«< M li I' 'I 11^_LNFILTR ATfON MEASUREMENT I I I ILLAGE T I! HGURE_l.-3JZ_ I I I -o^n l ■ M B II k l l I I l I IINFILTRATION RATE Tabl s' 1.3.1 r Nc. Place Preference Point Infiltration Rate in cm/h Infiltration Rate in m/dav Remark IB I B I Kubsa Nr BM-10 i 0.9 0.4 0.216 0.096 • 2 Selena j Nr BM-22 3.25 1.5 0.78 0.36 * mita • i 1 3 Alem Nr BM-37 Ke rem 2.4 1.0 0.576 0.24 i 4 Doreni Nr BM-47 5.5 3.1 1.32 0.^4 i 1 i N) r j Selena Nr G-15 Mita 2-‘ ■ 0.9 0.504 0.22 1 11 6 Eale | No. 21 + 700 1 1.74 Gadulla 11 1 0.6 1 i 0.42 j 0.14 : 1 1 ' 7 Bale Gadulla 24 + 150 4.13 2.9 0.99 ! 0.69 1 ! 11 i 1 1 i 1 j I - Initial Intake B ■ Basic Intake•— W ^DULA BAI.F Date 21/8/89 I i po^Lab.No. |DEPTH I Location J I - J.L r.i Partic 1 e size nalysis - tOTIFW |-SOIL ... SL O N. , D G.rioC » ^TclABSP- I FiGATWC 37 ■53 ' i •G • s J_____ % clay I % silt s-.n 10- OOX’ 0 0^5 D-O2L5 d POROSITY -W5 1,1 . i ' 1.04 I 1.08 42.61 •2.74 35.0 2.50 < 70 26 -4 i 74 24 ’ 2 1.04 42.0 2.45 73 25 ! 2 1.53 36.0 <2.51 15(4) 15/4/ 36 8’ 70 4.9 76 28 mJ-D.U_20_ -L o L=» Li ■ i P-L= Pl_« 1,27 1.41 1.02 0.68 1.04 1.26 — j ! 29.51 J2.58 32.51 2.46 21.87 2.32 ; 21.04 2.59 30.68 £.56 32.04 £.61 86 12 : 2 74 24 ! 2 85 13 1 2 78 i 16 i 6 1 15 1 2 i 0.62 0.57 0.58 0.62 0.51 0.64 0.56 0.59 0.52 L‘V.X2. density rioistv.re content i-d= :J> o Xj= Prepared by *Table 1-3-3 •./UBA Laboratory SuLim-y Sheet * Date ? 1/8/89 Project _____ BALE GADULA - —UNIFIED Partic 1e. size, jmalysis._ SOIL 1 | Loca.tion ’ 21 20 cm 221 50 cm ^23 20 cm 24 50 cm i I I I I I I I I I 21+700 21+700 24+150 24+150 1.59 1.57 1.04 0.90 O.M.C F---------- 29.60 34.51 23.38 22.66 fin* -1CI 0.61 0.61 0.56 0.64 Liuid Limit 1-l.stic uicit . 1 :.stic ' Inde:; Lhrink.~c:e li-"*it = I'JJ-Xli.llLU?. = Opticivjn = □i'ecific dry density iioistrr zravity44 H+ ni UUll.. | UHilili lli | lIlIU' IU) lull! Ulit i ■ ildUil WUU1 .UUul u U —.ujiI.LI^UuL-; i-i Ux ijiL. 76.2 100 Medium SAND SIEVE N®/SiZE sa**p:e n® depth, pi COBBLE CLASSIFICATION M GRADATION CURVES Plotted j 7 -— ^f^^orLtp^ch. Laboratory i_l -sz-percentage passing -93pr.»roirw;F passing riG»,pr , ,( ✓ ■ : •' ■ i A A a* - HlIlMeihiy ’• |..J. ...urA-*- TUi ^4-tu .......... **■*'• 1^,... 11,1 ■•■‘th-l -■■, i- ) - - - • .ML* :~X»3 UIL pK- - . - 4 ...»«..4 ■ lj»M M ediu
K4i jnd chetnwcai analysis :ak dlH ’ (Mit u< UK □r wdfiH bait of Hl.tf iyteU >u to H> fcare* LaOoruf ory Setfioi r«i M-SS-U 14-•> M/4> p 0 44B MB3 0 I ■ 3 V I V I ft I V I I I I' • I • - ----- » . »? .... 7 Tablo 1-3- 7 ! • ***• ’ • j “ Lab. Serial Nfl 00489/89 Date! 14-8-89 Sender: Medium & Small scale Dam Irrigation project Address: (Korean team) WRDA Nature of Sample -River water Purpose of Analysis - irrigation Origin of Sample - Weiyb River Date and time of collection 31-8-89 Date and time of arrival - 7-8-89 Date of Analysis 7-12/8/89 Remarks WATER RESOURCES DEVELOPMENT AUTHORITY REPORT SHEET Physical and cMawcal an«rv« * e «»>•Temperature, (at the time of col ection): Ap pe a rare ---------------------------------------- Odour:____________________________ Taste:------------------------------------------------- SetHeable solids:------------------------------------------------------ Floating solids:------------------------------------------- -------------- Suspended solids:----------------------------------------------------- Color (true): -------------------------------------------- Color units " (apparent!222Color units Turbidity;-------------------------- 52______________ Fl U Total solids dried at: iQ5°cmg/f Total dissolved solids dried at 105°c-'mg /I Electrical conductivity at 25 r: 79.8 jUTtios/cm PH: ________________________ LU_________________ Carbonate alkalinity as Ca Co^:—tui nig/i* Bicarbonate alkalinity asCaCo^; zk mo/j Hydroxide alkalinity as Ca cpy niJ mg/I I a* Total hardness as Ca Coj-’ CATIONS. ftQ/e H* nhJ 0-45 _______A \ i J KiS ns OH-__________ Cl’ ____ LJ_____ Nat 5.6 K*: 1.7 Lit Ag* _ Ba** - Ca** -------- Mg**Lid Fe** Fe*** Mn** F- n».oG .sb*____ Co-3 _L--------------- Sa — ___ *• 4t Pu - - tfr rnu) _ * Hu * iru-ru. outyi lu. ( I S.lu.u i jj, £ BivCx'Cutai jx ;«>«.>.j jUL C:«Ai wOl Boron_ KA Rate ..X’l U**-v*-<\*r itoxpfM r
• . tear J a'< Feb Mar Apr Muy Jun Jul Auk :i« p Oat Nov 6eo AVo raxe <4M a,,] ,6 H./ / ./.' H,GJ 2-1J J.dJ. '1 *9 J G .1 1 IJ /.♦□ j . I f' tif " »• • >y .n.nj .'MJ • j j' '> ''ItZ/. fI»G J6 .J .’ll ..’4 •7.1 f.lj i J1 .J ‘ t Jt > J t 9 * JO____ l/.IO ia.;< 111.67 16 .0/ \O.J .’II .6 I .71 .66 /l in.J 2 I 1 •')'> > -a 10,1 I 2d . n,j v.s 11.411 1 1 14.16 13 .4 /. "> •■ • •'! > . iJ zzitj__ nun ■'1 ijj X4t2. _ •’J ,n cl-LL •'6 ,411 i Hi'' ±ZlLL L2j!^ U.44 I/,I.' |G ,h
11 ZM' XM/ XI ,4 .■4 x r'lZi * J6 ,66 •’> .06 .'II .11/ .7 ,j •*!> LI r -;.'i JJ^l JIC'I lLul L/XJ l'».< pl l"l L'.IZ !•>,.7’ HI .91 1/.J5 M« f,4l j Jf .VLIUfi, " > '•> 11 i ■>> 1 >'."J JlLiU nxi . f-j"! |JI,.’G p.h 1 ill 10.44 1- ,01 f 1,1 ■ Ld/ >221! ' 2d2 iliU l"j ii J j7’ Jd J6 ,yj "•> .'// / 12d± P’.'J lllCil J/j/V LI ia'/ i / m.44 • /jJ.4. •7 .4 ’ XLdlL Pl»>' lb.7 3 ‘J .904 J6,68f lb..7 7= huridity in S = wind speed km/day nsaine hr in hour l bJ I wwwYears 1965 early MONTHLY EVAPRATION NET IN ROBE Table 2.1.8 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Bsc mid late month 1986 early 22.4 34.8 23.1 22.2 31.5 30.6 26 .4 40.3 40 mid 29.1 31.8 35 28.3 34.6 21.6 28.7 46.2 55.7 late 25.3 29.1 27.5 29.4 47.7 26 39 38.3 78.3 month 76.8 95.7 85.6 79.9 113.8 78.2 94.1 118.8 174 1987 early 55 7 '- .4 51.3 21.9 45.7 28.7 29.5 38.9 30.8 43.1 50.8 46 .6 mid 64 .2 56.9 22.5 30.8 13.7 29.6 32.4 33.6 27 .4 47.6 69.1 36.9 1 ate 64 .2 53.2 47.6 40.1 17 .7 38.6 37.4 38.7 28.6 46 .3 73.9 43.1 11 am th I83.4 180.5 111.4 92.8 77.1 96.5 99.4 111.2 86.8 137 193.8 126.6 1496.4 1988 early 60.7 42-7 49.6 58.2 47 37 .8 20.1 23.1 22.3 35-9 42.5 mid 98.2 4^.3 85.9 25.9 43.3 53 22.4 22.7 28.7 16 .9 45.5 46 .6 late 63.8 60.6 26.6 - 64.3 15 -31.7 -24.4 19.6 28.3 58.1 66.8MONTHLY EVAPORATION NET IN ROBE Table 3.1.8 Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total early 48.3 35.7 66 3 1989 mid 61.5 67.9 58.7 late 67 .4 60.1 18.3 month 177.2 163.7 143.3- 45 - 2.2 CALCULATION OF UNIT IRRIGATION WATER REQUIREMENT Calculation of unit irrigation water requirement is necessary to determine the capacity of canals and structures, and the arrangement and operation of irrigation activities. For those purposes meteorological data on the adjacent areas have been collected and used; air temperature and sunshine duration from Goro Awraja wind speed from Sinnana humidity from Agarfa . Crop Evapotranspiration (ETcrop) has been calculated by Penman method and on its basis unit irrigation water requirement computed. Daily irrig tion duration of 12 hours was deduced and field efficiency turned out to be 85 Water loss in the canal is equivalent to infiltration loss plus evaporation loss according to the size of canal and water quantity© Net unit irrigation water requirement in the field is 1.Ol/s and gross unit irrigation water requirement including water loss in the canal is 1.411, l/s, of which basis is as follows. 2.2.1. Calculation of Evapotranspiration (ETo) Penman Method ETo = c(w,Rn + ( 1 + W ) . (ea - ed)j- 46 - Whe re j ETo = reference crop evapotranspiration in ma/day W = temperature-related weighting factor. Hn = net radiation in equivalent evaioration in r^ra/day f(u)= wind-related function (ea-ed)= difference between the saturation vajour pressure at mean air temper ture ;
(fsT r • i r ti l * r i <** > . r. »■■ — **v Tun* Oct. Nr)V . D«c. L___ , Mb r« t Air ” r*»f >-— - . ., Au< . II.** 3*0. 17. ’* T------ T l* I *1 1*." k- - L1*. a * > 1*. 01 17.”7 17. ™ II?2 18.73 Mr 0 ♦ 41’ tt T ^5 5 $ <1 ' 70. 1 ___ L l ”-2’ 61 . 62.’ 4------- 1 i 4____ 4- 4------- 2 53 r Mb pt r<»trel r»> ttf c •' 7' »» t t- 0 ’ ■ C. 4 < ft t- V, 4 hb ' r» • . iia •♦ U—.. 5. 1 L 5 . 1 R.6 u 66. 8. 7 10.8 Vf Oft f W'- 1 >. 3 ■ >.* k u.* 11.5 Pr- t T 0. 70 0.9- i------ _U ■ 4 4 1 2 0 ** VB 0.42' 1 1 . c * • p T j 1p* 4 'n ' <«r h ? p, 0. 41 /" 4 41<'*Y ** f * K/ >'/ K. 13.1 7.* 7 12. k 1 0.62 7 14. 8. 1 L 12? 0.64 <6? 13? 66.7 6. 3 12.' 0.52 15.’ h 62. 6.5 II.” 0.55 15. 5).3 8.9 ll? 0.77 14.2 u? t 4------U- M»rt» V nr (;pH»d kw. i*s s 210 242 1*8 7 1*0 293. 7 )M.” 328. 1 0.25 216 146.” 111.’ 138? •> • VW 4 It «•»’’ x, Wln<* 0. 25 0.25 0.21 0 ■; 0.2 0.25 0.25 0.25 0.25 0.25 0.5 ______ Wi * I. *01 2.50 _______ I 2.2( | 3.40 4.50 3.80 i/ ______ 2.50 1 1.70 hr , 1.6 0 / i,Calculation of Evapotranspiration Table 2-2- h« 1 Lxpitbblon Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. 1 Nov. Dec. i----------- -- -------------------------------------------------------------------------------------------------------- •a latie 5; z 22.8 22.5 21.6 20.8 20 J 20 20.2 21.3 20.3 J 9.o ; *1.3 2 1.7 1 ......... / 12.7 12.53 13.24 14.62 13.4b 12.2 12.58 14.06 13.4o3 2.15 1 1.62 1 1.50 ■ 3-------- --------------------------------------------------- 1 ca - fcd 10. 1 9.97 8. 3b 6. 18 0 . JU 7.8 7.b2 7.24 7.34 7.45 1 0.18 1 0.2 I* •* t ' * U . 2 7 (1 < ) t ab. 7 0.09 0.85 0.92 0.91 0. 78 1.0b 1 . 32 1. 15 0.85 0.o7 0.57 - 0. o4 1i - ► 1 at. b I---------- ----- - ■ , , 0.26 0. 28 0. 31 0. 32 a 32b 0. 3 1 0. 32c 0.30c 0.32 0.34 0.295 ■■ 0.305 L H— i ‘.ra «-l j !
