405 Apt
405 May
70 3 □ 0 146 74 0 109 1 0 74 0 rlSS 990 9 73.5 1351 7 on
49 7 □ 0 147 65 0 10.0 1 0
49 9 □ 0 164 504 11 7 09
313 □ Q 146 74 10 3 03
435 0 o 00 00 5 7 09
85 6 -46 1 942fl 71 4
504 16 2 926 6 70 7
7 4 126 939? 71 3
1351 0 00
1350 a 00
1350 9 00
405 Jun T49.4 00 0 00 00 1 0
405 Jul 459 4
00 0 00 0.0 1 0
00 0 00 00 1 0
OO
00
00
36 9 976 1 72 0 1351 4 00
145 4 1006 3 74 1 1351 0 116 3
455 B 1006 3 74 1 1351 9 465 0
639 7 IQOF, 3 74 1 1351 9 G39 7 SM G
I
405 Aug
640.7
00
406
Seo
SlflS
00
0
OO
00
10
00
5156
1W63
74 1
1351 9
5158
406
Od
402 9
OO
111
00
62
10
00
303 3
1006 3
74 1
1351 9
393 3
406
Nov
1662
00
143
46 2
106
10
46 2
ma 4
10063
74 1
1351 9
100 4
406
Dec
71.S
oo
135
600
10 0
10
600
05
1006 3
74 1
1351 9
05
406
Jan
31-7
00
146
74 0
10 0
10
74 0
54 1
952 l
71 6
1151 1
00
406
Fob
24 &
00
147
*5 0
10 5
10
85 0
• 71 7
080 5
6fi 7
1350 l
CO
406
Mar
1T0
00
164
504
113
09
504
■456
KM 9
667
1349 4
oo
106
Api
13 5
00
146
74
9?
OH
74
45
4430 4
605
1 349 4
00
i bi
Waterworks Design & Supervision Enterprise
[n Association with InterccinLintnul ConsultariU and Tschnomts JM Ltd«■
£1
g
■IZDs
I“1 M F3 n
8
T
0
n>
£2
oa
»* r*
Ci at OJ au tS Tr
»T up
C.
S’!
rn..
Cl Cm n c
o
3 ■—
OD
s
fc T
=D -n
ID
IO S3
oo
O
O
a
Cm
Oq
■c
Q
d
e
Q
Qj
Tf
g O o ±> o - *n
O c? & a o Q
o o o e 5 o o
ta m
s s X ►«
ISi *n □□
V ■--■*d =*> V-
O
u
*■ E
£ 5
8 8
"7 T
™fc 5 d O
5
U1 n tR_ >
■5
rr s
r«- 3
t*-.
■Q
■T
o Z
fM c- TArjfl Cedessa Irrl^adflu Project
Meteorological and Hydrelugical Aspects
__
k*}' 2007 '
Annex C: Standards
Cl. Commonly used values of runoff coefficisn
Class Description of catchment
A Fiat, cultiyaieo and Dick cotton soils
B Flat, partly cullivawd stiff sails
C Average catchment
D Hills and plains witn little cuHivabon
E ve1. hilly and steep with little q* no cultivation.
Runoff percentage
10 15 20 35 45
C2: Runoff Coefficient for pervious surfaces by selected hydrologic sori
grouprngs aria
Terrain Type
/
i slope ranges
Soil Type __________________
B
c
D
Flat <2%
0.04 - 0 09 0 07 0 12 0.11 - 0 16 015 - 0.20
Rolling, 2 ■ 6%
G 09 - 0 14
012 - 017
0 16-0 21
0.20 - 0.25
Mountain. fr-15%
013-0.1A
0 10 - 0.24
0 23 - 0 31
0 29 - 0.30
Escarpment >15%
0 IB -0 22
0.24 - 030
0 30 - 0 40
0.38 - 0 4B
NrjLt Whm A. B C and D are defined as shown in C3
121
Water Works Design & Supervision Enterprise
Id Assrjtlainni with IntercontlntDiak Consuldnts and Technocrats Pvt. Ltd4rjo DetfEssi imgauM Project
Meteorological and Hydrological Aspects
■far 2007
Cl: SCS Curve Numbers for Various Conditions Cover Descr/pf/on
J
Cover type
Hydrologr
c
condition
A
Curve numbers for
hvdrolooic soil qroup
8CD I
Fallow flare soil 77 86 91
-----XT.- 1 94
Crop residue cover ,CR)
Pasture grassrand. ex range- conlmuDus forage for grazing'
Meaoow-conlinuous grass. 35 59 72 79 protCCled from grazing
Brush-weed-grass mixture with Poor 48 67 77 83
Poor 75 65 90 93 Good 74 83 88 90
1 Poor 68 79 86 89 Fair 49 69 79 Ba Good 39 61 74 8u
brush me major element3 Woons-grass combination’ Woods*
Fair Good Poor
35 56 70 77
30* 48 65 73
57 73 82 86
Fair 43 65 76 82
Good Poor Fair Good
32 58 72 79
45 66 77 83
36 60 73 79
30* 55 70 77
Farms—CuiWings ranes driveways. - 59 74 82 86 and surroundme 101$
>Vrd and semr-awo1 range/antfse
Hyd
cond'
48C
Mixture of grass, vreeos. and iow- Poor — 80 87 93
growing brusn, with crush the minor Fair — 71 01 89
etemsni
Mountain orusn mixture of small trees ano orusn
Small frees with grass unoerslory Poor — 75 65 89 Fair — 58 73 80
Good —r 63 74 85
Poor 66 74 79
Fair 48 57 63
Good — 30 41 46
Good
Brusn witn grass jndersiory
Desert snrub Drusn
— - 41 61 71
Poor — 67 60 65
Fair
Good — 35 47 55
Poor 63 77 05 86
-- - 51 63 70
Fair
55
72
Good
81
49
86
68
79
84
Water Works Design Supervision Enterprise
tn Association with Intercontinental ConsuliMts Technocrats Pvt LtdArjo Dedtssa Innfatrun Project
Meteorological and Hydrological Aspects
C3; (... confrnueW
Average runoff condtfion. and I. ■ 0.2'S
" °0€i * 5u% ground cover or heavily grazes wim no muren
Fan 50 io 5% ground cover ana nut heavily grazed-
Good ' "5% ground cover anc iigmiiy or only occasionally gr cover . e
conSfliDris ma >■ oe KKnpuled Troffi CN s ror *ooJS and pa s iui e
’ P«r Fiwrt MW smal wrts, and
are a«uoy«J &y heavy graz.rtg or regular
nr r»muiar
.
Far
Gdr 30 la 70 % ground covet Goaa * 70 % ground cover
Sort Groups
grpup jCi Sana , loamy sa-no or sanoy ioam Soils having a low runoff potential due to high mhltraiion rales These sorts primarily consrst of deep well-d rained sancis and1 graven
Group fi Silt oam or 10am Sorts having a mooerateiy low runoff potential due to moderate infiltration rates These sorts primarily consist of moderately oeep to deep, moderate^ well co well drained sails with moderately fine to moderately coarse textures
Group C Sanoy ciay loam Soils having a moderately high runoff potential due to slow iiMiHralion rates Tne&e sods primarily consist of soils in which a layer exists near the surface Inal impedes the downward movement 04 water or soils with moderately fine [0 fine texture
Group 0 Clay loarr, salty clay loam, sandy day, silly clay or oay Sorts having a ntgh runoff potfrniiac due to very slow infiltration rates These soils pnmarily consist of ciays wtr n»gn swelling potential, soils with perman-en!ly-ri»gr water Cables soils with a day pan or ciay layer ai or near the surface, and shallow sorts over nearly impervious parent material
r
123
Water Works Design & Supervision Enterprise
In Association with hinrwntlnonul ttnsultanu and Ttchnocrais Pn LtdAr jo Utdessn Irrigation Project Meteorological and Hydrological Aspects
Mi)
C4:
Reservoir FIftfld Stand
ards
Dam design flood (inflow
Min Standard,
Category 0/reservoir
Initial
Gerrera/
condition
Spilling
long
term av
A Breach endangers in
Daily
lives m commentary
inflow
S Breacn may
endanger li^es nd in
PMF Larner ol
0 5 PMF ar
Rare overtopping
Largtf of 0.5 PMF or '0.000 yea' flood
Larger of 0 3
a community
10 000 year PMF Of 1,000
extensive drainage
Full
C Breach win
negligible risk iq hie
and causing limited
aamage
Full
flood
Larger of 0 3 PMF or 1.000 year
flood
year flood
Larger ql D 2 PMF or 150 year I loot?
A(ofe Pcx r/v purpose of PMF tne (riintfti uf ffre jompufpd are Dy fhe proportion indicated
bV/nd speed,
M/rt wave
surcharge
Average annual max Hourly wind Wave surcharge allowance >06 m
Av Annua* max houhy wind Wave surcharge allowance >04 m
KF nytJrcgratfh
Water Works Design & Supervision Enterprise
In Association with IntereontlnuiuL Consultants and Technocrats Pvt Ltd-Arjo Dedessa Imjatlcm Project
Meteorological and Hydrological Aspects
CS; Ratios of the basic dimensionless hydrograph of the SCS
TJTp Cii.'Qp TiTTp QnQp Ti/Tp QuQp 6 0 1.05 0 99 26 0 13
0 05 0008 1 1 0 98 27 0.11 0 1 0015 1 15 0 95 2 6 0.098 0 15 0 043 1.2 0 92 29 0 088
0? 0 075 1.25 0 68 3 0 075 □ 25 o.n 1 3 G S4 3 2 0 056 0,3 0 16 1 35 0 60 35 0.036 0 35 0.22 1 4 0 75 37 0 027 0.4 0 28 1 45 0 71 4 0.018 0 45 0 36 1,50 066 4 2 0 014 OS 0 43 1 55 061 4 5 0.009 0.55 0 52 1 6 0 56 4.7 0 007
0 6 06 1 7 0 49 5 0 004
m*j ajc?
0 65
0 69
ia
0 42
07
0-77
19
0 37
0 75
0 83
2.0
0 32
0.8
0 89
21
0 25
0 85
0.93
2.2
0.24
0.9
0.97
2.3
0.21
095
0 99
24
0 10
1
1
25
0 16 B
I
Water Works Design & Supervision Enterprise
In Association with Intercontinental Consultants and Technocrats Pvt Ltd.ArJti BcdEssa rirlfitJM Frojcd
Meteorological and Hydrologica
l Aspects
_________ ____
C6:
CuIMl™, tor .rue,prelates of
Water Ooality for
irrjga|ion
Waler parameter
Symbol U
SALINITY
Sall Contani
__
—
Eieciricai Conouctfrly
ECw
dS;rr.
0-3
dS/m
(Of)
Teiai Diswi^ea Solids
70S
mgl
0 - 2000
mgi'l
Gallons and Anions
Calcium
CaT
me/i
0-20
me/l
Magnesium
Mg"
me/l
0-5
me'l
Sodium
Na"
me/l
0-40
me.'l
Chioripe
Cl
mefl
0-30
mert
NUTRIENTS"
Potassium
mg;E
0-2
mgfl
MISCELLANEOUS Acints and Technocrats Pin. Lid.Arjo Deaessa Imgaunn Project
Meteorological and Elydrolcglcai Aspects
Ann ex D; M eteo rologic a I Da ra
Pl: Dtiails of Meteorological □bserwalJon Slatians
Miy 2DO7
Station Name
S.No.