1 0.4/ U. 35 0. 34 0.44 0.42 0.4 3 o. -o 0.38 0.39 ------------ 0. m8 -»— ■ X- 0 . >4 *. Jab. JI 9 4 5 9.2/ 7 id 6.98 «. 8-> 8.2 1 8.55 9.15 7.75 7.80 9.09 <87 * —i '.t. 10 ■' ■ 1 i 5.9 —' ■■ ■" 14.6 15.4 15.4 15.1 14. / 14.9 15.2 15. J 15 U.2 13.7 JU ■"■'■■■5 Mia • A 1 /.09 0.9b 5. 39 5. 2 3o 0 J)4 0.1/ n.41 0.8m >.8l 5.85 J1 ~ '5 o.S2 7 40 . m. u 14.0 14.5 14. 3 JV a . j a. H»dj - U. >. - U. 14.2 ) 13. 14. 1 14.2 I*. 1 J * 1^ 2 14 10 /77 0. Ibl V. l« J o.i7a 0.1/ 0.1 / 0.18 ‘ 0.18 0.17 . 0.1 7 . 0. 18 ' 0. 18 1 4 • *4 t 0.18 la A r _____ L r1 * 2 - 2 - / i < r t V I I V I I I V I I I I I I t k I I i- 53 - Average F//apot ran^p1 ration Table 2.2.3 No. Crop Feb. M a r. Apr. May June Jul7 1 Maize 2.3 2.82 3.86 5.22 5.55 4.61 2 Barley t/h eat 2.32 4.40 4.32 3.39 Total 4.62 7.22 3.16 3.61 Average 2.31 3.61 4.08 1 4.305 1- 56 - 2.2.3. Calculation of Unit Water Requirement Calculation of unit water requirement has been made on the basis of maximum mean evapotranspiration(4 *30), for simultaneous irrigation for both maize and barley and sorghum will be undergoing. a) Net Unit Water Requirement on the field q FNR " 2’78 = 2.78 ETcrop T = 1.00 l/s ETo Evapotranspiration 4.30 mm : Irrigation period 12 hrs q^P : Maximum Unit Water Requirement on the Field in l/s FKF • Net Unit Water Requirement on the Field . Field t Un;t Water Requirement with Field Efficiency considered n«»U J ha . naticM Qu JM: C if.wr^ance Loss in the 1 . J1. ! . : r r. t . .U 1 ji hr C ana 1 t ; f ,j r • 1 I< <*‘ C 4 * j us '« ' a/wa* t 1«.» I * U L Il • i■Ui ------------------------------------ t Water Requirement 21 ------------- Table 2-2-4 «••»< D i >, Kar &®e* * •• 1 B» -• • j® - rerweatilitv I Evapera- E Length oi Canal kn Loss by infil tration•loss by evaporat ion Sum- of Losses Rate of Loss Unit Water Reqmnt. Final Unit Water reqmt. . T « S *to l * <> >c 5.0 0.028 (■) 0.008 10 0.043 0.0083 0.05125 1.008 (1) 1.411 J.411 1 i to 5. « :* 0.028 0.008 13 0.039 0.0007 0.046 1.016 1.404 — 1.40 'f *** * w > t «: to. ?$ 2.20 0.028 0.008 7 0.017 0.0031 0.0206 1.01 1.382 1.4 1.38 1 o.?o J.90 1 .B0 0.028 0.008 7 0.0125 0.0025 0.015 1.015 1.369 '1.37 f • « • la* • ♦*-* IS* 0. )5 1 . 30 0.60 0.22 0.008 2 0.0124 0.0002 0.0126 1.063 1.349 1.35 fj a r■ *I®V F ej 0.25 0.80 0.30 0.36 0.008 0.8 0.0057 0.00002 0.00576 1.0576 1.269 1.27 » ■ ................ • » to 11 h r ito 14 r rn« i •••< r 1.176 1.20 1.20 K«» u w X In f h« f 1 • lv 4 1.00 1.00 _______ > On the basis of the unit water requirement irdicated in the above table water requirement for a given area has been calculated and by so doing size of irrigation cnals and capacity of structures determined.- 57 - rs b t bottom 4idth of canal 1a) a i wile slope of canal v t 1.2 - Conveyance Loss oy Evaporation in the Canal S • .011 Se 0 e i p&n-evapor ition in *n B i width *>f water surf ice in m 3 i mount evaporated in canal per cm in fo^/a/ka Unit water requirement has been tabulated for different canals in the following taole.f '■Kf* r> f - 59 - 2.3. Formulation of Maximum Drain Discharge in Minor Catchment Areas Formulating drain discharge In the minor catchment aims at determining the capacity of drains and their structures that fit the local conditions of the project area. The formula has been worked out by excess discharge, the difference between the hourly probability rainfall and the hourly infiltration rate measured at 7 points. Hourly probability rainfall; 50mm, 4Qmm, 30mm, 20mm Hourly mean infiltration rate : 22mm/h Using expression of theoretical drain discharge for lOOha. of catchment area as a standard we could calculate the discharge for a given hourly probability rainfall. This calculated dis charge enables to work out the formula of drain discharge. Formula: Q = (10,336 R - 5) 0 F in 1/s R ■ hourly rainfall in mm F - catchment area in ha. 0 - discharge factor Chute area 0.3 - 1.0) moderate area: 0.5 - 0.7 flat area: 0.2 - 0.4 Following are the data for calculation: table 2-3-1.2 2.3.1 Hourly Mean Inf Lit rat un dace Table 2-3-1 Measurment Points 1 > 3 •4 5 0 7 Average — Max.Mia. Average as Max. 9 32.5 24 5i 21 L’.-* -a. 3 28.6 >2 Mln. •4 Li Id H 9 a 29 U.9. 60 - Average infiltrated ami unt for 6 minute* - 2.2mm. 2.3.2. Calculatton of Aiea for 01ff eient I’m t a of Catchment Table 2-3-2 *---------------- < < «♦ t- <■ <• e *•* *c • xT m r*> <* O N • <» *3 f*> m O O *- :J VV o e er < CM - 2.3.5. CalcuLtlo, of n^trlbutior of Hourly k.lnf.ll Totalf Time i Rainfall Intensity Mean ralnfal 1 Intensity Period of t lme Rainfall In a period of time Cumulative Ra 1 n f a 11 0.00 0 0.00 0.0028 11 360 J* o 1 0.0056 1 1 2 0.0112 0.0084 0.014 II 360 o 4 11 )60 3 5 * 0 3 0.0166 II 0.0196 IbO 7 I e» 0.0O5o 0.01 1 3 0.0M4 J 0.024 0.0224 0.0252 H 100 * 2 5 5 0.026 6 0.0224 / 0.0166 11 U.O25Z loo 9 i. O.Ui *0 11 >oo / 41 11 0.014 5 40 o 0.028 o 0.0224 O.OI08 0.01 12 1 it * I■ • r * 1 4* -4
n «. • Z 3.6 4.2 2.2 2.0 2.8 2.2 0.6 9 2.2 6.8 7.2 2.2 5.6 5.4 2.2 3.2 3.6 2.2 1.4 Q 2.2 6.8 2.2 5.0 5.4 2.2 3.2 3.6 2.2 1.4 7 2.2 4.8 5.6 0 o •- . a 3.6 4.2 2.2 2.0 2.8 2.2 0.6 5 2.2 2.8 4.0 2.2 1.8 3.0 2.2 0.8 2.0 2.2 - * 2.2 0.8 2.4 2.2 0.2 1.8 2.2 - 1.2 2.2 - 1 2.2 - 0.8 2.2 - 0.6 2.2 - 0.6 2.2 - J 2.2 2.8 4.0 2.2 — 1.8 3.0 2.2 0.8 2.0 2.2 - 2.3.5. Calculation of Discharge caused by Excess Rainfall using expression cf peak flow. Hourly Rainf alls are suppeSec to be 50. 40. 30. 20 nun. Expression cf peak f low Q 'FlF10 + F 2F9 F 3R8 4 F?r F 5R6 + F6R5 + +F 7F4 * F8R83 9 z * Wl F 1 ••• FJ0 Cat< hn«eArea In different size (ha) RI ... F 10 Rainfall for a- 63 - - Calculation of drainage 1) When the rainfall is 50mm, Q 50 " F2R9 + F3R8 + F4R9 + F5R6 + F6R5 + F7R4 + F8R3 + F8R3 + F9R2 = [6.67 x 0.8 x 10 x 28 + 13.33 + 4.8 + 16.66 x 6.8] x 2= 210.6 x 2 = 421.216 Unit conversion: = -------------------------- 1000 2) When the rainfall is 40mm, 421.216 !22^-°'- x 100 x 3600 - 0.0117 m3/s % = F2R9 + (F3R8 + F4R7 + F5R6 + F6R5 + F7R4 + W +F R 94 =(6.67 + 0.2 + 10 x 1.8 + 13.33 x 3.6 + 16.66 x 5.0) x 2 z ---------------------------------------- -— = 3600 = 0.00836788 m3/s 3) When it is 30mm, Q 30 = F4R8 + F4R7 + F5R6 + F6R5 + F9R4 + F8R3 = (10 x 08 + 13.33 x 2.0 + 16.66 x 3.20) x 2 x ----------------------------------- - ----------- 3,600 = 0.00488733 m3/s 4) When it is 20mm, Q = f R + f r f r + f r 20 4 7 5 6 + 0 5 7 4 3 = (13.33 X 0.6 + 16.66 x 1.4) x 2 x —---------------------- ----- = 0.00174 a /s 3600 2.3.6. General Expressionshave been confirmed by the following equations X = A + BY n nEYJl - Y.SX 22 n Y - (IY) A - 5 x - B.S-Y- 64 - n V X (Sy ) a yx xy- £* 1 20 1.7A A 00 3A.8 •> a. 30 A. 88 <>00 1A6.A 3 A0 8.36 1600 33a. A A 50 11.7 2500 585 S.Y 1A0 ZX 26.68 IY1 5A00 ]<>600 XYX 1100.6 3735.2 F- ^J^0.6 - 3-35.2 wO 33H A x 5400 - 19600 A • 26.66 - Q3336 x i*C • - 5.00 X - A < BY - BY • A % - BF - A - 0.3336 F - 5 The above expression! <0.3 3 36F result Ir as foll ows: i e < 1/s F • hour.v rainfall In aa f • catchaant area In ha. F • dlaruarpe lartor atc»| area J-at area 0.6 < Q area 0.5 -- 0 T 0.2 ■ - 0.4Figure 2-3-1 -65 - A 60 Il * * £(J 1 - ... I_ -1 — Z.£> General Expression tor Drainage Q = 0 3336R 5 * F R: Rainfall per hour in F Catchment area in e Discharge factor Steep area t 0-8 — 1-0) Moderate area 10-5 ~ 07) Flat area ( Q.2 —04) i- 66 - 2.4. FORMULATION OF FLOOD FLOW Formulating flood flow aims at determining capacity of the diversion weir on the river that fit the specific conditions of the project area, thue ensuring euceesful design work. The formula ie barec on the discharge data collected from Agarfa, Tenbel and Rubra that belong to catchment, and daily maximum precipitation obtained from Agarfa. We could work out the formula using the graph of unit rainfall (mainly of rainy season) and discarge per unit catchment area. Re commendec fcnnula: 4 . 5.7-iC"6 r F* '6 t m^/e F • daily rainfall F • catchment area • diachargt factor in ir. t-teej area •oOtrata toret. fiat area i 0,6 i - 1.0 - 0,7 i 0,2 - 0,4 tai- 67- / Da fa for Graph of Fl o od Table 2-4-1 Agar fa No. > Year 6 Month Daily Max. Painfall D i scharge Q m /s 3 O/ F=71‘3! ■ Remarks X 1 1987 Jan - Is 0.237 0.00033 Agarfa catch.F*719km: 2 Feb 20.2 0.505 0.9007 3 Mar. 12.8 3.91 0.0054 . ;r.ed figures used in graph 4 Apr. 23.1 | 38.86 |0.054 5 May 14.9 164.2 0.223 1 6 Jun. 36.5 >. *5 | 0.014 1 7 Jul. 14.9 0.00087 8 Aug. 9.7 6.53 0.00915 L 9 Sep. 19.8 L 9.46 | 0.013 10 Oct. 30.4 > || 0.0155 ll Nov . - 92 0.3068 12 Dec . 28.4 0.829 0.00115 13 ma Jan. - 0. 2 r 0.00032S 14 Feb. 15.3 0.i23 0.0008’ 15 Mar . 13.’ 0.823 1 0.00114 16 Apr - ----------- —--------------------- .—, 30 I ) L | 0.014• 6B a a a a ■ ■ ■ ■ i i i i l I I I I I I I-tfi- Discharge Graph per Urn Agar fa Catchment Area FIGURE 2-4-1» DISCHARGE AGARFA GRAPH PER UNIT RAINFALL^" figure 2.4.2 TENBEL ■ KUBSA Bl k k k- 71 - Formulation of discharge per km in the Agarfa Catchment of 719 km . Index and constant numbers for precipitation in graph 2-4-1 are; 2 2 Index X” lg 100 - lg 1 = 1.544 lg 82 - lg 416 constant a = 1 “6716 = 0 2/ -* f (R) 0 (aR)Z = <0.2 x R)1'54 m 1/s f (R) = 0.000111 ’ 1 54 in m3/s Formulation of discharge per unit rainfall in catchment areas; Agarfa, Tenbel and Kubsa. index and constant numbers for precipitation in graph 2-4-2 are; index X = lg 500 - lg I = lg62 - lg39 1.67 constant a = 1___________________ - 0.0C29 390 f(F) » (0.00 ?)1'53 = 0.00005133?' =3 unit conversion fl?1 functions generalized; f (RF ) » 5.’ kQ 6 . 0O5133F1'69 , 1.34 l.M. in u’ a p which result in Q * 5.7.10 ° R* '' p‘ -4 J in m’/s- 72 - 2. 