1 Agaro 2 Arjt
Latitude
North
Longitude
East Altitude
1
crass
D(*g. Mtn. Deg Min -•
(mj
Period
OB 45 30 30 2565 1972-2004 3
or Si 36 36 2030 198U-20O4 1
3 Bedehe 08 27 36 20 203D 1967-2004 1
4 Deaessa 59 23 36 06 1200 1971-2004 1
5 □emtx 08 04 36 27 1950 1954-2004 3
6 GimD« 09 10 35 47 1970 1978-2004 1
7 Jimma 07 40 36 50 1726 1952-2004
a KOfte
9 Meno oe 41 36 oe 2000 1980-1989 4
10 Ne*emie 09 05 36 28 2080 1971-2004 1
08 41 36 47 2U0O 1979-2004 4
11
w_-___ -
Wama
0B 59 36 40 1450 1980-1987 3
D2:
Types of Climatic Data available at the various Meteorological
S.Na Station Name W ’Yrs RF TM RH ws SD 1 AgSrO 2030 25 X X X X X 2 Ai>j 2565 33 X X
3 Beoelle 2030 38 X X X X
4 □eoessa 1200 34 X X X X
Altitude
EP
5 Demoi
i960 51 X X
6 GimDf 1970 27 X X X X X
7 Jimma 1725 53 X X X X X
a Kone 2DDD 26 X
X
X
X
X
9 Meko 2000 10 X
10 Nexemte 2080 34 X X X X X
Wama
>450 3 X X
RF
monthly rainfall
SD
sunshine duration
Tm
average lemperature
reler co rainfall series
relative tiumtdity wind speed
1 nr
maximum 1-n.our rainfall
RH
WS
1 day maximum 1-day rainfall Rday number or rain days_____
" Dara itfrXNfi /efers re ftarfifarr and rcrapBratare owe
127
Waret Works Design & Supervision Enterprise
[n Assucjitlun wltt iDt'reomineniai CmbuMwuk utfTecbiutTitsPviLtLArjo MtSsa IrnfaLlcn Prn-jEcl
MjieoroId^JcaI and Hydrological Aspects
03: Mean Monthly Ramfafl al Settle Station
M»J EOC7_
Jan Feb March April Miy
June
July
Aug
Sept 'Ocl
1967 IMS 1969 1970 Wi 1972 1973 1974 1975 1976 1978 1979 1950 1983 1984 1994 1995 1996 1997 1998 1999 2000 200'. 2002 2003 2004
0 0 152 33 1B1 ?Sl 212 J$1 360 167
0 iW i 55 163 0 323 380 324 137
67 59 Bl i90 710 250 275 36$ ies 9B
54 50 69 258 258 266 432 200 444 186
253 0
null
1980
35 22 1539
7 0 1897
20 1 41 53 246 334 311 234
455 326
0 20 42 178 TIB 263 337 267 207
0 19 10 51 337 zee 322 403 248
110
102
66 13 55 9 497 355 351 292 368 126
44 :0l 37 105 202 JIS 337 276 245 22B
41 29 15$ 97 0 267 333 373 472 154
5 7 I’S 179 204 J67 J3t> 303 201 ZtM
0 0 W 44 169 350 4M 276 267 113
0 0 0 20$ 285 174 236 304 363 SB
Q B 48 62 237 369 4^ 466 306 197
0 0 45 66 291 275 46$ 2H 242 9
2 34 80 141 243 222 218 357 200 103
1? 2 33 100 225 2B1 250 25B 276 21
0 17 102 130 257 292 257 310 353 77
4B 34 208 83 317 232 290 203 120 70
53 2 50 142 340 307 221 304 232 309
13 15 07 57 203 332 314 327 291 245
20 3 13 147 431 441 319 242 324 329
0 0 4 133 256 420 ’86 273 286 242 0 33 07 72 322 390 297 329 370 211
16 4 03 30 1B9 29B 290 202 253 S3
7 66 B4 131 37 320 270 256 197 52
6 3 46 01 343 447 299 268 273 160
07
56 25
i22 26
21 iQ
0 29
20 0
62 9
4T T2
00 50 0
2322
2101
1788
1790
2171
1796
1993
1926
1655
1706
99 0 2293
26 5 1637
i0
17 0
ID 24
1580
1484
1837
45 13 1670
aa 4
59 1
2001
1942
8 39 2321
29 B
29 14
3 46
13 3
1827
2155
1450
1446
62 15 1917
23 65 Jt35 239 291 310 303 302 IJnB *1 12
’ 25 * 28
3 J5 1 8
0.77
F u9
0 58 0 454 0 312 0 2<2 02? 0266 0.563 1236 1 114
0.68 0 090
■0.91 0 837 0 56 0 345 0-375 2 913 i 172
W 101 20B 255 497 447 499 468 472 32B 253 46
0Q090
0 ?86 202 T29 9 0 0
1864
0 14
0 18
2322
144$
J
Water Works Design & Supervision Enterprise
In ASHKtidM With Inurconunental OnnttUHi and Technocrats Pn LidAt]q Deiesii ImgauoD Project
Meteorological and Hydrological Aspects
04: Mean Monthly Rainfall at Jimma Station ___ (inmmi_________________ _____ ______ -
T«r Jin Feb March April
Ma)' ZOO"
Aw
Sept Oct
1953
1954
1955
1956 19S7 1958 1959 1980 1961 1963 1564 1955 I960 1967 1966 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 i960 1951 1942 1963
33 49 88 T33 283 399 211 255 116
0 49 00 T33 210
214 152 27
33 49 85 135
91 25 100 109
29 4 83 250
0 52 117 215
43 06 53 13&
Bi 140 06 138
11 3<* 104 i<5
0 86 98 225
40 57 131 110
43 4 39 203
21 73 100 153
79fi
194
235
244
169
183 288 254 215
226 169 195
270
292
170
2T9
237
185
203
272
135
iB9
215
’30
249
S2
285
151
210 212
272 262 243
206 221 206 225
249 205 191
58
161 307 172 139
4 15 19B 02 273 207 233 250
3 74 63 105 55 81 199 91 78 135 91 100
18 3 50 81
12 74 127 115
20 11 7 149
5 56 TO ’03
4 65 100 ’71
36 65 107 112
n 56 54 10 5 71 42 130
32 110 111 23
233 173 240 210
165 189 105 104
288 197 263 148
153 205 204 20'
161 159 193
167
150 297 160 101
165 221 265 240
198 252 194 151
124 211 233
190
TO3 50 110 80 57 130 35 97 154 107 55 132 31 S5 149
55 57 25 95 93
197 203 265 191 229
1
88
36
16
3
25
15
68
68
22*
24
ng
215
59
35
68
107
103
10
1
7
110
61
222 104 215 203
232 153 164 115
134 57
23 42 100 30i 189
1 7 130 62
105 43 61 136
20 40 97 161
114 193
'64
250
141
154
223 141 192 157
70
109
31
94
9
27
127
212
3
36
23
96
3
11
42
3?
28
73
109
25
13
2
$5
5
36
44
0
10
1
55
25
15
35
22
2ft 1
37
Annual
1743 1270 1507 1523 150B 1446 1604
1509
1494 2012 1606 1341 1333 1819 1400 1253 1743 1465 1350 1237 1479 1414 1723 1491 1442 1169
1326
1337 1611
19B4 24 11 32 83
1985
1966
1987
1938
19B9
1990
199’
1J3Z
168
183
136
256
204
174 229 299 141 S4 7 1614
25 20 77 14J
0 48 02 H5
26 89 :5B 60
01 59 31 67
28 47 138 179
25 40 133 56
79 81 62 169 28 58 56 162
211 166 187
260 160 120
233 134 163
12
63
09
188 100 136 116
165 185 294 220
179 232 213 204
320 280 280 245
*7?
107
23
138
50
14
46
2
28
93
S
70
50
12
47
52
0
1208
1297
1331
1440
1477
170 1627
223
2B7
200 246 140 51
212 344 175 150
19
76
36
1712
1445
1749
129
Water Works Design & Supervision Enterprise
In AssMiBtien witu ImerwotinentaL CcnsuBuoLs and Technocrats Pvt ltd.Ajjq tJrdtiM Irrigation Project
Meteorological and Hydrological Aspects
Q4; continued^
^ar Jan Fro March April May June July Aug Sept Oct
Dec
Annual
1993
1994
1995
1996
1997
1994
1999
2000
2001
200?
2003
2M4
I—
9 01 110 237 237 225 1tt?t 263 164 17 3 0
?3 20 07 153 213- 274 255 155 177 11 16 11
a 2? 74 193 H5 -63 101 216 I4t 54 30 95
35 22 135 203 175 183 231 91 245 24 93 40 65 49 69 170 274 237 122 276 140 31? 24 3 36
103 22 97 93 174 223 243 307 200 201 47 1
30 1 64 72 214 575 136 102 131 196 1 2
0 1 39 194 210 ’54 266 ise 255 244 47 25
16 13 06 117 341 299 312 161 183 ">63 76 4
69 5 11 90 137 242 150 235 165 00 a 110
29 61 87 HI 12 272 187 151 239 92 30 15 51 24 46 131 162 126 216 219 210 133 67 89
1534
1415
1298
1476
203*
1713
1540
1622
1772
1330
12B6
1402
CV
5*flw
Max
JWji*i
33 49 W JJ3 172 219 2tW 2T0 702 103 60 36
O.fffi 0 7j 0 4t 0 43 039 034 0 24 0 26 0 26 0 67 0 96 T.05
0 95 9 60 0 55 0.41 041 2 53 0 3 r 0 f2 0 04 1 TO T 32 T 74
;os r4C ?99 30? 34T 575 312 344 299 337 243 170
0 t 7 16 12 114 9F 9f 50 TT 1 0
15C2
0 13
0 0J
2034
T769
130
Water Works Design & Supervision Enterprise
In Association with InttKontlneiittLl Consultants and T&cliiHMniis Pn. ltd4rjo Maia ImgaOnn Project
Wteoro logical and Hydrological Aspects
OS- Mean Monthly Rainfall at Dedessa Station
V«r Jan F»U Warth April May June July Aug
Sgpl O c<
mqV d«c_
—
1971
1972
1973
1976
1977
197A
1979
19B0
19B1.
1M3
ifta.
1985
:«g
1987
1M8
1989
^990
1M1
1992
1993
"Km
1995
-986
1W7
1998
1999
2WJ
2«H
2042
2
May 2007
——
jin Feb Mar Apr
May Jun jul_
1971 17 9 19 S 2i 2 2G 8 2i 3 20.4 132 167 i® 6 15 5 154 17 2
1972 T9 5 209 10 4 17 9 19.6 18 3
1973 179 7 21 5 21 5 19 4 179 14 3
1974 17 7 19 8 T9 3 20 2 ie 7 18 2 ’6 9
1975 17.3 19 3 19 7 i9fl 19 4 17 7 1® 7
1976 17 9 1® 1 “9 i 18 8 17 8 1 7 6
1977 1B2 19.0
1976 173 193 18 9 186 17 5
’979
’98C
ji 0 20 5 19 7 19.5 79 166 19 2 19 t 17 5 17 2
1901 171 17 5 17 1 17 0
21 J 2i 2 22 0 19 7 100 169
ms 20.5 205 21 4 5 18® 180 17.2
1986 19 9 20 6 20® 20.9 21 4 10 1 17 4
IM 7 194 20 8 204
1988 19? 203 2O.B 21 5 19.6 10 1 17 0
19W 178 IB 7 19 i 19 3 190 17 0 150
iSrSO 18 1 1®7 19 5 20 2 193 18 5 174
1991 193 20® 20 7 21 0 204 18 3
1992 19 i 20 1 21 3 20 6 207 19 5 184
1982
1W3
7 5 19 1 20 1 17® 174 17® 1B 3 18 7 i90 19 4 20 0
Aug Sep Oct Nov Pec
158 159 1&4 180 17 3 17 4 24 9
15.7 17.2 17 1 17 9 17 9
16.2 17? 18 1 17 2
17 2 17 1 177 17 1® 7 168 160 16 1 :9 ?
*60 18 5
1? 3 17 3 17 5
16 9 17 4 17 0 176 17 4
T® 9 19 6
1 17 7.31 11 77 43 177 18 8 189
17 6 17 7 ia 2 18 7 184 IS 1 1B2 18 3 190
17 3 1? 5 18 3 182 17 9 1 1 7 743 117787 1178.25 1100.09 1197 B1 17 4 18.2 1B4 18 7 20 0 IB 0 19® 19 1 IBB 20.8
1993
1994 209 20 9 22 D 21 3 19 5 17 8 17 7 182 19 £■ 198 19®
1995 20 5 20 0 2i 3 21 4 tSJB 19 4 17 6 18 1 18 5 18 8 189 19.5
1996 19 2 21 0 ?□ & 20 7 19 1 IB 4 17 8
18(1 18 3 18 3 IBS 18 7
1997 192 15 9 21 5 155 19 3 18® 17,® ISO i® 8
1998 139 21 2 21 2 232 21 0 19.3 18 1 1® 3 IB 9 1&2 186 192
17 7 16 6 17 9 184 19 2
17.9 16 5 169 18 ® 109
209
21 T
20 7
21 6
21 2
21 6
19 9 100
21 2 18 5
175
18 3
177
17.5
10.6
18 1
19 4
18 1
18 7 192
18 6 189
21 5
2i o
21 1
22 i
21 2
21 5
21 5 10 7
208 18 3
1999 196 21 7 21 7 21 & 19 1 18 7 17 3 2W0 17 7
2001 19 1 2002 19 2 2003 20 0 2MM 20 &
?8 7
1?&
17.8
1® 1
18 1
106
186
19 0
18 7
19 ® 19.®
19 1 19.6
T9 7
206
20 8
T9.6 ISO
17 3
174
T79
18.0
?8.3 T8 9
CV
i? M 0.13 0 05 005 0® 0 12 0 05 0 [)4 0(J5 0 05 0 06 0 09
Sxe*
-T 21 -3 96 -T IS -0.08 3.00 ^.24 -2 06 -0 86 -0 58 -42.54 -1 35 T 44
Jtfin
T3 9 75 17 1 18.4 17® 79 ?4.3 15 7 160 15.5 15.4 15 9
JO.P 2? 7 2? 1 23 2 21 9 20 4 18.4 IS. 3 T9.® 1.9 4 F& 7 20
Water Works Besign 4 Supenrisltm Enterprise
In tssociauirn nitb IntertontlneniaJ CctisultMta aod Technntnts Pm. Ltd.ArjolieDtisalnitratHH] Project
Meteorological and Jlvdrctugica I Aspects
D7 R eutivo Humidity at B g go le St at fo" ■,r % 1
•it Jtn FsC Mtr Apr .Way -Ju" jLfl
_ _ _ _ _ . ___
9007
■ ■-
198?
19BB 80 56 52 70 75 60 84 83 76 63 SO
1990 59 62 56 BO 70 rd- 82 60 80 70 60 60
i9aa 51 S3 67 &2 M Hi'
Sop Pel ■ No¥ -D**
00 ■HO 60 50 63 8$ H4 72 64 75
1991 55 « 55 67 76 BC 62 04
77 71 65 65
199? •58 65 50 62 SS 75 1993
1994 53 4 5 46 57 76 Bl
1995 46 M 51 59 72 ?□ 85 63 70 69 6A 67
7? 61 74 72 69 «
65 72 81 61 66 61
1996 59 M 63 62 75 82 1997 55
L99S 55 55
64
1S» 59 50 49 55 76 7b 2000 58
S3 04 6b 72 68 w
64 aa 80 76 64 63
82 84 82 60 74 70
2W1 62 62 65 65 73 Bj 84 84 83 00 74 87
KW 62 55 63 60 57 61 86 06 94 73 69 61 20W 61 54 56 62 66 fill 85 84 82 7.1 70 69
Arfr..^ 60 57 58 70 78 84 83 87 89 63 —
59 60 66 65 67 61
65 86 83
135
Water Works Design & Supervision Enterprise
In touctoion wUi lnttrconHnsntai Gansultanu aad Tfchnoenis p Ltd.
nDtfessa Irrigation Project
w
MeteoroloRical
- - - - - - - - - - - - - ii i ■
and Hydrological Aspects
D8: Wind Speed at Jimrna Station
pn m/sj
freer
.an Feb March April May Jwrw July
Oct
1973
1974 09
1975 09
1976 oa
1977 □ ?
11 12 09
1 2 00 1 3
07 1 0 1 0
08 09 09
1 1 09
14
3*
C9
09
10 09
Wfl
07
08 1 2 i 1 09 09
08
09
□a
08
08
07
□8
08
03
J 9 09
00
09 09 09 09 09 08
1979 C 9 0 8 OS 09 06 0 9 67 00 08
1980 07
1961 07
06 0.9 0.9 0 0 0 7 0 7 07 0 7
00 09 07 a a □ y 3 6 0 7
1902 0 7 OH 06 08 o h
07
06
06
06
07
03
11
OB
09
aa
oa
o7
o&
06
06
0B
09
00
08
07
10
0&
oe
o5
05
09
09
06
07
oe
07
07
0.6
06
05
1963 0.6 1964
06 0 0 0 7 o 7
0 ? 0 6 0 6 06 06 0 6 0 6
1985
06
□ 6 06
05
06
Ob
0&
05
06
1900 1907 198B
I 1989 1 1990
1991
1992
1993
1994
1995 fc996 1997 1998 1999 20OC 2001 2002 2001 2004
OS 0 8 07 0 6 06 0.5 0.5 0 6 05 04 0.3 0 3 05 05 06 0.6 0 5 05 05 04 04 0 3 02 0 3
0 1 0 i 0? 0.2 02 0 1 0 1 0 i 0 1 0 1 0 1 U 1
01 01 ai 01 0i 01 01 o1 01 □ 1 01 01
05 06 0 6 06 □ 6 05 06 06 0 6 06 0 6 05
0 i 0 1 0 1 0 * 0 1 0.2 0 1 0 1 j i 0 1 0 1 0 i 06 06 07 0 7 07 06 05 0 5 fl 6 0 5 0 5 05 05 0 5 0.6 06 0.5 0 5 05 0.5 0 5 0 5 0.6 05
0 1 01 04 02 03 0 l 0 1 0 1 0 2 0 1 C t 0 1
04 06 0 6 0 5 0 5 04 04 0 4 04 04 0 4 05 04 D 5 0 6 05 04 0 4 04 0 4 04 04 04 04 04 0 5 □ 6 0 5 05 0 4 0 4 04 □ 4 0 4 0 3 04 04 04 05 0 5 04 0 5 03 0 3 04 0 4 0 3
03 03 0 3 03 03 0.3 03 0 2 0.2 02 0.2 02
02 0 3 03 03 0 3 03 02 0 3 03 02 0 2 02
02 0 3 0.3 03 0 3 0 3 02 02 03 02 02 02
6 i □ 2 02 0 2 0.3 0 2 0.1 02 02 0 1 0 1 0 1
0 1 0 1 02 0 2 0 1 0 3 0 10 0 11 0 09 0 tfl 0 15 0 10
0 52 □ 62 0 72 0 73 0 75 0 74 071 0 76 0 82 082 0 83 0.8'-
Cv
0 52
05
o«
0 44
0 42
0 36
0 36
0 35
0.33
0 34
0.32
□ 29
Sin
0 04
0 16
0i
0 29
0 63
-0
-0 1
-0
0 02
03
□ 31
OOH
Mai
09
■2
t2
13
14
0.9
0&
0.9
09
11
10
09
Ifai
01
ai
01
01
01
01
01
01
01
01
01
01
Water Works Design & Supervision Enterprise
In Association wills Intercontinental Consultants and Technocrats Pvt Ltd.Af}d Ltdes.,4 Imgatmn Project
Meteorological and Hydro topical Aspects
09- Sunshine Duration at Bedel e Station
Jin hrsj
__________
tear Jan Fcd Ma^ Apr Maj Jun Jul Aug Sep oct Nov
. ----------- — --— —
F
Dec
1MT 7 2 6 9 a 5 5 6 6 6 3 5 7 8 4 8 8 3 8 3 «W8 7 1 6 5 8 2 7 9 6 4 2 6 4 2 5 1 9 7 9 5
8 5 0 2 79 7 9 7 4 6 3H 5 1 65 7 9 6 6 6 4
’990 8 9 56 7 7 54 82 6 4 3 8 4 8 6 9.6 H 7 9
1991 79 B 1 58 6 3 7 1 •4 5 2 7 3 4 5.9 e ti 4 7
194? 5 7 7 7 7 1 8 3 6 1 3 4 2 2 6 7 62 6 2 8 3 19U 76 66 75 55
19&4 7 7 7 5 77 7 6 ■ 2 4 3 4 SB 9 5 94 9 3 1995 6 8 66 7 7 66 r •B ■ ■ ■ ■ n •
Wj ■ ■ 79
•B ■B ■■ 3? 4 3 6 7 9 7 9 78
-997 7.2 92 7 5 ca 7 6 i 4 1 4 6 e 4 7 ft fi 7 83
1998 7 5 7 7 54 6 7 6 4 6 7 29 3 3 4 7 5 4 84 92
1999 8 1 9 1 88 76 76 6 6 3 5 4 6 66 58 9B
2000 9 B8 9 6 1 7 8 e ■ • 5 5 b 4 ■■ •
2001
■
2002 ■■ 82 7 5 91 84 6 1 5 6 3 1 6 9 98 8 3 7 5
2005 79 86 7 3 8 0 96 5 7 2 9 36 6 i 9.5 0 7 8 6
200 - 7 5 79 6 5 7 7 -5 4 3 4 2 4 5 3 5 8 2 8 3 7 7
tJj 76 75 73 70 6 1 3 7 4 F 62 7 9 8 3 8 7
|-5
ta
wt
L[iAl)(>Dedsssa Irrigation PrOjtct Meteorological and Hydrological Aspects Annex E. Hydrological Data
M*y zoo?