5 Water Gate & Lifting Devices The equipment used in the irrigation projects now under construction by the WRDA are modified to be introduced into our design for the water gates and lifting devices. ♦ Water gates vill be installed at intake, off-take and escape structures These are the water gates and lifting devices: Water Gate Table 2-5-1 Gate size 350x400 450x500 550x530 650x900 850x900 1050x1030 1300x1500 Channel Size e « 300 300x400 f ' 400 400x500 t = 500 0 = 600 0 =800 1000x1000 1250x1500 Lift Capac-ty Table 2-5-2 Lefting capacity (T) 0.1 0.2 0.5 1.0 D:a,of Spindle 23 25 30 34 Aft shown above, the wafer gater equipment 6 have been proposed to suit capacity Other equipments out of e'cord with the need. Any wafer gate t designed to be operated manually.2. 6 Plain and reinforced concrete pipes plain and reinforced concrete pipes have been chosen to use in the design of cross-structures, off-take and escape structures in the irrigation canal. They are equivalent with the ones now being used in the projects undertaken by the WRDA. Considering the load acting on the pipe, a load acting simultaneously both from interior and exterior, a , load acting differently according to conditions etc, plain or reinforced concrete conditionshave been chosen to suit the specific situation of the site. Pipes either with additional reinforcement or without are used in the design for different loads acting on the pipes. Following are the dimensions of plain or reinforced concrete pipes; (table 2-6-1 Plain Concrete Pipe Table 2-6-1 Reinforced Concrete Pipe Dia. Length n Thickness ii Dia. ii ii Length Thickness 20 100 il ;i 3i - - - ii n 30 100 3.5 30 II i :i i ii 100 4.45 40 100 4 40 1 ■I 100 4.76 50 100 ll 4.5 - u - - 60 100 5 60 II 1 II II II 100 6.35 80 100 7 80 1 100 7.3 1 100 100 8 100 1 100 8.89- 74 - 3. Design of Irrigation Canals & Drain. 3.1. Irrigation Canals Irrigation canals consist of main canal, secondary canal, tertiary canal, quarternary canal and field canal. 3.1.1. Main Canal Main canal is again devided into main canal No.l and main canal No.2 according to the topographic situation. What was taken account of particularly in scheduling irrigation canals^to facilitate smoth supply of water and construction of structures with less expense. Main canal Nc.l starts flowing from the Gadula reservoir through the outlet pipe into the Weyib River, topography being considered, upto 50m downstream from which water is taker up,This canal has a capacity of discharging f .35 r- s into the irrigable area and commands 538 ha. in kubsa Quarter and on the other hand supplies water into the •nair canal . 2 . * ,K end of * •»< main < anal No.l the river Asendab takes water f 'x ? snme .. \ Rm downstream^at which there x r live; t diver? or wt . r , and continues into the main ■ «-nal .« ? us »< shorten the length of canals number of structures and to add the tl«a( of t lie canal. :.cad of w«ttr is proposed in the main * *• e *1 ♦ . I . . : < y produ< e 3 700 km max . of «= l i 14 ; < 4 ! Ju ! ut uj <71* nr.r. ctstl Bo. < :e car com and 4,000bs of imftL* ♦ *we. the uain car.als it »u cur priBclfle te of drop structure rather ttar ami ctMl, the e ir iMftfc flewiM 4 * t. m* * **♦ 1
1*
00 0* >00- 0*R>0 MW- 1*0 SO 1*0*0- 1*6*0 507.6 ri •i 5 RO 0.827 it tt 0.834 0.6 0.50 0.4 1.0 1.0 0.8 0.038 lined ii it ii ii H ii ii 0.0288 n i_-------------------------------------------------4 ti ii it ii If ii ii 0.017 ii 0.773 0.773 1.00 0.50 0.4 1.0 1.0 0.8 0.0021 earth • • »» ii 0.834 0.6 0.50 0.4 1.0 1.0 0.8 0.025 lined 1*650- 1*800 n ii ii ti it ii 11 11 ii 0.033 ii •« 1*800- 2*250 u it ii ii ti ii 11 11 ii 0.0284 ii •« 2*250- 2*400 529 0.757 ti ii it ii II If ii 0.0196 ii 2*400- 2*600 it ii ii ii ii it 11 11 ii 0.0165 ii fl 2*600- 2*850 n H ii ti ii ii 11 11 ii 0.0288 ii ft 2*850- 3+200 311 0.482 0.528 0.4 0.45 0.4 1.0 1.0 0.6 0.0143 ii 11 3*200- 3*450 ’sff ii ii ii II ii it 11 It it 0.0226 ii ft 3+450- 3*800 188 0.275 ii II ii ii 11 If it 0.0246 it 3*800 -4*050 ii ii ii 11 ii ii 11 11 it 0.0217 it -CROSS*SECTION OF SECONDARY CANAL-1 MC .No 2 T bl 3.1.3• J |: aflit of w ay. al Reach Irrigable Area Design W. Qty Discharge B H a m ml b acm e . i Remarks |SC - 1 Uc.No 2 Q*000- 0<220 403 0.563 0.60 0.6 0.45 0.4 1.0 1.0 0.6 0.0172 Lined Canal 1 tl 0*220- 04300 373 0.551 II II II II II II II 0.0375 11 II 0*300- 0*740 II II II II II II It II II 0.012 11 II 0*740- 0*900 330.5 0.482 0.541 0.40 0.40 0.40 1.0 1.0 0.6 0.0207 11 II 0*900- 1*400 II II II II It It II II It 0.0288 11 II 1*400- 1*550 260 0.413 II II II II II II II 0.0203 11 II 1+550 2+320 II II 0.454 0.60 0.50 0.40 1.0 1.0 0.6 0.005 Earth Canal II 2+320-2+600 2+600-3+400 II (61.7) II 0.137 0.541 0.40 0.4 0.40 1.0 1.0 0.6 0.01955 Lined II (36.1) II 0.274 0.40 0.40 0.30 0.75 0.75 0.60 0.01 Earth II 3+800- 4 MIO (10.5) O.O69 If II II II II II II II 11 II * .9 | • L*. * £ s 0 1STRUCTURES SUMMARY bl TA ad W XeC 3.1.4 J . A . Type of Nan^\^tn,ct' of \»re Canal i------------ --------- Intake GAte Cu1 vert Drop off take off take wi th pipe Head Regulator Chute Drop Open Channel Outlet Gate Inlet Structure Road Toe Drain Works Total Main Canal No.1 1 3 1 1 23 Main CAnal No.2 1 23 1 30 1 1 3 15 15 277 1 Sub-total 2 26 1 7 187 206 2 30 1 1 I 3 15 15 300 1 Scd. Canal 1 Main Cana 1 No. 1 6 12 1 18 I Scd. Canal 1 Main Canal 2 7 10 1 17 1 Sub-total 1 3 22 • ' 35 \ Total 2 39 204 2 52 1 1 1 3 15 15 1 335 1Main canal No.1 ORGANIZATION OF STRUCTURES Table 3.1.5 Location No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Inlet Outlet Structure Types Adooted Remarks 1 Intake Gate 1 0 4 000 4500 6.35 0.15 1.25x3 i 1940.30 1940.30 water,sur race dirr separated arenes. - 7-------------------------- 7 2 Drop - 1 2 4- 240 ii ii 1.60 2.50 1939.56 1937.96 Tvne 1 3 Drop-cum-culvert 2 4- 380 n ii 1.60 0.8x3 10.00 1934.91 1936.31 •• 4 Drop 2 2 4- 480 ii ii 1.60 2.50 1936.28 1934.68 It 1 Drop 3 24-600 4500 6.35 1.60 2.50 1934.64 1933.04 II ! 6 "4 24800 ii ii 1.60 2.50 1932.97 1931.37 II 7 "5 24960 ii ii 1.60 2.50 1931.32 1929.72 II 8 ” 6 3 4 040 ii ii 1.60 2.50 1929.70 1928.10 II 9 "7 3 4 160 ii ii 1.60 2.50 1928.06 1926.46 II 10 ” 8 3 4 320 ii ii 1.60 2.50 1926.41 1924.81 II 11 “9 3 4 400 it ii I .60 2.50 1924.77 1923.17 II 1 12 “ 10 3 4 440 ii ii 1.60 2.50 1923.16 1921.56 II 13 1 Drop cun-culvert 7 3 4 470 ii 4.58 0.8x3 66.00 1921.55 1916.97 separated ~T chute dr£ 14 Offtake 1 34546 538. 1 0.774 0.6x1 7.00 1916.95 1916.95 ii 15 Drop 11 34690 4 500 6.350 1.60 2.50 1916.95 1915.35 type If*t j •4 III '«< * 1 ____4 —-d -4 •k • -—-4 ' k ( •’ ij - 1 ft • 9* £ — 1 p« I •» k 1 « De » *■ 1 • P t- J • t £ u f I i »*■>5 *• C I w*4 £ r 9 C < « •* f" o • < ir *•* »r ft - •• Rn w ft. c r r ?* • -i ••> t 1 - • ■ --* c L—4 ______1----- 41 --— d —J A d *5 1 H * —* «* —% «- ♦-- r *• C »— r- R w e ip 4 r • « • •H < - « r*w*V < — i —14 — r r» ! i rs ~u —1 ** -4 I *% i—- 4—- i A 4 4 4 W V 4P ____ 4 4 C L 4 4 4 4 4 c F e- . 5□bought: on of snvcr^ts .AH*t ; UI Irt1 getie ini r" -------- ’ Q I 1 D L . »±SAe-i32 Inlet Jut let Structure UlOlT teaerfte e e kJ 12 — S* M III S* «•(>( - ” ' x l tv 5<3 1A /” L m * 5 — M 1• • fl F >M4 . t ) * K 5M F* ><♦ — •C r-------------- - Uu .,4 Oft ..*♦-* *■ 1 • — *>uv * ‘ .11 - <»1>I • t M 1 *
’0 0 <0 1 4 JU I >4 41 F ■ F 1 ll 4 i ’aa BJ -------- f ■y f ► ........ rpr *' 4 • ffW tu JM %pu I IQ a> ’<3 J'k F^pu ■5 -T f *■ tw IQ r r----------- I Q 1 JI 1 Q 1 4 I >1 <• • ♦ • 4 1 -| *1 ~1 5 V n t t * T tM M • i •> t F— F - k J U IM 1 JU I Q » U| I Ql ’0 F ~F — Fvpu f— r i jif v ■ T----------- tvpu 1 u •al* » ► ‘ PHI ) -Y H • • I 1! 4 • > i J ♦ • I FrF r ■ r u 4 ♦ JU l ’Ql < 1 M| ~T F— I r — tvpe > r t\pu i • » l *»t | L 1‘I T'T - rTr Y" • Mi • .'i •<. F» w 1 tu 4Q brr 77 IQ I ’W ’0 r M « • v > k J — ISpu V • r tw b t r L ___ F ai F------ 1.2* JI >1 *WCANTZATTON OF STRUCTURE.' w*ff CF t tt- rrr< ------------- ■ 1 -^r a 11 on 4L------------------ Ttt igiM* Are* Q H B D L Location Structure Inlet Outlet Types Adopted Remarks / r —4 Tw 71 ---- —- - ---------------- —4 7*/.nn --------- --------- 3.331 . . A. 700 1 .60 2.20 1757.95 1756.35 Type 2 M ------------ 4 ’ n ■’ 6 • in 7*500 40 0.193 1 .60 Type 3 -lid brr’p 7 9 7*520 3.331 4.700 1 .60 2.20 1756.29 1754.69 Type 2 V —Li ■>n --------------- —---------- -4 7*660 ri II 1 .60 2.20 1754.62 1753.02 ii Z ------ J >1 — ■ ---- --------------- -- 7*760 II If 1 .60 2.20 1752.97 1751.37 ii It. -------------j 3? ----------------------------- ?*8ao II II 1 .60 2.20 1751.33 1749.73 it ---------- U T*-^t • rnlvr?! t— ■■ ■