El S
No
Lisi Pf Sciectta Hydrological Observation Stations
Staliun
No.
J
------- =-
Slatton Name
____
Latitude. N Lonflitude. t
Dag Min- D#g. Min.
Catch. Area
1
(km )
1 114001 OttdhKtSB near Aqd
OB 41 36 25 9961
2 114002 Angar near Nekemi 1 09 30 36 35
1------Za. 3742
3 114006 Osoana near Abas ma 09 02 I 36 03 2BB1
J---- =—
Period
4i yhruairzu.fjf1ir-vi 4
i n1fiyAgf.f■l'siUnUri*d.
■4 rhfi 'Ti i DR.4
iyoz ij”4
■4 rtfin "ann^
lyyy-^uuj
«
1140G7 Angar near Gutin
2S
5 114DOB Yetou al Yaou
p------
1
07’ 43 36 1*-- -
42
—_■—
6 114009 Urgessa near Genroe 07 50 38
3S 19 19 ry-Zu'jM
47 1y79-d£UU4
4 r=iT-fi TiFIAlI
7 114013 DaDana near Bunno BedeHe CM 24 36 17
.---
47 1904-2003
a 1140'4 Dedessa near Dembi (ToDa) 08 03 —1
27
1606
375
__ —-------
4 r-i*£
19E5-2UDJ
J lJT.rTi'"3
s 114016 LOKO near Nekernt 09 22 36 36
-
10 114019 Temssa near Agarc 07 51
..
36
—
35 47 5
1997-20O4
1989-2004
ii 113004 Melke near Guder 08 51 37 44 38 1998.2004
12 1:3038 meins near Guder
OB 56 37
45 111
—JL
1966-2004
IS 101006 Jka ai Uh a
□8 10 35
22 52 5 1980-2004
14 Q9100B Gilgeignibe near Asendabc 07 45
37
11 2966 1967-2004
' 15 09’312 Gojeb near Sne&e
d
25
36
23 3677 1970-2004
L
Water Works Design & Supervision Enterprise
In AMMilttoa with ]niereonilneni>L Coniuliants and Technocrat Pvt LtdArjo Dedessa irrigation Project
Meteorological and Hydrological Aspects
Annex E2 Mean Monthly Streamflow at Dedwan near Arjo Station
i Million m3)
May 2007
Tear Jan
Feb j Mar ] Apr j M*y 1.
Se£
Nov Oec
■
1054
1124-
-
■
s
51 5
44 0
37 5 94 9 65 6
286
1176
1613
1503
1304
280
581
3*1
29 B
28 4-
622
930
1170
855
107
19 3
179 42 7 147 1
324
672
1370
1040
374
184
38 2 ‘
54 9
230
1049
1301
1178
1337
205
55 4
253
164 47 8 27 8
168
834
1051
665
957
320
71 0
63 4
57 7 74 1 62 5-
857
1086
1212-
•
-
22 7 20 4
708
1.2*8
1201
1260
459
96 0
52 9
21 4
a
-
W
"IB
50 9
46 7
67 1 39 7 732
349
956
T421
944
291
89
34 l -
45 3 288 929-
-
-
181
177 5
55 9
170 3
73 e. 157-5 210 4i
88 T 4*2 62 1
37 0 16 4 10 9 12 5 53 5 241 *23 1175 949 752 304 105 3
52 4 29*
25 9 112
196 35 7 56 4 118 003 1237 719 209 117
4 7 63 109 3 250-
* 1401 592 149
52 5
64 8
36 5 16 2 14 4 9 1 93 7 261 641 *278 119 48 9
24 5
21 9 11 5-
-
-
•48 3 37 8 24 7*
b
»
25 9 55 5 20 1
l* 1
12 7 -
12 4 80 1-
-
-
-
-
151 *w
324
89 5 128 7
-
-
1979
19&C
190'
1982
22 9 46 4 130 513 625 819 262 94 180 153 mo 6*6 1909 504 914 1288 1244 393 103
80 0 43 4 433 35 4 53 7 53-
-
*
-
-
59 8 ID 2 26 6 19 3 45 7 248 707 947 692 761 177 94
1%3 43 4 31 7 34 1 23 3 524 151 566 1119 1116 1231 265 121 3 i9fM 38 5 167 119 95 26 6 185 703 665 521 131-
1905
1986
1W7
19BB
1981?
1990
1991
1992
1993
120 54 2 5 n 8 62 4 169 438 927 842 260 79 45 0 176 9 5 16 1 13 8 12 B H9 452 494 732 222-
no 59 124 17 3 36 7-
-
673 388 160
era
5
4D5 27 5 21 6 7 7 37 a 2BC 555 • *■
-
189
233 20 4 33 5 27 1 121 273 439 1QB7- 107 123 1
53 5 300 338 60.9 42 0 157 343-
*
-■
--■
543 1143- ■ *
24 5 23 9 i3B 20 7 565 161 368 824 564 806 164
38 1
73 4
42 5 27 9 24 4 54 7 1052 3l2 600 1159 631 4Q7 177 63 3
19.1 196 15.5 ■ 57 59 7 220 534 1221 056 156 58
36 A
Water Works Design &. Supervision Enterprise
In ASSCtiaiion with IniertontmentaJ Consultants and Technocrats Pvt. Ltd.Mn a«k« [mfj-jui hujen
Mei&ortj Irinin nd Hydrolpgicai Aspects
UJUl l
£2; /.... Continued)
L^ Jin Ftb 'Mar Aof JU tv Jun Jul
r
' ;a uq Sep JOgI
k&u |C tec
1995
l^T
ltefl
1999
2000
2001
2002
2003
200
MM 122 MjB t9 4 38 3 as 225 569 466 iW gQ ■
*-
41 4 ■g o-
304 14? 8 373 723 654 598 87 2
-
f
-* >-
_ ■■
*■ T
-
*
-
-
■ - 242 1357
B5 i 59 5 «■ 57 2 126 3 401 740 1W5 1005 6?4
215 mi ?
99 0 57 2 55 3 63 4 46 2 >75 457 55? 575 211 115
__ Jr
83 *
362 552 74 3 120-
«2-
--
521 40 2 30 3 26? 65 2 202 Sffi 639 543 536 140-
#w
462 217 260 33.2 66.5 223 654 1007 389 581 177 909
0.4? 0.52 0 66 0 71 0 59 0 46 0 34 0 30 0.32 0 68 □ 51 0 50
0 66 0.6$ 1 14 0.54 1 M 0 74 0.22 -0 16 0 43 073 1_2fi 1,00
Mi-
990 63 4 67 1 94 9 190 9 503 5 1176 1 1612 8 15025 1337 4 459 2 210 4
W.in 12 0 54 2 6 63 12.6 53.2 225 0 49? 1 4 50 262 2M 299 67 22 9 11 5
5 9 4 5 9 7 9 2 10 6 105 243 342 218 ’04 44 1 27 1
17.9 157 12 5 64 23 9 153 217 392 4B9 147 52 0 18 0 11 9 76 4 5 11 5 Bi 31 1&7 253 272 142 24 0 13 E 10 3 58 56 22 r 90 52 252 5454 362 126 20 9 9 4
72 6 3 56 12 5 29 5 76 305 622 263 14Q 13 4 6 ? 7fi 153 12 0 8 8 366 70 136 269 103 71£i 45.? 17 1
11 2 17 2 156 3? 6 80S 252 334 370 204 11D 40 7 nd 7
1.2 3 13.5 160 22 5 37B n2 274 361 202 S9 30 5 16 4
129 12 1 15 5 23 B 48 7 07 >90 272 331 101 32 5 33 7
129 94 15 5 23B 48 5 07 IM 272 331 101 32 S 33 7
2i 2 13 8 23 2 30 i 552 >42 219 34 J 2CM 262 55 1 2B 1 136 ?D 3 12 7 3T 1 no ?72 415 595 329 880 21 l
130 55 6 3 9 5 54 9 14B 242 245 214 302 40 4 10 3
10 2 56 4 5 9 7 41 2 119 290 309 242 209 92 0 21 3
12 7 9 6 11 2 14 5 55 5 22B 330 322 295 212 59 fi 22 5
6 5 6 9 66 90 65 63 t’92 255 195 60 27 7 14.19
7 4 4 a 92 24 0 57 59 241 223 324 62 20 3 10 01
13 O 1.3 0 13 7 33 0 95 5 19* 206 208 145 39 IB a 10 0
Avrrjgc
icv
$*aw
WAX
Slftn
122 £47 TT 5 16.9 36 4 T»2 4 232 4 3569 273 ?54S 404 20 5
0-17 0 4£ 48 0 56 G 69 0.526 0.27 □ 326 0 20 0 561 0 81 0.53
s 35 0 3F G47 OUT 0 85 1 020 -0 47 0 927 0.89 0 658 26 1 96
2fi T 172 23 2 37 6 98.5 252 334 554 403 329 107 9 56 1 5.9 3.7 42 64 6 5 31 93 165 F45 39 13 4 89
Me»n annuls flow = 1l5S_Mm3i
Water Works Design k Supervision Enterprise
H9
to unnu)u wti mt,„„„„„„ CoKvor 1 SlicAffl
Station Diilc A lime of Sampling
lime
iSec}
G/beight
iml
Frow
im>l
Depth
tm)
Width
.w
Scdimeiil
Concen Remarks (mgi) AV
541 1 179/04 Dedes&a Arp 10 Aug U4 30 2 45
54? 2
M3 3
De-dessa Arjo tO Aug-04 26 245
Dedessa Arjci 10 Aug 04 20 2 45
544 1 ian.'O4 Dedessa Arjn 11-Aug 04 32 2 56
545 2 Dedassa AijO 11-Aug-04 20 2 56
546 3 Dedessa Arjo 11 Aug 04 27 2 56
559 1 185/04 Dedessa Afjo 1 Sep 04 29 361
143 12 9 05fl 17 5
143 12 9 111 35 0
143 12 956 52 5
196 11 11ft 1BO
196 11 9 6fl 36 0
196 11 9 6f1 54 D
611 23 13711 18 0
1417 50
1739 74
1740 74
1652 06
1718 12
1639 31
1360.22
560
2
Dedessa
Arjo
1-Sep-04
26
3 61
611 23
14 3R
37 0
1326 Bl
561
3
Dedessa
Arjo
1-Sep-04
29
361
611 23
1 460
55
1438 44
142
Water Works Design & Supervision Enterprise
In Asfioclatlon wilb Intercontinental Consultants and Technocrats Pvt. LtdAnnexure - 8
HYDROGEOLOGICAL
STUDIESHjdrpgeptogjcsJ LnvestigatKui^
TABLE OF CONTENTS
I*faLL OF CONTENTS_________ ______
LISTOF FABLES------------ -------
LIST OF FIGURES
1 ISTKODICTIOA __________
l 1 GJhl^al
T J LOCiH£»
TJ Pmyshkhapxv
1 .* Ml TXCrtXjL W AND 1fJ**CuUME5
1 PHI MGU HYDROGEOLOGY —...
2.1 HtaftOG4flH.i>&CJU-SETUP
2.2 Hrra»«6w of Dedessa over near Arjo
Table < 1 SAR and EC values in terms of irrigation water suability
Table 4 2 SAR and EC values for surface and groundwater in Arjo-Dedessa area ... . Tab*e 5. i Locations of the Proposed Piezometers
Table 6 t Annual gross crop waler requirement at primary canal head Table 6 2 Estimation of wetted area for Arjo- Dedessa irrigation canal Table 6 3 Seepage ios$ from unhned Arjo- Oedessa irrigation canal
LIST OF FIGURES
c igure i 1 Location map of Arjo- DeOessa irrigation project
Figure 1.2 A map showing J- D view of Decessa over Catcnmenl....................................... .......... Figure 2 i A map showing nyorogeotogic units of Deaessa river cathmeru
Figure 4 1 Location of water sample points
Figure 4 2 Piper Trthnear Diagram tor Water Samples Figure 4 3 Scnoeiier diagram for water samples ..
IIIRI I I 41 I I lit Bl IB IBBI I B■BB 11 IIIIH * IBM ■ HBM I •
Figure 4 4 Stiff diagram for water samples............................................................ Figure 4 5 Electncai conductivity (EC) in psrcm ano Total Dissolved Solids (TDS, in
htg/L for............................................................................................................ Figure 4 6a Map Showing Contour for TDS
Figure 5 1 Proposed Piezometers/Ooservation wells
Figure 6 4 Profiles along different lines in the command ar',er“ a Figure 6.2 A map snowing lines of profiles in the command area Figure 8 1 A map showing groundwater potential areas
............. ■--••• Miuri 11 i .
... . .... .
. _ _ _ ...................... ......... |
Water Works Design & Supervision Enterprise la UMcfcttoo nth (MertohUMataJ ComuUmu a d T^bnocrau, Pvt Ltd
C*no dmbu* rmr«j»n Project
BytlrogeoJogtcai Investigations
1 INTRODUCTION
1.1 General:
Hyarogeoiogy refers io me occurrence, movement. chetrialry (qualify), etc of grou m general it nas a diversified apprication in developing, utilizing and ma ' g 9
Half 2007
3
study and design of the pr^ct According th.s sttrij at Feas.bility Stody lecel has been undertaken
Water Works Design & Supervision Enterprise
tn A>«euaoti with loT.rHnflBwixl Cwiultaata d Tec tnotrvu Pn Ltd
groundwater Furthermore, different aspects of groundwater such as recharge drscna g
condition. aquifer type and set up, its interaction rmlh surface waler, elc are treated
(his discipline The nature of groundwaler and now il behaves, when subjected to natu
man-maoe activities r$ studied for different purposes such as for water supply ido
agnculture and industry j and construction of surface and sub surface engmeenng structures
teg., dam, tunnels, drainages, etc). In order Io develop and manage groundwaiei one has
1c know its potential, qualify and movement
Etnioptff nas diversified nyorogeoiogical icatures mat are attributed to ils geocogy structure hydrometeorology, topography, eic The hydrogeology of me country has noi been studied rhorougn.y so rar With the exception of few areas such as Rift valfey mai has oeen mapped al scaw of 1.25C 000, the country rias only small scate (1.2,000.000) hydrogeological map Mydrogeckogy >5 usually applied for locating borehole sites in light of water supply Groundwater has been usee without oecail understanding of the resource In spate of ample groundwater resources 01 the country very little been studied and used so far Currently however ncrt only grounowsTer development anaror utilization but also rts management es gertma an attention
Smce any development relies generally on proper utilization of natural resources, the gavemmeni has also given locus on water resource development both for domestic water supply and irrigation As part of this water resource development. Integrated Master Plan Study ot various Rrver basms nas been undertaken in Ihe country since some years The Abay Rwer basin is one of them Arp-Detfessa irrigation project has been identified as one of the projects during "he Aoay River Basin Master Plan study
rtydrogeok^l mvestigaHon and study that mainly focuses on groundwater occurrence mo^manl, ChMtofy. etc ha Men incluow as one of the components of the feasibtlHy Arjfl Dedttii LrTtfiUcn ^reject
Hydrogeological investigations
12 Location
Mty 2007
The project area is located within Dedessa River suobasm vrbich ifr in turn located m Abay River Dasm. it is within the Western Oromia National Regional State, particularly at m
junction of East woUega. Iluoabor and Jimg zones. Toe sub oasm of the irrigation' project is bodBreu oyQmo-Gibe River basin on eastern side and Sara Akobo River ba»n on SW 3MJe The total area of the catchment al the proposed dam is about 5,632.Mk*t The project location is shown in Fig l 1
The project arBa can be reached from Addis Ababa through two alternative hign ways that take either to Sedeie or Nek&mt. The all- weather gravel road lhat lanes from Nekemt to Bedeie passes through 1he project area. Hence, in general the project area is about 480km from Aodis Aoaoa through Jima and Bedeie
2uof^Auti
d»u> wqjjwf j-i flyArjoDfdtsii |rri£*a»a PtoJmi
Hydrogeological investigations
May 2007
GerJessa river caicnment rs shown in Fig 1 2
1 4 Methodology and approaches
in order to unoenake it* hydrogeoigoicai. etvesugeiiDn of A/jo-Dedessa imgabon profect
area, (he tolldwing meffwtWtogy and approaches have Deen used:
• Reviewing of tntr previous works and oats available with different institutions such as MoWR, institute of Geological Survey, Regional Water Resources Bureau and Offices Regional Water Works Construction Enterpnses.
• Feld survey to collect primary information on georogy.. hydrogeology, geomorphology, ano other physical features of the area
• Preparations rn inventory for water supply schemes and fixing their location with GPS measurement oi water level for wells, estimation of discharge for spnngs. water sampling Horn spnngs. wells and streams/rivers for physicochemical analysis
• merpretaiion of aenai pnotos. satellite images and Topo maps (1 50.000 a 1
250,000); appucanons of various GlS and remote sensing software to identify and oel neale uthoiOgy and geological structures, and finally to analyze, ana compile the 5patia> cats, and tc incorporate them as maps Tor various themes.
* m-situ measurement of pnysicai parameters of water quality indicators Uy using field water quality lesl kits (Ph. EC. TDS and Temperature meter)
* F.ngly, preparations of hyoroqeoiocical marw umi-h based -an all che collected ana a^aiyzea data
____ _..________.
4Fig. 1-2 4 map s/ioidng 3-D rfew of Dedessa rivtf catchmentArjo Uedtut JrrlfuJon Project
M»y w;
Hydrogeological investigations
2. PHYSICAL HYDROGEOLOGY
2 1 Hydrogeological setup
Ike .n w.oanc ».» flows ™.nry ».*»»> V—«’
MS Mm(mes
s
“ ’"''’‘““7
W.
on Jo. ». „
We
r as on LuOnoo- and «o«ga Sa>.o. W <*"=">> • "*"* ca“,,'c
lava row e.ew wilPm ta Oeoossa River »*» ^erB OU,C",,, "
MseTO„,
or vanoaa 9,annas. sasses ano pogmawe The veloan.e rooks on Jima s.de »»
r.1.oM ,o as Lovv.r pan or Jim. WHoWe. comping Pood Oasalr with ana sakes on the wesiem, soaihwestem. eastern and sooiheasrem pan or me over carciimeol. vspe > on the nigh land However at Iho lowland pan or the calorene nt along the Oedessa River, lhe outcrop 1h minor Meta-sedimentary gneisses
The '/oicarucs are* 05 Laie Eocene1* Lat& Ohgoccne ag&, whsre as the gneisses are of Arcnean age Tne volcanic rocks (bawfoc lava flow) m Bedeie area is referred to as Mflkonnen basalt cumpnsing flood basalts di directly owftrltes Lhe orystaUina oasamem that snows me jncontormatite relation for the two outcrops. Il is Ohgocene-Miocene age ^mitarly. Aro area is compnsed By such flood basalts ol 1he so-called Mawonnen basah
BasEd on tne investigations made m the area, variduS aquifer set up exist The main aquifers are weainered and /or fractured basaltic lava flows and other acidic volcanic rocxs such as rhyolite and ignimbrite The aquifers of volcanic origin have ooth confined and jnconf«ned character; for example the volcanic rocks in Agaro area shew both characters The confining layer in this particular area is highly weathered volcanic ash of clay size as reveaeo from existing well drillrig data There are aquifers that are attributed to sediments especially alluvial sediments along river valley and streams, and colluvial sediments near mounwms and escarpment in addition to these, there are also minor aquifers attributed to wealheren Dasemonl rocks tgranrtes and granitic pegmatatiles) This iast aquifer types nave hl*le significance m the area due to their limited areal extern and limited aquifer productivity T hc presBras of thermal springs, cold groundwater ana ratine springs m the area shows the o^rsrficalion o' the hydrogeotogitai set up of the nver catchment The aquifers of sediment
ano wwinerea basement rem origin are un confined. In
i
aadi Jon to (he (i
,logical
Wafer Worts Design & Supervision Enterprise
la AS3«iatjoa m bnmoMkHini Comhua 1Bd T«inocr>ti pvl lwArjo tofan IrrwuM Prnjrci
Hydrog ec i HjficaJ Lei .mtig auons
,
ma if W hinder ’*"*
Wrthift Dedessa River valley, deep £*nerra1ro5 «ry mammal due Io t r> ■ reasons, among them are the NQtl precipitation dense vegeialior co* J
■ve^lherec and or fractured volcanic lava IIomvs
*
The fin am groundwaler r echarge of (he area r$ the SE SW and the M E par a r he nr« calchmnni The pyroclastic flits of mannly voicamc ash uomposivon ts found al most pads o* the riYtr catchment such a-s m Setema and Aina-gv area The intercalations of (he votaanjc asft with fractured and/or weathered volcanic lava flows- GBuM the emergency o imart *
5E T.j5 in me river catchment of the area
r
However tne presences ot thermal springs with in the Dedessa fiver valley ire atTntvuted
■ma n v i geological structures, faults The physicochemical characteristics of (he frwma
sprint;- mgniy vary from upsueam to uriwri stream along Dedessa River wrfhun (he proper
are* Allhough it needs Further investigation to verify the physico-chemical vacation me
long*- *e»xfence twne 0? rock-wilier interaction while groundwater hows trom upstream to
□own \nt-am could be one possibk? reason
The topography ol Che area along with lhe prevailing; hydro-metecroiogical conditions favors the tAisience of well demarcated grounowaier recharge and discharge area
2 2 Hydrogeotogic units
Graundwalm occurrence mom and quality v» mamly governed 6y trre e^t.ng hyd^D^.c units The phrase hytogeotogte unit relers to the nscks (cwwoeoatw o unconsolHtaledi forming Lhe 1ran,B «,* for grouretwHwr Occurrence movement *r>i
Wuer Works Desltn & Supervision Ltiifrprise
lo mockttoo with laureourtaeoc., Cooiutusu ud Twhewrau Pvt L14
-Uwessi Imcidsa Project
Hydrogeological investigations
The hydrogeoicgic units m Dedessa nver catchment have Dfis^ catago
following unds They have Deen shown on map available at Fig 2 1
discussed nere under m brief.