2£.. Type 4 145 ii 101 151800 ii ii 1.60 1.50 626.70 625.10 | 1ORGANIZATION OF STRUCTURES No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Location Inlet Outlet Structure Types Adopted Remarks 146 Drop cum culvert 1( 15+940 1.174 1 .657 1.60 0.8 8.00 1625.03 1623.43 Type 4 147 Off fake with pipet >16+040 114 0.206 0.4 3.00 1623.40 1623.40 Type 7 148 Drop 102 16+-060 1.174 1.657 1.60 1.50 1623.37 1621.77 Type 4 149 Culvert 16+540 •1 it 0.15 2.22 0.8x2 600 1621.53 1621.38 Type 6 ISO Drop 103 17+000 II ii 1.45 1621.15 1619.70 Type 7 1S1 Culvert 12 17+140 »» ii 0.15 0.8x2 600 1619.63 1619.48 Type 6 152 " 13 17+750 'll ii 0.15 0.8x2 600 1619.18 1619.03 Type 6 - 153 Off take with pipe 1 7 + 760 56 0.1377 0.3 300 1619.03 Type 9 154 Drop 104 17+800 1.174 1.657 1.45 1619.00 1617.55 Type 7 155 ” 105 17+880 H ii 1.45 1617.51 1616.06 Type 7 156 ” 106 17+960 m ii 1.60 1.50 1616.02 1614.42 Type 4 157 ” 107 18+060 it ii 1.60 1.50 1614.38 1612.78 it Drain 2 158 ” 108 18+120 ii H 1.60 1.50 1612.74 1611.14 ii 150 ” 10Q 18+200 it ii 1.60 1.50 1611.10 1609.50 it 1 160 " 110 18+260 it ii 1.60 1.50 1609.47 1607.87 •i 1 161 1 ” 111 18+300 ii it 1.60 1.50 1607.85 1606.25 irORGANIZATION OF STRUCTURES No. | NAME OF STRUCTURES Location Irrigable Area Q H B D L Locatic Inlet m Outlet Structure Types Adooted Remarks 162 1 Drop cum culvertlA 18+ 345 1.174 1.657 1.60 0.8 i.00 1606.23 L604.63 Type 8 Drain 9 — 163 Off take with pipe 18)18+ 355 91.6 0.137 0.3 3.00 L604.63 Tvpe 8 164 Drop 112 184- 380 1.174 1.657 1.60 1.50 1604.61 603.01 Tvpe 4 165 " 113 184- 440 ii . it 1.60 1.50 1602.98 1601.38 n 166 " 114 184- 500 ii ii 1.60 1.50 1601.35 1599.75 99 167 " 115 184- 560 ii ii 1.60 1.50 1599.72 1598.12 99 168 " 116 184- 640 ii ii 1.60 .1.50 1598.08 1596.48 It - 169 “ 117 184- 720 ii ii 1.60 1.50 1596.44 1594.84 * 170 Drain 10 " 118 184- 800 ii ii 1.60 1.50 1594.80 1593.20 * 171 ” 119 18+ 880 ii ii 1.60 1.50 172 1593.16 Drop cuid culvertl5 1591.56 h 18 + 940 ii ii 1.60 173 Drop 120 0.8 8.00 1591.53 19 + 000 1539.93 Type 4 ii ii 1.60 1.50 1589.90 1588.30 it 174 121 19 + 060 ii ii 1.60 o 1588.27 1586.67 — 1 / j 176 177 ii 122 123 ”____________ 124 19 + 140 19 + 220 19 + 28q ii ii ii it ii ii 1.60 1.60 1.60 // // 1586.63 1584.99 [1583.36 1585.03 [1583.39 1581.96 ii ii —I-------------- Drain -1\ 1 Type 7 \U. xl'iJViiK.ORGANIZATION OF STRUCTURES No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Location Inlet Outlet Structure Types Adopted Remarks 178 Drop 125 19+340 1.174 1.657 1.60 1.50 1581.93 1580.33 Type 4 179 2 126 19+420 ii ii 1 . 60 i sn 1580.29 1578.69 ii Drain 12 180 127 19+520 ii ii 145 1578.64 1577.19 Type 7 181 Out let 3 19+550 1.014 1.60 0.80 3.00 1577.18 Separated 182 Off take with pipel 9 19+560 32.3 0.0688 0.3 3.00 1577.17 Type 8 183 Drop 128 19+580 1.174 1,657 145 1577.16 1575.71 ”7 184 it 129 19+640 'n ii 1.60 .1.50 1575.68 1574.08 "4 - 185 ii 130 19+700 ii ii 1.60 1.50 1574.05 1572.45 ii 186 ii 131 19+800 it ii 1.60 1.50 1572.40 1570.80 • it Drain 13 187 ii 132 19+920 it ii 1.60 1.50 1570.74 1569.14 ii 188 ii 133 20+000 it ii 1.60 1.50 1569.10 1567.50 ii 189 ti 134 20+060 it ii 1.60 1.50 1567.47 1565.87 ii 190 it 135 20+140 ii ti 1.60 1.50 1565.83 1564.23 it 191 Off take with pipe; 0)20+155 273 0.413 0.60 2500 1564.22 1563.92 Separated 192 Drop 136 20+260 1.174 1.657 1.60 1.50 1564.17 1562.57 Type 4 Drain 14 1ORGANIZATION OF No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Location Inlet Outlet Structure Types Adopted Remarks 193 Drop 137 20+400 1.174 1.657 1.60 1.50 1562.50 L560.90 Type 4 194 fl 138 20+700 1.174 1.657 1.45 1560.75 L559.30 Type 7 J )rain 15 195 Culvert 16 20+760 755 1.065 0.15 0.8x2 600 1559.27 L559.12 Type 6 196 Off take with pipe 21) 20+J 70 42 0,0688 0.3 3.00 1559.12 L559.12 Type " 197 Drop 139 20+800 755 1.065 1.60 1.30 1559.10 1557.50 Type 5 198 Drop 140 20+880 it ii 1.60 1.30 1557.46 1555.86 */ 199 n 141 20+960 • ii ii 1.60 1.30 1555.82 1554.22 n - 200 it 142 21+060 it it 1.60 1.30 1554.17 1552.57 // 201 it 143. 21+140 ii ti 1.60 1.30 1552.53 1550.93 // 202 ii 144 21+200 ii it 1.60 1.30 1550.90 1549.30 // Drain 16 203 ii 145 21+340 ii ti 1.60 1.30 1549.23 1547.63 // 204 ii 146 21+460 ii ii 1.60 1.30 1547.57 1545.97 H 205 it 147 21+580 ii ii 1.60 1.30 1545.91 1544.31 h 206 ii 148 21+680 ii it 1.60 1.30 1544.26 1542.66 n 207 it 149 21+800 ii ii 1.60 1.30 1542.60 1541.00 n - '9organization of structures No. NAMF OF STRUCTURES I.or At ion Irrigable Area 0 H B D L Locat ion Tn Let Outlet Structure Types Adopted Remarks 20R Prop cum culvert 17 214060 7SS 1 .065 1 .60 0.6 8.00 1540.92 1539.32 Type 4 Drain 17 200 1 Off take with pipe. 2 21*070 3R.S 0,0688 it 0.3 3.00 1539.32 1538.32 210 Prop 1 SO 224ORO 7SS 1 .065 1 .60 1.30 1539.26 1537.66 "5 211 ” 1 si 224R2O •f 1 .60 1.30 1537.59 1535.99 if 212 ” 152 22* 140 f* it 1 .60 1 . 30 1535.93 1534.33 it 211 Prop rum culvert1R 224S60 •9 ii 1 .60 0.6 8.00 1534.22 1532.62 "4 214 jOff take vith pipe; 1 224S70 3R.0 (\06RR 0.3 3.00 1532.62 1532.62 if - 215 Prop 1S7 224660 1 .065 1 .60 1 . 30 1532.57 1530.92 "5 216 ” ISA 224760 - V 1 it 1 .60 1 . 30 1530.92 1529.32 ■ it 21" Prep rum culvert 1^ 22*010 • • it 1 .60 0.6 8.00 1529.24 1527.64 "4 J 2 1 R j Of f taVr with pi pr 2*) 22*021 52. 1 0.1377 0.3 3.00 1527.62 1527.62 "9 , 210 p o j«,«, rr 21*0.20 360 0.521 1 .60 1 .00 1527.56 1525.96 "6 . 220 x 2 2341R0 •• I .60 I .00 1525.8^1524.26 if 721 1U 234260 .. ii 1 .60 1 .00 I 524.2cil 522.60 T if 158 234340 II ii 1.60 I .00 ■ 1522.5dlI 520.95 if 1ORGANIZATION OF STRUCTURES No. NAME OF STRUCTURES Location Irrigable Area 0 II n 0 L Location Structure Tn 1 or Out let Types Adopted Remarks 238 Drop 170 254000 169 0.521 1 .60 1 .00 I 502.24 1500.64 Type 6 239 ” 171 25♦080 h ii 1 .60 1 . 00 1300.39 1498.99 ft 240 " 172 254180 ii ii 1 . 60 1 .00 1698.92 1697.32 it 241 " 173 .’51260 ii H 1.60 1 .00 1492.27 1695.6/ ii 242 " 174 254360 H H 1.60 1 .00 1695.61 1494.01 ri 24 3 Drop cun culvert 21 25+450 ii ii 1 .60 8.00 1693.95 1492. 15 T'/p- 5 244 Off take with pipe 28 ) 25+450 41 0.068* 0.3 6.00 1692.34 Type 6 245 ” 29 254-460 29.8 0.0681 3.00 1692.36 Typ«> 6 240 Drop 175 254-480 369 0.521 1.60 1 .00 1492.32 1690.72 Type 6 247 ” 176 254560 ii ii 1.60 1 .00 1690.67 1489.07 it 24S ” 177 254620 »l ii 1 .60 1 .00 4889.0 1 1487.43! ,, 249 ” 178 254680 II ii 1 .60 1 .00 1 . 19 1485. 79^ it 250 ” 179 254740 II ii 1.60 1 .00 1683.83 1484.23, •I 251 ” ISO 25+840 II H 1.60 1 .00 1484.08 1482 48 ii 1 252 " 181 24+920 II H 1.60 1 .00 1682.41; 1480.83, •f 253 " 1S2 25+980 II ii 1 .45 1480.79 1479.34, Type * 1 D ^0ORGANIZATION OF STRUCTURES No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Locat ion Inlet Outlet Structure Types Adopted H emar xs 223 Drop 159 23+500 369 0.521 1.60 1.00 1520.84 1519.24 Tvpe o 224 " 160 23+640 ii ii 1.45 1519.15 1517.70 '■ 8 225 Culvert 20 23+950 ii ii 0.15 0.8 600 1517.50 1517.35 ••1 — 226 Off take with pipe 25 23+960 42.9 0.0688 0.3 300 r■ 1517.35 1517.35 ” 11 227 Drop 161 24+020 369 0.521 1.60 1.00 1517.30 1515.70 "1 "0 228 Off take with pipe 26 24+090 48.2 0.0688 0.3 600 1515.04 1515.5-4 r. — 229 Drop 162 24+140 369 0.521 1.60 1.00 1515.62 15U.02 '• 0 230 ” 163 24+300 ii ii 1.60 1.00 1513.91 11 1512.31 231 ” 164 24+420 ii ■■ 1.60 1.00 1512.23 1510.o 3 II 232 " 165 24+540 II ii 1.60 1.00 1510.55 1508.95 II 233 Off take with pipe? 1 24+570 35.4 0D688 0.3 3,00 1508.92 1508.92 ” 11 234 Drop 166 24+640 369 0.521 1.60 1.00 1508.88 1507.28 •' 0 235 " 167 24+720 ii 0.521 1.60 1.00 1508.88 1505.63 II 236 ” 168 24+800 ii ii 1.60 1.00 1507.23 1503.98 II 237 " 169 24+900 ii ii 1.60 1.00 1503.91 1502.31 IIORGANIZATION OF STRUCTURES No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Location Inlet Outlet Structure Types Adooted Remarks i 254 Culvert 22 26+050 369 0.521 0.15 0.8 600 1479.29 1479.14 Type 7 Off take with pipi 30) 26+060 0.0688 42.5 255 0.3 3.00 1479.13 ii 256 Drop 183 26+080 369 0.521 1.60 1.00 1479.10 1477.50 Type 6 257 “ 184 26+200 H ii 1.60 1.00 1477.44 1475.84 Type 6 258 " 185 26+320 If ii 1.60 1.00 1475.77 1474.17 ii 259 " 186 26+460 II ii 1.60 1.00 1474.OS 1472.47 ii 260 “ 187 26+580 II ii 1.45 1478.39 1470.94 it 261 Culvert 2 3 261650 II ii 0.15 0.8 600 1470.S9 1470.74 Type 7 262 Regulator 26+660 (TJ 25.6------------ (K ) 41.5 n.0fiR8 0.0688 1470.74 • 1< Secondary canal l.main canal 1 ORGANIZATION OF STRUCTURES z » No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Location Inlet Outlet Structure Types Adopted Remarks Off take 1 Culvert 1 04-100 597.6 0.827 0.50 0.80 5.0 1913.15 1912.65 Off take 1 0.30 3.0 1912.65 i Culvert 2 04-900 580 0.773 0.44 0.80 5.0 1897.76 1897.32 Off take with pip ■ 2) " 0.30 3.0 1897.32 "3 14-0.50 0.30 3.0 1997.00 "4 n 0.30 3.0 1997.00 - Culvert 3 24-250 529 0.757 0.45 0.80 5.0 1864.0C 1863.55 Off take with pip » S) " 0.30 3.0 1863.5' • ”6 II 0.30 3.0 1863.5' Culvert h 24850 311 0.482 0.40 0.60 5.0 1850.1C 1849.7C Off take with pip k————. > i« 0.30 3.0 1849.7( 8 ii 0.30 5/0 1849.7( Culvert 5 34-450 188 0.275 0.40 0.60 5.0 1838.8( 1838.4C Off take with pip e ) " . ' 1838.40 ro)" • 1838.Art Culvert 6 44-0.40 77 • 0.134 0.40 pipe tl 12 it ii 0.40 5.0 1824.60 1824.20 1824.00 •f • 1824.00ORGANIZATION OF STRUCTURES Secondary Canal 1 Main Canal 2 Table 3.1.5 No. NAME OF STRUCTURES Location Irrigable Area Q H B D L Locat Inlet ion Outlet Structure Types AdoDted Remarks Off-take 1 0 + 000 403 0.563 1672.78 1 Culvert 1 0 + 200 373 0.563 0.40 0.60 5.0 1669.34 1668.94 p------------- Off-take with pi^e 1 0+200 0.30 5.0 Culvert 2 0 + 800 330.5 0.482 0.40 0.60 5.0 1659.08 1658.68 Off-take with pipe ------------ ----- ----------- CO. 2 0+800 0.30 3.0 1658.68 \ Off-take with p|j>^ 3 0+800 0.30 3.0 1658.68 J Culvert 3 1 + 400 260 0.413 0.40 0.60 5.0 1642.20 1641.80 Off-cake with pipe (1J 1 1 + 400 0.30 3.0 1641.80 J Off-take with pipe j 1+850 0.30 3.0 1637.26 • Culvert 4 2 + 600 87.3 0.413 0.40 0.60 5.0 1629.64 1629.24 Off-take with pipe ft) , 2 + 600 0.30 3.0 1629.24 > ) Culvert 5 3 + 200 61.7 0.137 0.40 0.40 5.0 1617.51 1617.11 Off-take with pipe7 } 3 + 200 0.30 3.0 1617.11 Julvert 6 3 + 800 36.1 0.137 0.40 0.40 5.0 1609.20 1608.80 ( Iff-take with pipe8 3 + 800 0.30 3.0 1608.80 ________ r 7 1____ L Culvert 7 /ll-Liiku With lllpi:.. 1 ? ♦ »8l 1 u. 5 0.06"9" 0.40+ n TH r