2.2.1 Fractured andfor weathered volcanrc rocks
TM comprises basalbc lava ftows. acidic lava Kows and falls such as ig
pyrociMbc falls In this category of hydrogeofogrc unit, secondary porosrt
fractures produced due to weathenng and geological structures play immeasurao e
comparea to the primary porasityrpermeaoilrty The areal coverage of »h«s hydrogeo°g
unit r. Odessa nwr catcnmeni is 8.189 35 Kirf (79 56%).
2.2.2 Alluvial sediments
As the name impba* these are c oncentraied along rivers and streams, and it comprises vancus sediments ranging in size Irom day through sand and gravel to pouid&rs The areal coverage of inis hydrogeologic unit in Dedessa river catchment is 1651 D5 Km (16.04% J
2,2.3 Delluvial sediments
Tnese sediments bkisi at I ne t rendition zone irom the mountams/or piateaus 10 I he river valley They are aenved worn dawn siape moving earth materials Irom mountains mainly due to gravitational force From hydrogeological point of view. there are no as such demarcated properties between alluvial sediments and delluvials However, for Itie convenience Qi description, this hydrugeologic unit has Oeen described separately Delluvial sediments with m 1he project area have coverage of 452.91 Km (4 40 %).
2.3 Inventory and well data
in order io undertake detailed investigation pl the groundwater of the area, waler supply schemes nave wen inventoried and their geographical locations have been identified using GPS Borehole data have been oolleaed for detailed analysis of hydrodynamic parameters thougr complete well date are not available m the area Same of the measurements that have been undertaken for water supply sources during the field Survey are physical parameters ot water quality by using field test tots such as TDS, PH and temperature meter
Water Works Design & Supervision En terprlse
10 AlUCMti.. wtti taieretwtaeiteJ Consults tz d TwfcaotrW Pvt Ltd.
J
U*'J0 Defles“ Imfadon Project
Hydrogeolog-jcat investigations
1,s * 2007
ln add-iion 10 thes* primary data. secondary data have atoo been collected on both water Qvaiily and other Well data. Satellite images and aerial photos nave been interpreted to
•deniily geological struaures and other ithological boundary demarcation that have been venfieo py feia
2.4 Hycfrooynamjc parameters of aquifers
As * nas oeen mentioned previously, the mam aquifers in Arjo-Dedessa project area are Irjctured a nd. or wealhered volcanic lava flows [basaltic and acidic lava flows I ano sediments alluvial and colluvial) The boreholes in the fractured volcanic rocks ano sedJnenLs are either with partial well data o< totally without well data Table 2 1 snows the Dorenotes drilled previously in lhe study area and their depths.
Taoie 2. i Details or ooreho*es in the study area ho Weil ho PAi*village OopIFi SWL
1 wei t Metta 55 75 te
2 Wd2 Metta 43 4 12
3 We«3 Metta 43.5 17
4 HT-2 Oollc Sin 27
5 HT-6 Chdaio Bddima 72
"— ---------- •
6 HT-7 Chafe Anani 57
7 WCl T Chuli 62 1.3
a Wen 2 Chuli 41
—
17
5 Well 3 Chuli
’26
21
10 Well e ChuH 30
2.1
11 Wall 5 Chuli
25.5 1.5
"2 WellS
—'■■■ ~ —i iJi
Cnuli
42.5
22
13 Maea Talila SaKa«cna Brfiu 52 —
14 Iftu Brftu Baxaieha Bdtu 35 55
Water Works Design & Supervision Enterprise
Id AssoaaUoD with LntercDDUnenuJ CobeuIcmw tnd TecboocrMts Kt Ltd.
9*
5f
‘
-* Moirfftj ft^rogvotugfc units of Arf^DrttssJ rtvf ctfctmonr
Mcxm *r»i
I
/
hma Arjn
uIrja Otdtisn Lndcitlflc prgjert
Hydrogeo logical Investigation*
3 GROUNDWATER POTENTIAL J t Groujiewater recharge estlmtrtioh
May art?
.r.™ to
g ,puMwaB- ol an « >**-
' K ■W“l
-w. « usu^ nW » pc gra—a®- «*«* "al 10 “ 1'n°“n G,!>“
-e^rgc « an «« can be ertmMed
™ •*>*— «•"*•»» *• °‘
approaches is through waler balance metnod In eroer to employ
groenonate, WK1> estimation, the necessary Oslo n»»e been acquire for analysis In
SU «»m.nta, to tlw msthot. Ms. flow analysis to. R.eer.'s«eam flow (DedWM R~W>
nm. c™ tod.he.eh to det,™ some coefficnmts >or water ba.ance Hence. - ■>»
ground water pQtenrtiai osiimston oi Oedessa River catchment ticin meintxi*
e<*iO*Oytd m order to come up with concreie result as much as possible
3.1.1 Base flow analysis
in onaer to employ case lbw analysis approach f ma> * a.tr.bated to so
w -n. the river catchrrisnl to asses tne i ce
ha an
11 usftd in the water c glance
approach al 1he groundwater recharge estimation m the next section.
Tabtt 3 1 Monthly total now and Mmimtxn flow c4 Deoessa nver near Aqo Parameters
a,,
_________
Difference
—T-r-r—--- .aIj *—ak
Months
M'Tm
c
MJ?month Mbiec Mf month
M vse
c
Pfl ^niUHILM
_____ 1
J
- ■ IM 47238046
4 473 11SBW8.3 13 16 352575.
rfencs Rc = 2.105 796.B74 m’fl 4529 m * 9.9B1.000.000 m' "
This Runoff poeffioeni is used w estimate the surface runoff ’J 3007
1 - annual mean air Wftiperalur# in C
n
3 20
L 3 300 * 25T + 0 06T* |mm] = tiOOrrim
Hence, far (Jedcssa nver calGHmtni.. AET - 94d.57mm
Therefore. n DrtEf n esLimale groundwaHT recnarge for DOClessa R^r catChmern, lhe
vWue lAET = BM 57mm j ootarned by Tyre metnMl is uM* in the groundwater recharge eslmslon
balance melhca dI
Hence groundwater recnange m the Dedessa wer catchment oecomes as follows
GWr ■ P - Sr * AET) = 1452.9mm - <944 57+ 210 S3j mm - 297.5mm
This yafot is awui ZC 40% oi lhe total annual precipitation m lhe ana This mgn recnarge
rare na> m attributed possibly 10 Lhe r
0a
i frvBly Petter vegetation cover and tp the highly
fractured r«r prevailing in the area
F'-ally an average vafua from lhe two melhotis the tWM flow analysis method (196 6mm) and the waler oalance method (2&7 5mm). wmeh is 2*7,05 mm, has to Oe used as annual, flKMfowatar Hcrerga o( 1he area This value IB about 17% at the qocai annual precipitation
•n me areairjt Dtdcua IrngaUon Prcjoa
Hydrogeological investigations
4 WATER QUALITY
4.1 Water samples
teiurai wier mtrtds wtih env.cormeni, an also rt -5 affected by ant^pogemc process
M*T W
fl
changing y cased on its purpose iff order IO use t Some po _
physical anc chemical parameters have teen determined for the water ol the study
compare its quality with certain standards set by different Organization such as WHO
specific A-aler uses
Water samples rrom drffereni sources nave oeen taken for physicochemical and microDKMogoi analysis oased on the actuabexisting geology hydrogeology and geomgroAoiogy of the area Accordingly, a total oi thirteen samples have Deen taken Irom springs anc Wells Fig 4 1 snows the location of the water sample points All the samples haw* seen suomiiceo io the laboratory or WWDSE ror analysis In addition to these water s^mpes collected during the field work, previously analyzed water quality Dy drffereni institutions nave seen jsed for nydrogeologicai interpretation of the area.
Among the collected water samples, four samples were taken from springs and nrne were from oorenoies The numbers of samples have Been oetermineo based on various conditions such as geoiog^cai and hydrogeological setup of the area and availability of previously analyzed pnysico-chemfccai and* mHcrobioiogical data in the area
Water Worts Desifiu & Supervision Enterprise
In AssocLntini with ItlerenntUKjntxl CodsuIuluu ud Technocrat* Pvt Ltd
16<1A 40
(towing witsr wmpie points in Arjo- DtdfUi project «r*«
_
0
40 faorttmffArjo Btdsjsa lrriE>tiOB Project
Hydrogeological Investigations
2007
4 2 Sampling techfiiqucs and analyst
One duplies
a total of thirteen samples have b«n ofled
laboratory result?
sampte » collected from spring m order <0 see lhe reproduobHrty of lhe
_ ar^iucM nn ii In order Ko undertake
Naiurai waler is sampled ift view of carrying out various y
. - h»wn nollected for physicochemica. analysis me
an^iwsifi The
waler quality analysis water sampttS- have been co
covert water samples were from ground water « as one category AD 02. AD-03, AD-04 AD-OS AD-OS ano A0-11 as saeana ca^on,. AD-07 ana AD-OS aa u™a ca.egar, and f.na»y AD-OS aa fcWto c.l.gcy rtowwr. d « reline (unbar the waler type baaed aa ,he cbem.de! composition, (hey can be categ&ri^Bd in to five categories
Wator Works Design iSuperrlsion Enterprise 1. ™ ...a™^ C M1UDU „a
.
18Arjo-Deftssa IrrtgiUsn Project
Hydrogeological investigations
■ Na- NCOS w.isam(« AD.01 ■ AC-07. AO-OO *0-10. AD-,2 AAd AO-.3)
• Ca-rtCO3 type (Samples AD-02 end AD-111
Miy aw?
•
■
•
Ca- Mg- HCO3 lypc (AD-03 AD- 06 and AD- O9j Ca- Mg- Na- HCO3 type i Sample AD ■ 04 J
Ca
- Na- HCO3 type ]Sampl
eA
D-06?
Th,
,□
aruor.
™
«.he d.He-.h.
aa.np.os ^ea..ng «r»ua eonmuona o'
rucn-water interection.
4 3 2 Schoe-ller diagrams
These seoii-iDgaritlunit diagrams were developed io represent major ion analyses in meq baa kj aemonstrate different hydrocnemicai water types on me same diagram. es typ graphical representation nas the advantage that unlike the trihnear diagrams, actual sampe concentrations are displayed and compared The Scnoelter diagram in AquaChem can be
used >c p»i all samples in the open database o* selected sample groups only Up to 10
different caramelers can ce included along the K-axts and the symbols representing the samnie points can oe customized according to snape and color The Highlighted lines ir-dcate specific samples that are selected m the database and ere also highlighted on all other open graphical displays The Schoeller diagram for the water samples of Ago Deocssa area is available n Fig 4^3. Water of similar source (type! shows a similarly snaptc curve where as water of different types snow differently shaped curves Accordmgty two major types erf water can oe .oentified from the graph Calcium Drcarbonate Lypes Samo*es AD-02. AD- 03. AO- 04. AD- OS AD- 06 AD- 09 and AD- 11) ana the sodium bicarbonate types ■;Samples AD- 01 AD- 07, Ad- 08, AD- 10, AD- 11 ana AD- 13)
4.3 3 Stiff diagram
The Stiff diagram method of water quality representation jses a scale (or concentration of JO n& in along me r3l« The tons are arranges along y-axis in such a way mat Ite
aeons Na' Ca*“. are w the iett of the cemw □! m ^tnng scale ana me amans are
e
10 lhe right Dl 11 It rs snown Im some the analyze samples .n F»g 4 4 Acoonj.pg [D this
ngure water S.mpfe of the project
r can oe calegonzed m io ;hwe majOf groLjps Na.
9 SB
HCO3 type .samples AD-Ol ADO?. AD-08 AD-10, AO,12 and AD-13), Ca-HCO3 type * a"pwS AD-02. AD-03, AD-09 and AD-11>. and Ca-Na-HCO3 type (samples AD-D4. AD- 05 and AD-06).
Watw Work, ntsijtn 4 supervision E^rprise---------------'------ -
In
V.U,
C „„||1OU - AD-14?
X
*
A£>M
ACtiJ
AD-TJ
'K'
Ftg. 4-2 A map showing Piper trifinear diagram for water samples in Arjo- Deaessa areairwpf]
ACMJi
a
:±z
AD-02
—< ...
AC-03
_ „ -
s
AC-I>
-■■A —
AC-Ofi
A£j-O6
ADCC3
50-
C!3
w
&•
Mf
d
=- ■> hQO3 1 LX SO*
_L EC3
Kl
Ci
Mg
K
i1
I-
1
Cl
hCC3
SO-
COS
3
3
* *A>OS’ *
V
fc nup sh*mfi San diagram wr watt, »mpirt in Arjo- TteaesM Prtyta ar«a rOonceriL maq?_j
1_
ill
K
A
CJ
HC3J
50- COS
AD- P9
«1 3
AD- 11
*
c;
■fc Si
*a
K
1f
X
** HCQ3
SO4
CO3
<■
«K13 I *Aflfrhdtni ]rri[id&D JTpJ wt Hydrogeological knvestigatLom
4.4 AgriC'dlEurai/krigaiicrt wafer quality
.
AgncuttlMi EuiLaoihly of wafer depenas cn flop type. ClnmalB. M>il typ®. 5 dsfr&s&eti Dy 1he s&>callecl Sodium Adsorption Ratio (SAR?. 11 «s caused by sotfc water Sodic water is water Uhat mas high sodium canraniration relative to the cDFizenLraliofi o1 caicjum and magnesium Water is said la oe sadic if rts SAR is greater than 12 SAR is calculated as foltows
SAR= tM*T^5[C» * * Mg**|
a
1
Where Lht concentration of each calton is expressed in imt-q/L If the concentration is expressed m mmoi/litrt SAR = (Na‘p >' [Ca** + Mg ’]
According to Todd (IMQ and reference? there in), the water quality evaluation for irrigation baseo gfl SAR anoi Doucil lb
KMK 2000-M0Q
u™ Jirabe
-3000
„ Mtr B ™i. »,l.r , uailty (w lmga,iwi (rom 3,,^ anfl Sod|(]m W *, ltD.d.5S. we Mr.™.,,, Men mwula()
sno^fi in Table 4-2.
i.
lister Works DesigniSupervision Enterprise —
CtD!Llunii iM T[
£«' a
3**Fjd DEdnu Imf >uon Piajin
jy«ln)gBpn»gieaf iiiYisnganons
iBDlc i.2 SAR and £C values(cx swrtace and grounff-^aier in
3007
a area
n.1 lx ■Q-J
at a ” *£ •■
r—-1
11^ ,
21 £
L__
3JM
Acci-cnq k 5AR values owned IflT the MB»f »"'(*«■ AD-Ol . AD-07, AD 10. AD
AC-13 M all «#c -to. >« AD-OS.......................... .. “A”''
m a,a al. non MO.O f-vr imganor ooisr flUPMy t*"* »' «*» IM’ ,3"9a ' ° excellent quality “□ poor ctuaiity
Buifromwlinifr pint Of the qurty «r«4 frtm
”• 'ne ,e,T!ainin9 "
fm
id unsuitable. i.e from 41B
Ii5.cn-.1o4450^cm ftothef worts itMbtsaid fte salinity ranges from medium sahnny 1C vtry Hh^i saliruiy F SMnlly lor
„ ate,
a. in, TO EC and TO TOS Contour map a TO TDS .. a.a.TO.e al F,o 4 6 the „0]ic-
'« MKnp„w M me
“““ on to., Eiednc ^WM, „ TDS .„
-, MIag0IIZBa lmj
fr '
.,
us
lo ABSGtLul« wm InrsttoBClnMol ........ .............
Water Works Oosigu 4 Supervision Enternrlsf
'
a
IflnjBitua M(1 TtclflQtrita
• ,ns e
24Arjo Dedessa tmjatlnc PtoJbcI Hydrogeological Lnvesttgadons
bUf 20(17
AD-OS AD-Q4. aD-05 and AD 06) nave low »i*»rty. four samptes <*0 07■
and AD-13 have h^h salinity . and two samples (AD-01 and AD-10) are extreme y
?
Th,s qu3lltallve desertion doesn't lolfow standard procedure of water qu y
classil.cation based on TDS and/or EC. but H * s^ply for the sake ot descnption sampes cooed as AD-01. AD-10, AD-12 and AD-13 are all from springs, all other waler samp^s are Irom bomholes (drilled shallow Wells) Hence, it is possible to conclude evan if they are all from groundwaler, they art from different aauilers The more sail water high TDS values! are mainly from weathered casement rocks (granite granitic ^egmalde.i, and oeep-seaieC volcanic aquifers especially along fau I
Ihermai springs).
,9
1
Water Works Design t Supervision Enterprise
In ASMcUUM with lotencnilooat*] CoanKuu ud Techaocraxs Pn. Lid.
25□□2
ftg 44 4 mip stow/ng IM contour tor Totof DiMofred 4i>o - Detfesu Pro/rcf ar**
sobd* fros/ns^ *>'
4t
M A imp sftors* contour tot Total Dni&Mrf SoMtfJ fTOS ‘ Arjo - Dedeiu Prttf«r ution of the piezometersrObservation wells is selected base
gecH&gy nytvogeotagy. topography grwjntfwater flow direction, etc of the area Since the deplf c! the ptezometers io be construcied rarely exceeds 100 rneters, PVC casing rerem mendable tn soma cases the exSting well oeolh al the immed.ate down stream o' the proposed flam axis are 50 - 70 melers depth
Title 5 1 ihow$ s available &n the map srm^n ,n Fig 5->
Water Works Design k Supervision &ternnsl ----------- ---------
27Aijq D’Edem LrrlgjlUcib pjojecK
Hydngeclogical investigations
5 -2 Future well field
May 2*£T7
The Poteniiai aqurier$ for groundwater storage in the area are basaltic lava flows with minor sai'Ci including rhyoliie and ignimbnte. ano alluvial deposits in the river valley of Dedessa Thi$ can tie verified by existing boreholes data in the area For example, Borehole data m
Agarc area snow this situation.
Well field sites on which detail geopnysioal investigation shall be undertaken have been ideniiliec nasea on geotogtcaL hydrogeological and geomorphologicai seltmg/or approaches Tesi wells drilling and construction shall follow the detail geophysical invesiigaUon
Waterworks Design & Supervision Enterprise
In R-sshIiUoh with teuwiMttMMai Cvumtluia Mi Twhentcrats Pn Lul5-1 a nrap snowfng proposed ^Momettrs, water pomes arxf waf*r sampling pomts
L
—_
’VCW u#r**>
■h?u
Si£>u Str*
>uzo
AW |9orr#y4
Goto
Sex* CfleiArjo BfOrssa Irnftidca Frnject
Hydrogeological investigations
6. WATER LOGGING AND DRAINAGE
6 1 Topographic features and soil characteristics
The jnauiasing and rolling topography »n upper pari o1 the project area g a >
gentle nope pl flat land m Hie txXIom valley of Deflessa. especially [he icwe pa . cormnand area necomtJ almost flat This Hat land is covered wifi sediments a y
callu. .il aelluvial and alluvial angin This sediment is underlain mainly Dy Las
The topography and iand chaiacrenSUGS af 1he command area can t>e sa>d ■ o level > 1%). nearly level (1- 2% slope,1. very gentle (2- 4% slope , and gentle (4 6 slope categories as about 35% ot Ife command area (alls under firsl two categories and about 23% o1 the command area falls under lhe last two categories Though the command area IS sttin, d rtas a rolling topography ano there are several small hills dispersed m the coiTimarifl There are nftng hills also an the outer boundaries of the command area on Dot bank? ol river Dedessa
li*y 3XT
1
maior part of lhe area is comprised of vertisol (47% ol lhe command area) thal has vfrry low LW^n^aciility Nex: w vertisots arc cambisois ano luvtsols covering 15% ana B 60% of the are m respectively Hence this sb«l type hinders lhe in fibration of lhe most incoming racial during rainy season On one hand thia neips lo restrain the rise erf (he groundwater table through reducrig infibration. on the othe< hand lhe plain nature of the land wouldn't aito* t"<& surface run off to How out easily
6 2 Existing groundwater table
Grou-Ml water teval m lhe projeci area varies from 2 lo 20m h g I In lhe command area the groundwater taoifi is 2 meters baiow surface during rainy season except in few exceptional cases ,J surface water logging During dry season lhe groundwater table was 1ound deeper lhar 5 raters below natural ground surface The nse of the groundwater table can happen oue JiHereni rwtoral condilans anq man made activities. The appl,cation of irngaicn praence is toe maior human mterfereftces foe nse of groundwater table Th® method of xngaton (orip furrow ete) that is practiced and the crops proposed to be grown *,li deiemwva the extent to which if may affect lhe nse m groundwaler level of tr>e aoa
Water Works Design t Supervision Enierartse----------------
“ kmctali. |Bi™oUbmw
hl
u<
imArjo DedesSa tm£itfo6 PTuJ-ctc
Bytlrogtologtcal investigation
6.3 Future groundwater table and recharge frorrt irrlgsrilon
Whenever mere is a mapr mgatpri project wilti continued BrHJ intensive irng
there IS always an apprehens.on of n$e of groundwater table * nse of ihe groundwa e labie is significant, and n continues unabated, it may cause serious adverse p lertiicy or (h® land Some of the -adors that aflect the nse of groundwater are
■ Topographic features
* Lane cftaraaenul«
* Naturae drainage system
* intensity and amount of rainfall
* ExisUng grounawater taole
* Son characteristics
* Crops ana «ls water requirement
* Seepage and other losses from cana< system
* Surface drainage system implemented ano its effectiveness
MV 2OC7
f
T*» esiimaiM annual crop waier requirement al pnmary canai neao. for venous crops Io be cuflwBlrt m the command area of lhe pnjposea Arjo- Deoessa project composes lour set of vaurt-s categonaed under two phases each phase having two rotations. This rias been snowh in Taoie 6 1
Tania 6 1 Annual gross crop water requirartwrrt » primary canal head
Str ho Phase
Rotation
GCWR (mm)
1
1 -J
1
987 40
2
1
'
3
__ i
II
1
1086 14
bl
1
1311 47
4
II
II
1423.234
-
In order to assess groundwater recharge from imgalwi water the maximum value of lhe Gross Crop Wwef Requirement l.GCWR? in the s*conn p base o f $ «ond rotaLon that
1423 234 ™vyr has been used Therefore, the groundwater recharge from the appl.cal.on or irngatoOH nas been eslimalec under two main situations as follows
Water Works Design t Supervision Eritmrtse--------------- —
In ^scctttioa wim liLttxoclineat*) CoBsuluata nd Tech noerxe LldDedeisilmgidcn Project
M>y 2OT7
Hydrogeological investigations
. ihni rjSTifjrt fiul Cjf ttlU' l‘Dl-tl'1
1 According to groundwater recharge estimation made •
annual precipitation in the area, only 1T% is gcwng fo* recharging the grou
if Ihe same scenario is corwdaracJ. annual ground water recharge
application or irngaleon in the command area becomes 241 95 mm. T
crude estimation since various factors among which the irrigation method can affects
the groundwater recnarge
2 Along with other crops cultivation o( paddy rias bMH proposed in the command area Paddy is the only crop mat requires constant standing water in the field for rts growth and d evelopmenl. Thus paddy cultivation results into percolation loss, and only that quantrty of water which fS lost through percolation has lhe cihancu and tendency of reaching groundwater H may be noted that about 330 mm of water is eslimaifrd to de ins! through percolation, and onty this quantity of water has tne scope of reaching groundwater which may add to the rise of the ground water The intensity of paddy is only 30% in phase- K which will increase finally XO 45% m pnase- ii. Consfcdcnng the entire command on average, the annual contributions Qi imgauon wsner tc She groundwater would be 99mm in the Phase- I, which will increase to 140 5 mm under phase- II.