33 - 8 x C.2 x 181.5 « 2/8 1/s - 0.21.8 m3/s drair. catchment area F IE:.5 ha hourly rainfall for .OX probability F • 33mr. discharge facto? f : C . 2 drainage water ti*a* ought tc Lx re acted through escape; 0*0. -» (. * 1.89* C.218 -2.11 m.s/s 3.2.2. check • up of ae>< «p« capacity c « wc /ST » 2.95 x 3t. 3 /C St > t. 0009 - . . n 5 / s / Whe i t Sect ion 'ferea b ( 2 9X hydraulic radio* i - C. velocity coefficient ( - jrDeigned water quantity Q hence ok. There are recommended 9 pcs of drops, 3 pcs of drain culverts and 3 pcs of inlets. (Ref:Table 3.2.1.) Drop structure Type 4 in the sain canal has been adopted here, and drain culvert and inlet have been given separately.Escpe channel ( 1-2,1000m) NAME OF STRUCTURES ' ~ 7\ ; Out let 2 . n--------------- Main canal No.2 ORGANIZATION OF STRUCTURES Table 3.2.1 No. Location IrriRable Area Q H B' D L Locat Inlet ion Outlet Structure Types Adopted 3 Remarks 0+000 210 1.89 1733.28 Drop structure 1 0+050 2.11 1.60 1735.25 n h 2 1733.65 0+150 2.1 1 1.60 1733.58 1731.98 »• ” 3 0+250 2.11 1 .60 1731.91 1730.31 Inlet structure 1 0+290 65.5 0.058 Drain culvert 1 0+300 2.11 0.25 1.00x2 5.00 1730.27 1730.02 Drop structure 4 0+350 2.11 1.60 1729.99 1728.39 ” 5 0 + 500 2.11 1.60 1728.28 1726.68 Inlet structure 2 0+890 113.5 0.1445 Drain culvert 2 0+900 2.11 1.00x2 5.00 1726.40 1726.15 Drop structure 6 0+950 2.11 1.60 1726.12 1724.52 ” ” 7 1+050 2.11 1.60 1724.44 1722.84 — - — ■ - —■ Inlet structure 1 — -------- Drain culvert 3 1+490 181.5 0.218 1 + 500 2.11 1.00x2 5.00 1722.52 1722.27 Drop structure 8 1+600 2.11 1.60 1722.20 1720.60 --------- ”-----------” Q 1+650 2.11 1.60 1720.57 1718.97- 105 - 4.DESIGN OF IRRIGATION AND DRAIN STRUCTURE 4.1. IRRIGATION STRUCTURES 4.1.1. Intake Gate 1. of Main Canal No.l It has been designed that the water coming out through the outlet pipe under the Gaula dam is discharged into the river Weiyb ? • a downstream where topography is well conditioned and the bed rock is stable, and is taken up by diversion weir into the the main canal Jo .I. This intake is supposed to have one outlet gate and overflow crest (8 m in height) so that it may release into the river 13*29 m^ of emergency flow that is dis charged Through the outlet conduit of the dam. The outlet gate is to supply the dischar ge from the outlet conduit of the dam and reject sediments during operation, 4*1.1.1. Determination of Intake Gate Capacity In calculation of flow the spillway is planned to be submerged. in : flow coefficient 0.33? t submergence coefficient 1.0 b : gate size 3x 1.2? = 3.75 m H : water depth 1.35 mSince the design water quantity for irrigation in the main canal No. 1 is 6.35 m^/s this is beyond necessity.. Calculation of overflow crest legth Qef = emergency flow 13.29 m^/s m = flow coefficient 0.37 H = overflow depth 1.05 m 1 Crest length B = ----------------- ^sf m/2g H 2 2 _ ______ 13.29 3 = 5*69 m 0.37/2 x 9.8 x 1.052 design length B = 8 m, hence ok.1 - 107 - 4.1.1.2. Calculation of Lifting'Capacity of the Gate Lifting capacity Se = K fPopen + (G + = 1.2 0.4 x 2.786 + (0.107 + O.O54 = 1.4 T Whe re: K : coefficient of operation characteristic r f : friction coefficient 0.4 G : weight of gate Q : weight of spirile Hydraulic pressure against gate 1.2 107 kg 54 kg P = | r (H - H )b 22 open 2 ' 2 1' = | 1.0(2.15 - O.8 ) x 1.4 - 2.786 T 22- 108 - 4*1»2. Diversion Weir in Main Canal No2 The irrigation water streams al •'•ng the main canal No 1 into the river Asend^bo 2.5 km downstream where it continues through the diversion weir to the main canal No2. The UBage of 2.5 km of the river course is to decrease the length of canal and number6f structures, which make it possible to add the water of the river that ha3 400 km of catchment area during operation• 4.1 •2.1. Determination of the Diversion Weir Capacity Calculation of storm run-off The storm run-off has been calculated using the formula f _6 1 54 1 67 in m3/s of flood flow worked out ©n the basis of analysis of the data collected from the adjacent zones. Formula : Q = 5.7•10 R * F * F : catchment area 400 km R : daily rainfall when 1 % probability <$> t discharge factor 0.5 = 5.7 X IO-6 X 621’54 X 4OO1,67 X 0.5 = •= 36.35 m3/s On this basis overflow crest length is calculated . Length B = ------------------- ----------— + b’ m ^2 g H— 2 62 mmx*\ \A\ X v XI \'.V\ x V ’ -X. •'k • - 109 - Wherej Q : Flood 36.35 mVs H : Spill water depth 0.8 ro m : O.49 Entrance-related contracted width b* = O.i/h = 0.1 x 0.9 x 0.8 = 0.072 =------------ -------------- J— + 0.072 O.49 2x9.8 x 1.0 2 = 16.82 m in design 17 m. 4.1.2.2. Calculation of stability against erosion on the bed of the diversion weir. Calculation of length to be sealed off: C : sand and fine gravel 4*5 0 H : 1.50 m L = C H = 4.5 x 1.5 = 6.75 m q Calculation of length of converted seepage line L o ■ LZ ‘ JL1 Where; : length of seepage line horizontal or graded less than 45°, 4.65 m 1>2 : length of seepage line vertical or graded more than 45°, 8 m L o * 8 + J x 4.65 = 9.55 m 1 Since L = 9 »55 q 6.75 there will be no erosion in the weir bed. 4.1.2.3. Determination of capacity of diversion weir calculation of flow in case of the overflow submerged; flow Q = m hJ inm3/eM : discharge factor 0.385 (T: submergence coefficient 1.0 b : gate size 2 x 1.25 = 2.50 m H : water depth 1.20 m Design water quantity in the main canal Q = 5•588, hence ok. 4.1.2.4. Calculation of lifting capacity of the water gate Lifting capacity: S L = K f + (G + Q) P open = 1.2 0.4 i 3.16 + (0.107 + O.O54) K : coefficient of operational f : friction coefficient 0.4 G : weight of gate 107 kg = 1.71 T characteristic l 2 0 Q : weight of spindjile (d = 50mm, 1 = 3.50m presumably) Water pressure acting on the gate ■ I 1
l M(.fc44 - OeM 7.S6 tr ^nrtl e rt ;inp bMir r lanrtl * uprir>nr pr w^tjnr • 3 E J x 1 .25 - 3.75 m ianftl o# pr Wet j or. *•* 6 E 6 xl .2^ - 7 .5>O m or th#M *i rwee . otm i.yer 9 4* f 't f typae O* ct j <
in 41** *•* r*a*,» tlJ* *• in wan*i No I. I ita «trj4tural n 4 l^jn* ter • ;.>ee •J/. of 4i*cb*r«* 77.74 « of drop o#i«ht tnd iw ot«-l cipo »*4b *rz*^ “ "*• Thin shuts drop w ^••n chosen to decrease i $reat cumber of irop • truatjrwf' construction ’•**•* Isb^r and -soney, %ad to creat* for the future i pose- rweooroe ty intilizin< water if. • scnprsben- s ive »v HowttVw r, m (Alt lee.jn 11 dt nioture *een proposed onXj SxmfMijnof Chute Drop 1 4 .1.4.1. 118 - CalCUl 'tiOn Discharge Q ■ 5-588 .7 Drop height H i 77 *94 m 150 cm Velooity Vj »3.16 / mQ V 2 :7.11 m 8 / Diameter of piPe Diameter of piPe Cross section Wl Pl « D2 * : 1.766 m 2 1 0.785 m 100 cm 2 W2 Discharge capacity Q ~ = °-259 /14.89 = /4C.&3 At " 0.05 0 3,6 (; ;«7<, ,r) '■ 3 o.of6 -+ 8 +2.4j o./5 Q, = s.see 7%*“56; * * £ 1 e r trance « ex1e t f z»4- ’ exxex.t, ct1 contraction, < '’’tai, ^‘'discharge. - 0.313 tr:trash rack Islentht, 1 e >...cflife:Ve7.^ = ^8 = 7a2m/s Bead at exit Cf j.:pe:h c 7 ,122 “ 19.^ = 2.586 m- 119 - V2 Hoad at inlet of chute droP:0i xet n = D + 2 2g = 1.50 + 2 x ■ = 2.52 m Hence 2.55 ™ has been used in the design’ Operation head, at exit of pipe = 1.0 + 2.536 <0 6 (7 = 3.586 / ki •x r- in W) / -1 - * «• ? 1. Discharge per unit width at exit of pipe : q = —= (circular converted into re ctangular :b = O.9) Calculation of Stilling Basin 9 5.588 r 0 9 ” 0 m /b _3 /„ o limited water depth : h pressurized water depth 3 = 1.577 n = 1.53 2 1 3 let :h P h 2fconjugate water depth2 Az = — % 0 = 2 2 ■ 2x9.8xo.952xl.25" 2g0 t Unit water quantity at exit: Depth of stilling baBin: d 0 e 1.05 h" - 2.242 - 0.18 >o _2O - AZ = i.05 X 2.54 - 1.25 - °«20 E 1,22 I.50 m taken. c 1 Calculation of Length of Stilling Basin 1.58 x O.58 0.92 1 x 6.202 5.04 9.8 x 0.923 4.1 x 0.92 x 5.4'j0,533 8.93 m 15 “ *1 added to this value, eo the length of stilling basin w&6 became 10.55 •121 - 4•!*4.2. Hydrodynamical Calculation of of tho Chute Drop As a retaining wall Stilling Basin Flank Wall tg0 + / (l + ' tg 0)(l - 2 = - tg 14° + = - o.249 + Earth pressure: Acting point: Z (1 + tg 14°)(l - 2 th4~. 371 ' th 14 ’ 1.062 x 0.676 = 0.593 0.593 +0.08 tg(30.86°+14 = 10.04 x 0.684 = 6 .87 Tm 3 1.12 m Acting mementt M = EZ = 6.87 x 1.12 = 7.69 Tm Calculation of sectional A M o bh2 R o o area of steel bar : 769000 100 x 462x 30 0.0454 cJ. = 0.042 F. = C< D Rc %1 46 = 7 .36 cm^ Sectional area of b h = 0.042 x o 16 mm = 2. 0 cm 30 2,100 x 100 x 2 Thus we need 4 pieces of bars per m in arrangement4.1.4.3. Calculation of Steel Pipe's Thickness (Chute Drop) Condition for calculation H : water depth max. 77 *94 m D : pipe diameter 1U0 cm - 120 cm r : volumetric weight of water 1 t/m^ K : nonuniform coefficient of pipe material 0.8 - O.85 climate coefficient of pipe material 0.8 m^: climate coefficient of pipe 0.9 (when there is water) d 1 pipe thickness mm r I 2 R t strength of pipe material 2,400 kg/cm r . B . D 2 R K m^ ________ 1 x 77.94 x 100 " 2 i 2,400 i O.o5 x 0.8 z 0.9 = _ ““ = 2.65 x 1.5 = 3.975 mm, if however, operational condition and erosion are taken into account and Y^q D is taken, 1,00c ^100 “ 130 1,500 - 7 .7 mm = 8 mm ^50 ■ 130 *= 11.53 - 12 mm Hence, when diameter is 1,000 mm thickness will be 8 mm and when diameter is 1,500 mm thickness will be 12 mm.,-xs ; ..... /' - 123 - 4.1.5. OPEN CHANNEL I Open ohannel has been designed, from chainage 0 4 OOO to 0 + 3000 of the main canal No 2. The reach contains sand and gravel in the bed and that is why, in order to prevent loss of irrigation water ^cement lined bed and cment masonry in the wall are proposed. % design water quantity : 5.588 m^/s (q) design slope : i = O.GO95 I bed width t b = 2.U0 m roughness coefficient : n «= 0.025 4.1.5.1. Check-up of Discharge capacity of the open channel r f Q = W c/r i 3 in in /s = 2.442 x 35.19 O.576 x O.OO95 = 6.35 m3/s Wetted area W = (mh + b)h = (0.2 z 1.1 + 20) x 1.1 Wetted perimeter : X - b + 2h 1 + m2 - 2 + 2 x 1.1 /l + 0.22 W 2 442 = 2.442 n 3/s Hydraulic radius t R « - —4^2 * " " 0*576 Y = 2.5 / 0.025 - 0.13 - 0.75 /O.576 (/ 0.025 - 0.232 4.42 m = - 0.1) 1 o *c25 X O.5760,232 = 35.19 [Calculated discharge Designed discharge I Hence ok• - 124 - i Q = 6.35 c 5.588 n?/B Designed Cross Section of Open Channel 4.1.6. Irrigation Culvert Irrigation culverts will be provided in the main canals, secondary canais. cana^-crossing sc in reads, secondary roads and operational reads. The culverts that are jrejsec for the ntm canals are divided into 1 tyjies according tc water quantity and structural characteristics fcjid ether types are ciawn separately. Type*, fron. 1 tc 5 ire j .^nec to c cro; t t >pfc in c ..tiderat ton of economy.- 125 - Calculation of discharge capacity of culverts - Drop-cum*cu lve r ts have been calculated as pressure pipes* Discharge capacity l Whe re; ft - Design flew being 6*35 s' a, triplex pipe with diameter of 0.8 m is recommended* Table of Drop—cum—culvert Calculation Table 4.1.6 .1 Typ« Discharge (4’ Diameter ?f pipe ( D' Pi re length (L) Hemarka 1 o . A 4 2.3 x ) y 3 Moe 112 MC Nol Mrs 2 1 3 MC No2 c9 s .->88 0.8 x 3 8 Mce 4 1 5 MC Mo2 3 } .09 0.8 x 2 8 Moa 6 Jk 7 MC Ho2 4 L.0f5 o .3 9 Moe 9,10,14, 15, 17,18,19. MC No2 5 0.53 0 .6 9 5o 21 MC No2 3 .09 0.8 i 2 40 Mo 8 MC Mo2- 126 - - Drop-oum-oulvert 2 in the main canal No 1 has been designed a6 a ohute-drop type• Design flow : Q 6.35 m^/s d ! diameter of pips 0.8 m plus triplex Hi i W water depth at inlet 2.5 m sectional area of pipe 0.502 x 3 = 1*5^9 m 2 Q =/UW /2g(H - (0.708 - 2i ' d) - 0.67 x 1.51 ,/2 x o.8(2.5 -’(6.70(5 - 2 x O.O45) x 0.8) « 6.35 ni^/e A6 the design flow ie pipe with diameter of 6.35 0.8 m. it is recommended to^rplex - The irrigation culverts .types 6 &7 in the main canal No 2 and the culvert 1 in the main canal No 2 have been designed as followsj Calculation cf culvert type 6 Design water Quanttity 1 Q « 1. 657 tr?/s Water depth at inlet 1 E « 1.0 m c t r : 0.726 I 0.6 Diameter of pipe : d - 0.8 a Discharge Q «= /X W /2g E - d ; f c c 0.6 j. O.5'j2 ft * .V \ Sj - 0,7 26 J 6 .H 7 « 0,86m^/6 Duplex pipe Las been designed with diametej of 0.8 n , Different types of culverts have been calcuj .tfc d ahown tuve and th* tt results are given in the table LejunjTable 4 <>1.6 .2 type di o chare ge (Q) dia. of pipe (D) pipe length (L) remarks 6 1.657 0.8 X 2 6.0 Nos 11,12,13,16 MC No 2 7 O.521 0.8 x 1 6.0 Nos 20,22,23 MC 2 - 5.588 1.00 X 3 7.0 No 1 MC No 2 4 .1.6.2. In the same provided in way as given above the culverts that will be the secondary canals have been calculated To practice econony off-take structures for the tertiary canals have been drawn together with outlet Embarcing all 6 culverts in secondary canal 1 of the main canal No 1 and 5 culverts in secondary canal 1 of the sain canal No 2 for the sake of convinience, they have been divided into 4 types to be drawn. of culverts.- 128 - 4.1.7. Off-take, and Off-take with pipe or Turn-out A structure that bifurcates main canal into secondary designated as an off-take and any other structures with pipe or turnout• At the end of the main canal No 2 is provided a regulato 4.1. 7 .1.’Calculation of Capacity of Off-take 1 in Main Canal No 1 Design flow : = 0.774 m^/s Fipe diameter :D = 0.6 m - Q - /2g(H0 - 0.736 x 0.263 ,/2 x 9.8 (1.25 - 0.726 x 0»6) « 0.634 e"/s Where: E • E « 1.25 m o Eydraulic radius: R = ——- «= ■ Velocity coefficient : C = 52.06 e 0.15 - 0.738 2 y .8 y 7 52.06* x 0.15 Thai ia the Lupucit) u! !. Leei. calcuuledOff-take with pipe or turnout is classified into 12 types to be drawn. Calculation off-take with pipe or turnout Table 4 .1.7 .1 Type Design discharge (Q) Pipe diameter (D) Pipe length (L) Remarks I 0. 344 0.4 4.0 Nos 1)3>4>o, MC No 2 2 0.482 0.6 4 .0 Noe 5 * 12 3 0.206 0.3 9 Nob 8,9 * 10 4 0.137 0.3 4.0 Nob 2 & 11 5 0.137 0.4 28 Nos 14 & 15 6 0.327 0.3 - 0.4 4 Nos 7, 13 & 28 7 0.206 u.4 4 No 16 8 0.137 0.3 3 Noe 18 & 19 9 0.137 0.3 3.0 Nos 17 & 24 10 0.0688 0.3 6.0 No 26 11 0.0688 0.3 3.0 Nob 21,22,23,25 27,29,30 12 0.413 0.6 25 No 2Q Table 4.1.7 .2 No. of Structure Design dis charge (q) Diame ter of pive(D) No 1 MC No 1 0.774 No 1 MC No 2 0.563 0.6 x 1 0.8 x 1 Length of Pipe (L) 7 4 Remarks included in drop- cum-culvert 8 regulator is drawn together in culvert 23 of the main canal No 2 130 - n citv of Water Gate - Calculation of Lifting apa Off-take gate Water depth before gate Height of gate Width of gate Water pressure imposed on , H = 1-25 "> , h' = 0.7 m j b x 0.65 m the gate . P H2- (H- b')2 ? x 1.252 - = 0.41 T (1.25 0.7) Lifting capacity : S = K(fP + G + Q) = l.l(0.4 x 0.41 + 0.0228 + 0.015) = 0.222 T It is applicable to lift with O.5 T. K: Coefficient of operational characteristics — 1 1 O f: Friction coefficient -0,4 G: Weight of gate - 22.8 kg Q’ Weight of spindJle - 15 kg Having calculated the lifting capacity 0.2, 0.5 T have been re commended. A lift with capacity of leES th._ , n lifts with capacity of 0.1, • > 1 win b© manually operated*- 131 - Application of water gate is as follows according to the designed sectional area of canals; Table 4d.7.3 DRW No Sectional area of witer way Size of gate 79 300 x 300 350 x 400 79 400 I 400 450 x 500 80 300 x 400 350 x 400 80 400 x 500 450 x 500 81 0 = 400 450 x 500 81 0 = 600 65O x 700 82 0 = 800 850 x 900 82 1,000 x 1,030 1050 x 1030 83 0 = 500 550 1 5304.2.DRAIN STRUCTURES’ 4*2.1. Outlet Gate ^outlet gates have been proposed in the limited space of canal alignment of 5 to 10 km for the sake ,of operation/and maintenance of the irrigation canals, and disposal of drainage water flown into the main canals. Efluent released frdm the sluice gate will be discharged: ‘through natural gullies and drains© 4 *2.1.1. Calculation of inflow toward outlet gate 1 Catchment area : F = 210 ha Hourly rainfall for 10 % probability : R = 33 mm Discharge factor : 0 = 0.8 Inflow :Q = (0.3336 R - 5)0 F = (O©3336 x 33 - 5) * 0.8 x 210 = 1,009 l/s 4.2.1.2© Calculation of Discharge Capacity through the Gate Drop height before pipe : H «= 1.10 m o flow coefficient : /Z = O.591 *1 = 0.726 Diameter of pipe : D = 0.8 x 2 Sectional area of pipe W =0.5 x 2 Discharge : =/XV. / 2g<'Ho _^dj 0.591 X 1.0 /2 X 9.8(1.1 - 0.726 x 0.8) Emergency drainage being considered, duplex pipe of di a. 0.8 m has been proposed.- 133 - Calculation for the outlet gates 2 & 3 followed suit. Tbale 4«2.1.1 No of Structure Chainage Inflow (Q) Pipe Bia. Remarks 1 MC No2 4 + 300 1.009 m3/s 0.8 X 2 2 9 + 143 I.89 1.0 x 1 3 19^+ 550 1.014 0.8 x 14.2.2. INLET STRUCTURE Inlet structure will he provided to conduct drainage water coming from minor catchment areas around the main canals to main canals and thus drain it through escape. 15 inlet structures are classified into 3 types according to drainage water quantity. 4.2.2.1 Calculation of inflow water into inlet Catchment area : F = 20 ha Hourly rainfall for 10 £ probability : R = 33 mm Discharge factor : 0 = 0.8 Inflow : Q = (0.3336 R - 5) 0 F structure Type 1 = (O«3336 x 33 - 5) x 0.8 x 20 = 96.14 l/s = O.O96 m3/s 4.2.2.2. Capacity of Inlet Structure Q = £ mb /2g * 0.9 x 0.36 x Q.7 [2 x 9.8 x 0.22 ^ ■= 0.103 n / , 32 3 s Inflow:^ «= c.096 n//e ^discharge capacity of inlet structure Q = 0.103 n?/e, hence ok. Types 2 4c 3 followed suit in calculation- 135 - Table of Calculation of Inlet Structures Table 4.2.2.1 Type Inflow (q) Width of Inflow (b) / Remarks L 0.097. 0.7 Nos 1, 4, 5, 69 H 2 0.145 1.10 Nos 2,1, 8, 9,12, 13, 14, 15 3 0.193 1.40 Nos 3 & 10 4*2.3. Road. Toe Drqin Structure The main canal goes side by side with the existing main road and across the existing road drain. Therefore, in order to evacuate water in the £ully it is necessary to provide : drain aqjLeducts which have been added to the drop structures in the main canal• 4*2.3.1. Calculation of inflow into the road toe drain structure 15 Catchment area : F 1.24 ha Hourly rainfall for 1 $ probability : 47 mm Discharge factor : 0 1.0 Flow: Q = (0.3336 x R - 5)0F 3 (0.3336 x 47 - 5) 1 x 1.24 « 13.24 l/s = 0.01324 m^/s 4 .2.3 .2. Calculation of drain capacity . U.85 x 0*86 x 0.3 « O.OI46 m3/a> x /2x 9.8 x 0.01 which is adequate to evacuate designed wtaer quantitybit from time to tim Cross sections of drain structures vary a for the convenience's Sake the floowi S for No 1 to No 15» Q b ction has been recommended o 30 TABLE OF CALCULATION OF HOURLY PROBABILITY RAINFALL (Goba) Table 4.2.1 Ko. Tear Rainfall kJ- (K -1) (K - l)2 P= 100 Remarks n + u .4n (R) R 1 I960 39.8 1.97 0.97 0.624 0.73 < 1979 32.2 I.45 0.45 0.202 16.35 •s J 1975 23.5 1.06 C.06 0.0036 25.96 4 1973 *5 1.06 0.06 0.0036 35.58 1972 23 .4 1 0 .06 0.0036 45.19 6 1974 18.8 C £ c 1 c. — * y 0.0225 54.8 7 1971 17.3
4.1 Cana] Er trne j or Ku"b»”f of FtTMCtVT>P T ctai 3rd dtt F i a 1 d Tola Ou . v t Pmj **hu t* droj Tu rn- ou t Lined canal ■ J* ktt >w -- i Kr r*» . FC* / - jer t r. suc t T«" TO" Jfce ?7t .48 W .3 t
L. - .(*4 >—■■■■, J 0.0067 - ( .. i< < . <-; < .2? . ?? c .uoi . 184 0.002 - - ■ 1 . ■■—J • X . * Be hirrvw Mu.'ior crofH ,r-w< i» H>» fn>d .r>* oi* wb«at •Rd a a l re | that l» planted lanted in furrow*, • I | 1 led U ’hr inaant det /• AT J 4K 4 oe I r i r J 4 ce Fw 4 i *i.ei«/ lj I « . 4 t-^l 1 hf ».ii 4A t Ju la - £ a«at I a 4i .a«•- 151 - I4 5 *4 ClI**j f i n * 11 on 1 -0 .01 i **) • >67 i *'».• ^> 7i - ' .''''33 i «0 i eO /Xtf ix.xn 1 •"/ • >0 1 J , 4 *)