Regarding other crops, they are all qty irrigated i e.. no standing water 15 required The imgauon waler applied to the field in case of all other crops except paatfy will be contained as sol moisture- within the rooi zone. Very smalt amount 01 water which will be lost below the root zone, will reach the ground water Other losses will be in form of surface runoff wnicn will pe lanen care Dy sunace oramage system As HUCh (he afldihDn IO grQu(ldwa1er 3 ue to imgation of all other crops except patty may be considered negligible and fherelcre. may oe neglected
Seepage ma » the graunawara, I™ the Mna5 (mair,
secOTd3ry
cans!J, TOs also peen aalrmalu According ro unmo Slates Bureau ot Reclamation
tU S6R r. seepage IM, Iron, anlinad lmgstlDrl
ci na.r.a area tor «„ an0 ,oa„ !oite. Basm Qn
,s, 5
tan Ago- Dertessa rmgar.orr canal rs shown In Tattle 6.2 ano 6 3
8
32trTl(*dflU PrtjtCt
aydrogeologicaJ iLTtsUpdons___________ _ _—-
Tjbla 6.1 Estimation of wetted area for Arjo- DaOostJ irrigation canal
^OD?
■
Snr
to
Cmai
tit* gory
Av trig*
witttd
p*rrm*i*r
Tout length M
Art> (m )
1
1
.ft
_
Rtahl
— —I
Left
Ltlt
IN^I«1
. ----------------------- 1
Rignt
■ -------- ------ ——1
1 Warn CrBnai
2
■zaniii
3 Tertiary
utill
Totai
a 7iis Mill
42.800 00 .
eojflO 00 1
”279 639 00 .
"*60 873 00
131,896 05
2 795 2 795 49.370 00 47'9D 00 137 989 00
1 02 1.02 199,4M 00 Z39 100.00 203.453 00
Total
Am*
[m’f
7*0.312-00
269*85 05
----- — f--------- 3—
1------ ""--------- ”1
243.882 30 *47.33 5.. 00
11_*4■737r 317• OS
&
621,061 00 836.651 05
U nt w ™ W*'
irx “> ™>*
Table 6 5 Seepage iwb from jnllned Arjo- Pedessa Irrigation canal
Nt?
Cwnmarfl area l*nng]
Riqni Bank
Wetted area 0« Csnai (mi1)
M»n canal Seconoa^
canal
Tertiary
oana<
Total wetted area (m )
3
Total seepage loss (mmj
? LHttBawr
■3 Tout
rT Tfful Swp»4" t considering a range from cLay to sand soils This parameter will &e used to graondwaier leyei nse due co the application of irrigation.
Finally by knowing ttw grounowafer reenact from the appticaUofi of imgatiWk and the pwwty Cl the anuiler and the SOlI maienals 3M>ve it. the extant ol IOe groundwater nse du» to uh* aopticainjci d! rriQBilan has seen esiimateti under different scenarios as follows:
Scunano I: No grnundw»t»r ftow* out of the calcnment (stagnant condition) Annual groundwater recharge from SpplicatKrfi of irrigation, GR = 241.95mm Effectwe paroiity of aquifer f>
1 92 mm
i»amou..
Water Wark? Desk^n i Supervision EnterurtiT^ —
igi
1-4ArjB De4*m Lmt*uon Project
Mar
Hydrogeological Investigations
_ „ application cl irngahtm
rn [tl
Hence it we reduce this amount Irwn the recharge ■' u
(
TOrmxwo above (!4>9Smm». ins ™i r«C«'9® •"*> oonlnbules to 9rou ™ a.™ only .S 4mm Thofstore. U«e. TofVjo J30H1M0. 953187 677
From Pm
6 omw
haU M trr^t *OWFrqff! P« Him •**?•« *<•
i« pob Fiftsji.m,
rfAi&trtvrs Aafcjkfii**-iwTWMilFJ0. fl? A mip fihowfnp
Ira fJs* com/rtfliratfAljD-DsfltMi IrngiUim Project
Hydrogeological inif estimations
7 SALINITY AND SODIOTY
St IT ^°7
Salinity at soilsfwaier can be defined ki terms ofelectrical conductivity Paflicu 3 y
rt is the electrical conductivity of the saturation extract However. sod icily >5 Ine^
of 6 xtTiangeaDle SQflium percentage Salinity may be C stegcrized ■ n to two b a&fid 0 sources primary {inherent! salinity and secondary salmty Primary (inheromj salinity IS denvaij bum the weafhermgi'tJegracJation cl primary rocxs/mi nera is It usually occurs when evaporation exceeds precipitation, Where as secondary wlkirty >s derived from the upward rnortmertl dI salts from saline groundwater through capillary size ihXler the situation of ir adequate leaching Thu situation happens mainly under shallow groundwater Mass flow Io
the soil surface through capillary r» fl known to cease when the water table ta below 2
meLers m p oay and srlty nay; where as the seme value i& T 6 meters in coarse te flu red
Waler ana so-i salinity occur aue Io differnm reasons. Among Inem are over irrigation that causes groundwater level nse due 10 in appropriate provision of drainage and/or crop water
■nefluiremertt calculaKm. poor method of irrigation, capillary ITM of grouhOwatbr due to natural!) nigh groundwater tavel below surface, etc When such raised grau newsier level is SuOtedtrS W ewpontion loss, the chemical constituents of the water will be left Over ana
□eccmes concentrated on IhE surrare leading io soil and/or water salinity The leaching of some exiting nwlnenls m soit is also lhe potential source oi salinity ol water and soil m ttygation m order to MWH the possibility of salinity for the project area m the future. data haue dmr collected and have been ovjlualeo Among them are the existing groundwater quaky (physicochemical characteristics of groundwater}, ano soil chemistry Other Parameters that have been given emphasis here te the meteorological parameters that cause high evapotranspiration However, the high rate of pncWnuon (rainfall) m me ares an coufliarac the prat^m by leaching the hignly soiuWe saHS such as chlorides, au[pnares and arbowe sails
Mrtdn 01 r.B1,«iy la)™ wato „ spoIad,c me srBa „ ,cr^s(aUinej M .no .a™ wn9s Cola gro„„ „
a a,er
asSQc|aiM ivah
™"an< «-»« o.M «
TOS, ana
very |m M||nity A map $
Total DtaaolvM Solicre at tne brojsci Bn&a jB mailable at Fig 4 5
W>t« Works Design t. Supmiaon Enn^— — -
1.mmum «» H,ITO.U., BU1 cB1,to.u
39
wDedcsss IrrlgaUoB Project
^y^rogeoiogtcal investjgauons
________
Hence, !he roszorcj soiMwaiar salinity during ine des«gn penod o» toe project can be controlled naturally {through h»gh precipitation and topography of ine areaj or artificially througn appropriate irrigate water management.
Water Works Design & Supervision Enterprise
to AiMcktduft With ItttireoauaeDial Coasattinti mid Teebaocr*^ Pvt Led.
40LrrigfcUn n ProjKt
Uydragagloglcalinve stigaiio ms
8. EXSITING AND FUTURE PROSPECT OF GROUNOWATER
8 1 Existing groundwater development
Presently the- majority of the Woredas' caprisi lawn, and the rural community m the n^er catchment are supplied potable water from groundwater, eilher through bor&hole OTnstmcttOfi or from sprmg development with the exception of Bedels town that get water from Dating River Ihrougn lhe Treatment of raw water The yp&id of groundwater from some volcanic .ava tlcw shows very promising result bofn for cuirent and future water supply from groundwaler lor different purposes Can be mentioned &5 examples are boreholes for Aga re Lown wnare The yield ■£ about SOliUsec from a srngle borehole Furthermore, the aquifer in Ibis parbejiaf area has multilayer system attribulmg to a confinea aquifer
Here, il is vital to discuss Aggro town as an example The town is entirely supplied water Srgm grouneweter through boreholes There are three new Boreholes and Two old boreno*es Among these Ouratrc*es, four boreholes are currently functional, one from the okl anb imee of the new borehoies
m addition ip ihis. the Quaternary sediments in the nver valley are the potential aqurfers for groundwater development, particularly shallow grounowaler
Other Wgreoa towns ih^t are supplied potable water from ground w-uur are Ajjg, Atnago Gaura ano Atnago
8.2 Future groufi£twaler prospect
The sKisung gedog^BL meteOrofcogwai, hydrogeological and geomorphoiogicai conditions in ine fiver catchment indicate There are areas -Jhai can be aeveioped in tight of gfounowater lDTvariwS WMTftjpply purposes Acnnfotfy. potenuai well field sites hm been loentified in order to de^Etap ^ovntfwMtf Th™ MwiMtad well fie« sues hav« to be vnrifled based an g«pty»Cal mveshgalrann and Hit wM arifllLng bei
<