A7 477 FHtlo i 18.7 31.7 7.3 212 8.1 7? -, 22, 9-5 • In tub-b I odeu furr-ww of tn< plot • 5*4.5. W«twr Appiicitirr • ■ **-- <« - Unit fw-wn tV.*- |UiH‘, jtj -er j nn > — ?•-*, in *,o to* *. ;n^r ilia .4^ 9, Hu .w n^.-. .i .aL«.-vd 3 1a/< . u Jur-^u *n x«v *4 ***• ’ .. 1 a.’ l 4 lean L !•> M k - *SJ •- U C 4.• 4 Hj kU *• a -4 * fUBMw *A I, * •*« *4 4- 152 - -Increment of unit required water due to irrigation operation Daily irrigation unit has been recommended as sub-block (B = 59^ m, 1 - 144 m, about 8.5 ha). There will be no nighttime irrigation in principle and so 2 shifts daily for only daylight irrigation i.e, in each shift 2 hours of preparatory work and 6 hourB of irrigation operation sug.ested. In this case 4»25 hectares of field would be irrigated in each shift period and assuming constant irrigation period as 2.8 n hr in c'nsieration of the soil- ’s intake d capability, water required by one furrow would be increased as follows^ q = - Evaluation of irrigation duration qi hr = u.302 l/s Following is the water quantity required by one furrow during a given period of irrigation interval(6days); 6 x 100 x ETcrop 7 = 3035.3 1 Results of infiltration rate in the project be low; Ko. of area are given in the table Table 5-4.3. measured point Initial intake cm/hr Last intake cm/hr Ave rage cm/hr Remarks 1 c c X • > 3.1 4.3 2 4.12 2.9 3.515 3 2.25 3 .5 2.375 4 2.4- 1 1.70 5 2.10 0.9 1.50 6 1.78 0.6 1.17 7 J .9 o.A O.65 Average ?.8€ J .486 2.1/2As shown in differences - 153 - the aboi ve table, the values from one another. Therefore, last intake has been obtained, and again taken from 7 places have big average value of initial and average value taken from 7 places which is assumed a6 the design infiltration tempo, then infiltration rate in the furrows is as follows; Mf = K x W 0.5 = 1,087 in 1 Where; K = Infiltration rate W = Area of a furrow M^= Infiltration rate per hour 21.73 mm/hr 2 100 m per hour in 1 Duration of seaseless irrigation ; Where ; t = Duration o f ceaseless irrigation - Evaluation of furrow discharge capacity Table 5.4.4 i=0.01 i=0.0067 i =0.005 1=0.0033 i=0.0025 i =0 h B m V Q V Q V Q V Q V Q V Q m m m m/s m^/s m/s m^/s m/s m^/s m/s m^/s m/s m^/s n/e 0.05 0.10 1 0.21 0. 0015 o.l7 0. 0012 0.15 0. 001 0.12 0. 0008 0.11 0. 0007 0.10 0. 0006 0. 075 0.10 1 0.26 0.004 0.22 0. 0030 0.19 0. 0028 0.16 0. 0022 0.13 0. 001Q 0.12 0. 0016 rO a- 154 - As seen in the above table, when furrow depth is within 5 cra w^ter application will not problematic for whatever 6lope of furrow is. However, as furrow discharge capacity is by far higher than unit required water, providing a condition for water lingering will make possible for the furrow to intake water in a shorter period of time, which nesessitstes providing such condition to shorten irrigation hour. Furrow chech-dam Furrow chech-dam is compulsory to ensure consistent irrigation in the furrow. Chech-darn could be taade of plastic bag or cloth filled up with earth or of steel or vinyl plate. But what has to be cared for is that any chech-dam should be lower in height than the maximum depth of furrow to avoid flowing over a ridge to another. Chech-dams should be spaced at different distances and with different sizes. That is, the critical water depth is 15 cm , when the spacing should be 1C c for furrow slope i = 0.01, and 50 m for slope i = 0.002 etc. Usage cf syphon tubes Syphon tubes ere usee for conveying water over the field canal bank into furrows. Here is the formula tc de tern me the discharge capacity of a syphonj <* e EoWhere; Q = Discharge of a syphon in m^/s W = Sectional area of a syphon at exit in m H= o Difference in head between inlet and outlet of a syphon 0.2 m /X = Discharge factor Sum total of loss coefficient * n - 0.009 Discharge Capacity of Syphons and their Number Required Table 5.4.5 Dia. Velocity Dis charge Commandable Number of syphons Number of in mm in m/s in l/s number of syphons required furrows required per ha for eaoh shift r20 1.18 0.35 1 100 428 30 1.23 0.85 2.4 42 178 40 1.26 1.54 4.4 23 96 t 5° 1.28 2.44 7 15 60 The syphons in the table above with different diameters are for Q = 0.302 1/b and required for constant irrigation. In order .tc^horten irrigation dur^tion'it is neoessary to ohoose a suitable one for discharge capacity of a furrow, i .e, a 50 nun dia syphon with discharge capacity of 0.604 l/s will be able to feed 4 furrows . It has been proposed to plan 25 % of each size syphons required for every shift assuming constant flow into furrows as 2.8 hrs.- 1% - Relationship between field, and syphon Field, canal capacity is; q’ x n Q = ~--------------- = 63 l/s Where; Q = Discharge capacity of a field canal l/s n = Number of furrows fed in each shift 848 q^= Water required by one furrow 0,0706 l/s >1- Field canal efficiency 95 % e Distribution of sub-block's slopes in Percentage Table 5-4.6 X^lope Classi, ficatiorS 0.033 0.025 0.02 0.0167 0.0125 0.01 0.0067 0.005 4 287 574 11.23 1,078 617 466 221 134 Ratio % 6.3 12.8 25 24 13 .7 10.4 4-9 2.7 Sub-block slopes have close relationship with bed slopes of field canals. Since the clay is dominant in the rroject area the maximum permisible flow velocity in the field canal should not exceed 0.8 m/s0 Bed slopes of the field canals are given accordingly in the table below- 157 - n = 0.03 Table 5*4.7 Elements of Section Q n no 0.0133 U.01 0.0067 0.005 % h B m a b V Q 0.06 0.2 0.25 0.75 0.2 0.3 V 0.80 Q 0.07 0.2 0.35 II II It V 0.70 Q 0.07 0.25 0.25 II II II V 0.66 Q 0.068 0.25 0.30 If If If V O.56 Q 0.067 0.25 0.35 II II II V 0.50 AS can be Been in the above table, when bed slope of a field canal is more than 1.33 % a drop is required to be provided to make less slopy. In order to moderate slope of a sub-block with more than 1.33 % inclina tion (i.e, 3.33 %, 2.5 2 $ and 1.67 24 pcs of check-dams are required for 3.33 % slope fields, 14 pcs for 2.5 % fields, 8 pcs for 2 % fields and 4 pcs for 1.67 % fields'Vhen drop height of 5 ° is proposed. They are recommended as permanent or proviosional ones. W hat is suggested here is th t plastic material or imperishable and du — rable cloth should be used as a check-dam which will be installed before irrigation and removed later on rather than costly permanent ones re quiring good quantity of material. y11 r t ♦ I i « i i * i I I I tJ I i 4 i*i*«•%- 158 - Providing bed sope of less than 1.33 $ in the field canal means more than 20 cm of water depth, which will pose no problems for syphon usage. However, when abnormal flow (i.e, H^0.2 m) occurs it is required to highten water level in field canals by using a steel plate or canvas as a check-dam. It is always inevitable to m iko water level of the field canal 20 cm higher than that of the furrow (Z = 0.2 m). 5*4.4. Tertiary and Quaternary Canals - Tertiary canals take water off from the secondary canals or in many cases directly from the main canals and distribute water to field canals. They are what is called connecting canals as permanent irrigation water ways. In the project design for the important tertiary canals longi tudinal sections have been drawn and required structures given. Eowever, a layout plan has been substituted for the logitudinal sections in case that terti try canals run over moderate reliefs and have fewer cross-works and commands less than 10U hectares. Discharge capacity is given below; Where; = Discharge cajacity of tertiary canal in l/s K = Area of stmd ird sub-bl'’Ck 8.5 ha Q = Discharge caj -city of a field canal 63 l/e 1 = Comn. and able area in ha - conveyance el!jciency of tertiary canal 92 /- 159 - — Quaternary canals as small sized and permanent ones connect tertiary canals with the field canals. Plowing of water to the field canals from the quaternary canals will take place through a certain turn-out. Discharge is as follows in general} When;l>-S- , > 2> = Q % = 2Q 2, Q4 = 3 Q Where; Q^= Discharge of quaternary canal in l/s n = number of field canals commanded Q = Discharge of field canal 63 l/s 5Determination of Irrigation interval and Irrigation Duration - Determination of daily irrigation hour is affected by irrigation condition and its operational org mization • That is, if a field were surrounded by banks and had a flat Surface all over it, it would be possible to feed water constantly all through 24 hours. However, if longitudinal or vertical slope of a block had a certain tg(/ value, surface irrigation without furrow would sure be impossible. Being the case some labour w?uld be required. What has relation with tgf{ is absolutd^ralue • It means that furrow irrigation would be unconditional and night time irrigation is unsafe in any case. Considrering all those factors we tried to avoid night time irrigation and day light irrigation has been recommended most suitable.- 160 - It has been propsed to plan 12 hours of irrigation per day and 4 hours of preparatory work, i .e, 16 hours of work period altogether, which will be done by 2 shifts, each 8 hours. Therefore, assuming irrigation unit as one sub-block (8.5 ha),irrigation unit per shift will be 4.25 ha (424 furrows). Determination of irrig tion frequency has close relationship with agricultural activities and climatological situation and exert decisive influence upon the determination of irrigation structural capacity • Constant irrigation without interval will maximize the utilization of irrigation works and input and minimize the size of works and construction unit rate which is related with topographical features o however, in case of non-paddy field irrigation, constant irrigation is not permisible for the sake of management and irrigation interval is inevitable. There is another factor that influences irrigation interval and that i^physical characteristic of soil. lased on the analysis cf the physical features of soil in the project area anc climatical data irrigation interval h-s turned out to be l£ days . lfc days cf inUrv.i. ; t jfnes’% opacity of all the structures as against wnen it it 6 days interval. And there is also a certain diflerence 1 r. maxing best use of rain between when it is short and when it it 1 .ng. Jn nt/.or words when it is shorter it w -aid be unnecessary to arrmge ;rj;/-.tion for the next interval 1! there were an eicett Ju.j.ialJ auiang given interval.161 - That is why it has been proposed to shorten the irrigation interval for the sake of economy if it wore possible to arrange supply of water required for crop vegetation, and to control agricultural management such as planting, weeding, fertilization, pest kiling. What is necessary here in this case is to provide satisfactory soil moisture content by initial irrigation.- (62- Orqanization^JieKl Structures Table 5JL8 length of Canal Nuinbei •Of sti > Total Km 3.16 11.60 9.45 7 7.75 19.40 8.97 22.48 22.15 26.95 22.82 27.83 8.51 Tertia. Canal Quat. Canal Field Canal Total Culvert Drop Lined Canal II II II Pcs 3.16 II C-1-1 C-1-1-1 C-1-1-2 C-1-1-3 C-1-1-4 C-2-0-1 C-2-0-2 C-2-0-3 C-2-6-4 C-2-0-5 C-2-0-6 C-2-0-7 C-2-0-8 2 1.65 7.95 25 4 1.2 0.75 7.5 18 4 1.2 0.75 5.05 14 3 C-2-0-9 11.47 C-2-0-10 6.05 IC-2-0-11 5.01 C-2-0-12 16.01 C-2-0-12-1 13.6 C-2-1-0 40.29 C-2-0-13 2.74 C-2-0-U 7.43 C-2-0-15 7.90 0.6 2.85 4.3 8 2 1.41 3.05 14.94 26 4 0.72 2.80 5.45 15 5 2. 4.20 16.28 49 8 1.7 4.20 16.20 35 8 2.2 4.8 19.95 4? 10 2.27 3.6 16.95 36 9 3.58 3.9 20.35 47 10 0.86 1.05 6.6 15 3 0.95 1 7C S.77 i / 3 0.45 0.90 4.70 e 1 I 0.70 0.90 4.41 4 2 3.26 1.95 10.85 2? 5 1.85 1.95 9.80 24 2 9.45 30.83 42 □ 0.77 '.C“T/ 4 1.13 1.76 4.55 10 2 2.2' < v. 2.67 7.2 - 2 0.85 4.7 € 1 . 10 5 .£ 2 0.2? < > • 2.22 4.30 1090 30 1.20 i 0.9 / II 5 5 5 3 16 5 12 4 17 7 3 ■ucture* Chuta Drop II 2 2 1 4 4 7 0. 10 2. HO • 1.40 7.40 7 0.6' 3.17 1 0.45 2.10 0.60 2.9/ 7 0.60 3.00 6.60 2.40 4 Turn- Out II 14 9 6 6 18 9 23 20 27 23 19 5 10 7 2 19 17 39 4 12 10 11 6 6 1 26 7 5 1 2 1 3 ? 4 II 2 / 1 1 1' 4 11 11 C-2-0-16 C-2-0-16 9.82 5.05 C-2-0-19 €.50 C-2-0-20 2.03 C-2-0-21 17.48 C-2-G-22 2.1 C-2-0-23 3.63 1.03 i C-2-G-24 C-2-0-25 C-2-0-26 3.01 3.60 3.77 C-2-0-27 2.60 C-2-0-26 3.52 C-2-0-29 3.60 c-2-0-30 TOTAL 376.48 30.3 70.97 27' . 1 Or i 9‘ 1 377 7Major Works Summary TAble 5.4.9 Earth Work Concrete Work Pcs. Total Cut. Fill Embank ment Total Form- Work C-10 C-15 C-20 Dry Stone Masonry Round Steel Steel Plate Wooden Slab Cui ver’ Drop Chute Dro| I Off-lake L j ned CoHul Eartli Cafid J 95 97 7 m3 540 267 834 106 520 143.330 II 345 204 602 72 415 66.730 II 195 63 232 34 105 II m3 134.65 34.06 223.7 125.4 194.6 II 18.20 1.20 1 1.44 II 106.3 32.8 221.1 10.30 194.6 II 10.15 0.06 1.60 0.80 m2 702 185 1,327 112 _m2 228 48 75 33 kg 215.8 699 kq 2,380 m2 0.28 1.23 766,660 TOTAL Sum 581 145.537 68,368 629 76,600 599.50 21.80 565.10 12.6 2,326 384 915 2,380 1.50- 164 - 5-5- DESIGN OF DRAIN 5»5*I. Drainage Structure Table 5.5*1 Classif • A re a\. ba Drain Extensi on Structure Total km Second • Drain km Field Drain km Sub-block Drain km Escape km Total pcs Culv. pcs Drop pcs Irish Dridge pcs Inlet pcs 4500 382.1 39.4 43.0 2Q6.2 2.6 130 104 17 6 3 per ha O.O85 0.009 0.01 0.066 0.029 5.5*2* Unit Rquirec Drainage Unit rquired drainage has been calculated classiying drinage in the mountainous areas and that in flat areas keeping in vie* the topographical features. Formula of Drainages Q « (0.3336R - $)0F ( See page ) Ir. tne design 1C £ probability for rainfall runoff per hour (E beer, taxer., when F «• 34 m/hr. Discharge factcr in mountainous areas j 0.8 in fi t arep.e wuf r crt;n£j’( ' ir. e.^-anta: nous areas) per ha: 5P? l/e ir fl -1 arene ) Arrangement of Drain* : 0.2 taken, i 1 .21 l/e Drain* will ir. genera. g< a.ong tiae b^ eiae with blocks and •ub-tlockfc anc tnui n..jt / r . /au ii f j t standard sub- tjoc> aJiC IbeJJ fajttCiL/ JS ® .j • n. Field blodorfcinfc vary r ij .i jin/t ul c n in diflerent w t ana*; a l j »- 165 - strucutres. Spacing of secondary drains have been designed to be 600 m (equal to the width of a block) or 1,200 m and the existing gullies are left intact to be used as drains# 5«5*4* Cross-section of Drain Typical cross section Table 5-5*2 Q(l/e) '''Slope S .ize x Xfi) q i < 0.02 0.02 - 0.1 0.31-0.003 0.003 - 0.0013 h 15 15 15 20 15 b 20 20 30 30 h 20 20 30 30 50 b 25 30 40 50 h 100 25 25 30 35 b 30 40 50 60 h 25 30 35 40 150 b 40 50 60 70 h 30 30 200 35 45 b 40 6c 70 so h 30 30 250 35 45 b 60 30 90 b* 4HylhulK calcuiatior or . nr nnr structural calculating dimensions rr ^_»ct)or b«vr baen U th*
»»•>• o-v < nr. v /x • tc'.ot v dtf have been suggested V< r**au
♦<' ■ tUC . CU 4M*< A/ • t * r.M beer. dram, because ti
Ui w.ur w.tF wooth elope Ui«>« 4r<>| >’».ruc'.Miw« Ifr* .
. 4. ;« 1 .. •t «.«■ . . I . . ,I I I I I I I I I M k• T r ri »■ e '■o — i <7 •n k •- H K»- X o *30 —«< *« -* ►* -» . 1 fc- 1 IM • 1 •* ? 3 H • * r • *- — . £* *—> r& £3 'JX> -M yf 3; 5> M* LJ J », J hl J * M U4 J p*»U*V VUv JCANALS & STRUCTURES SUMMARY Ta.L/< 5 6-2. No Name of Canal&Road Extention in m Intake Diversion Weir Culvert Drop Off-T Off-TP Regulator Chute Drop Open Canal Outlet Gate Inlet Works Road Dr^ i n I MC - No 1 5,938 1 3 17 1 1 2 MC - No 2 26,660 1 1 23 187 1 30 1 1 3 15 15 3 C - 1 - 1 4,050 6 12 4 C - 2 - 1 4,410 7 10 ■ 5 Tertiary C 30,300 6 '.Quaternary C 7 ,970 95 97 377 5 7 Field. Canal 277,210 3 Sub-total (419,538) (2) (1) (134) (301) (2; (42Q' (1) (0) (p ( 3) lsl ✓Q Escape 1 2,100 3 8 l'j Escape 2 450 11 Subtotal (2,550) (3) (8) (3) 12 3ranch D 39,410 13 Block Drain 43,850 101 14 Sub-block D 296,220 15 □uD-total (379,480) (101) 16 Main Road 17,500 17 Connect Road 18,810 18 Field Road 126,030 19 Sub-total (162,340) 20 Total 963,908 2 1 238 309 2 429 1 6 1 3 18 ____ tobe continued171 - Chapter 6 COST ESTIMATE FOR PROJECT CONSTRUCTION Cost estimate for project construction has been mapped out on the basis of the unit rates currently going in the irrigation pro jects under construction by the Water Resources Development Authority. Cost has been summarized for every kind of work after detailed calculation of work procedure. 10 percent of cost for different kinds of work, has been estimated for transport fee with exception of soil movement calculation cost and 15 percent of cost for different kinds of work has been expected for contingency. Cost for provisional equipment has not been estimated and there fore, it should be discussed with the contractor just before construct ion.Ml nt ' H'Arn n ' t ’ ’ ’MH' ’ U't-» V r 1 r ♦ t» ’> r.?> It’ <*•»♦ t V P — 9 • V e 1 V* • . . . . r» <1re V * r *' * i; 111 Utt A Ht» <’ < ftnr *•» » orirlj* • • f -4 1 OM V *» -4 - • *- f»fw ' • - 111 < M H#' * • * * \ 4 • .*>•** '- ♦ 4- tl< w 4 s !»»#!< 4 < Ko*< 4 k0
4 *♦*$ ■4 «>- <4 <4 '♦»3t ** ‘ %ff 1 *♦-* •* *9-*19 ■ • * t +• 'mi«-"?’1 » '"’• —wr~ F 1« ; -r r •» - ' -»-*W 9** i---------------------- T r~»F1 L_______ U •T*T • »—• •-»Tt k 4 r~**i T -* '<«• ’ 1 Tt r ’ f •« r: re to ••♦* 1 •* •"* *• 47 H4 /f 1 ’<^7 -« ’ k ! ire. k. — , k. : »:* T« k 1 4 «A. 4. • ' H *•• * I «h« 4 v • ■ * <4 7 V9 I «* ■ f 9 I I I I I ’>»•!*« -4 • 4«.
♦ * —4 kb—-4 B >• _ISUMMARY Cost Estimate Soil Movement concrete Cement Reinforcement . Iron • No Unit Qty. Per Unit price per unit total per unit total per unit total per unit total per unit total Main Canal 32598 15873786 362920 9522 2857 198459 174144 Secondary Canal m 8660 1058363 12997 1663 639 794 Escape H 2550 5l7lQ3 1986 3 285 86 6655 Other Canals »» 56 5 1 l 30 160909 2805 86 2 5896 2380 Drain 3'Q680 1670297 8886 5 656 L36 Road «» 1 h? -60 5380687 608011 95 28 1922 183 LoPd Leve . 1i •> ha -.>00 -8238823 3566680 1 779 OO5-» a 1 665"296 16624 6388 193726 i 1 l’6707 ---------------------------------- mint- 167 - The existing gully will be used as escape 1. 5.6. SOME PROBLEMS TO BE CONSIDERED IN CONSTRUCTION OF IRRIGATION AND.’DRAIN NETWORK * In the first place in land levelling smooth slope should be provided so that favot&ble condition for furrow irrigation can be created. * Prior to land levelling roads, canals and drains should De constructed. * As the roads will in most cases be constructed along banks of canals and drains,the surface level of the roads should be 30 to 50 cm higher than water level. * Maximum water level in the drains should almost be the same as the designed ground level. * While constructing any structures or canals/drains all dimensi nns should be strictly observed according to the drawings and constructional and technical requirements thoroughly implemented, particularly compacted embankment properly done • * Every spacing of roads and canals is from the centre to another, i.e, for field blocks 600 m of cracing from the centre of the road to the opposite and for sub -blocks 150 a of spacing form the centre of the canal to the other.- IP Organization nf Praln c. Tnblo *.*.1 I»»nn1h f‘ Pmin (« (ulvprt _______ __ 1— (p) > Mt Me Of i— Qv* t r- r —* lote! ____ 4---------------- 4 prim ‘h 4 Fine* w Plnrl pf« 30 zr 60 < RO Drop H»1M 4- H- 11 4P ,950 10.080 R« -- OQC 1 “ 0 6 *■ » r * M < 71.930 600 I 4 SC 16. WK £ 3 1 pc 5 1 1 1 1 3J <4 9<.440 1/.900 i* .7or 6 340 10 17 5 $1 .900 c 150 • *S( • ' .7* 5S.7OT 1* 664 1 6 6 < B ( 330 < t 3; . 3*0 ; .osr z cr I • If 1 1 7T W' e .760 • J»r RO' ( 76t ; < r*r ; -» <»< * * 5 ? >• 9 (w 90' 39 760 ; 4 < Rfr 10 1( •* *1 ?C/ ;,<.?■ *1 • / c 6 1 11 1 1 • 4- / ♦t 14 It 1( • < ✓ u 9 790 2( M' <- 40 ?<• KX Xr <- 04' * 9 7f 4< 3 t44 ■i TO! A. .’/*• 4b( .0' ZK Z at? 44* ■ ■ ■ ■ I I ■ ■ I I I I I I I I I I I IMl \\ v, '\MMK
🔊 Read Aloud
⏹ Stop
Summery
<
×
Summery