In AtsodaUon *iih lnterronunenul r«niuJt>nu and Tfchnotratj Ph hdV|fll>drt«j IrrifitliMi PTnl«-t
MciflorologlcaI and Hyrtrological Aspects
May W
P«rc«nl Pow»r •» Equalled o< Eiti:»»dod ,
fj.4) Power durjfton curve far FRL = 7 J5Jm • Option IV
Cl
Jf) 40
Porcvni Powfr i«Equ4llAU ur
K
qu
' LMJ
%
ft), 1J Power duration curve tor Ff?L = 1356m - Option /
9
Petctnl PoMf ■» Equalled or Eictecivd *,
(b.2) Power duration curve for FRL = 1356m - Option M
Waterworks Design & Supervision Enterprise
In Association With IniertxMKlnrntal Consultants and T« hitocnts Pn LtdVJfl O*d«M irrQProjerl
Meteora logical and Hydrological Aspect
Wiy 2007
ib. J) Power duration Ci/fVfl for ERL = 1 JSfim - DphiSri III
tb.4h Power duration curve for ERL * TJ56jn - C^fah fV
Water Works Design & Supervision Enterprise
In JlMorl^Uaq until In trrton Linen iat Cornu II anta and Ttehawctxls ptt Lid.Ar] 0 Dedessa lrrigaUon Project
Meteorological and Hydrological Aspects
■■- - - - - - - - - “
15. RECOMMENDATIONS ON TRAINING NEEDS
May 2007
It is very hearten-ng development that the water resources exploitation for optimal utilization towards economic stability is gelling the major thrust in Ethiopia WUh phage of activities, soon, ihe rich river basins will be impounded in different storages associated with a number of runoff the river schemes eilher for irrigation or power or in a multi objective sense. As such, m the present scenario, the hydrological planning and design are m the usage. However, 'when the basins, in the near fulure, become stuffed with many projects, then, the real time operation of those projects will be the dire necessity. Judicial operation al a multi reservoir ■'project system has a lot of benefits in combating floods, tiding over drought., reduction in water losses and others, However, such real time operation would require a complete knowledge (in the hydrological sense? of the basin system, and hydrology and simulation techniques (simulation coupled with ophmi?a1it>n models}. Such a scenario of real lime operation will have to be backed up by Itood forecasting networks, advance prediction of seasonal rainfall adequate telemetry (for iransfer of data), dedicated computers, telecommunication soft ware in addition to subject matter (hydrotcgy/simulation) soilware. The personnel heading such operalions in a basin, and 1hose working in such a learn need to be trained in the above mentioned aspect so as to undertake operation which has immerse advantages. H ence. it is recommended that experts on Hydrology and Hydrological modeling should be identified for undergoing such trainings in institulions/umversities in appropriate countries. Though there coukl be many such institutes, the consultant teels for such mulli system operation, adequate expertise is available in countries like U.S.A and India, where many institutions, Universilws. River basin authorities, and research stations could be identified for offenng Such trainings Such teamed personnel, wih expertise in hydrology will be able to head future river basin authorities for optimal real time operation of the systems.
Water Works Design & Supervision Enterprise - - - - - - - - - - - - - - - - - - - - - - - ID AssdUtoB with Intercontinental Consultants and Technocrats Pvl Ltd.Arjo Dedessa Irrigation Project Meteorological and Hydrological Aspects
REFERENCES
M*y -w'-- - - - - - - - - - -
Admasu Gebeyehu. 19&8: Regional Analysis on Some Aspects of Streamflow Characteristics in Ethiopia. (Unpublished Draft Report). August 19&6
Admasu Gebeyehu, 1989: Regional flood Frequency Analyses PhD thesis. Royal Insbtute of Technology, Bulletin No TRITA-V8I-148, Stockholm, Sweden
BCEOM. 1999. Abbay River Bam Integrated Development Master Plan Project. Phase 2: Data Colleclron, Sue lnvest>gat»on Survey and Analysis Section II. Sectoral Studies Volume III: Water Resources: Part I - Climatology and Part 11 - Hydrology BCEOM - French Engineering Consultants - in association with ISL and BRGM.
ERA (Ethiopian Roads Aulhonty), 2002: Drainage Design Manual, Hydrology
Fitfdes D, 1977: Flood estimation for small East African rural catchmenls. Proceeding Institution of Cm! Engineers. Part 2. 63, 21-34 (1977)
Gray, DM Eddor In Chief. 1971 ■ Handbook on the Pnncrptes of Hydrology.
Haan. C.T, 1977. Statistical Methods in Hydrology. The Iowa Stale University Press. Ames Hersfiefd DM., T 961 Estimating the provable maximum precipitation; ASCE, J. Hyd. Div.. 87
No Hy 5, 99-116
Maialas. N C.. 1963: Probability Distribution of Low Flaws Statistical Studies in Hydrology.
Geol. Survey Prof. Paper 434-A
Shaw, EHzabelh M.. 1986 Hydrology in Practice International Van Nostrand Reinhold. USBR (United Stales Department of the interior Bureau ol Reclamation), 1964 Land and
Water Studies of the Blue Nile Basin. Ethiopia. Appendix III - Hydrology WAPCOS (Water and Power Consultancy Services (India) Ltd.), 1990. Preliminary Water
Resources Development Master Plan lor Ethiopia Final Report Volume III Annex A: Hydrology & Hydrogeology. Addis Ababa
Water Works Design & Supervision Enterprise
in Association with Intercontinental Consultants and Technocrats Pvt LtdArjo DedBSH Irrigation Project
Meteorological and Hydrological Aspects
annexes
Annex A- Results obtained from the Meteorological Analysis
Al: Estimated Mean Temperature at Arjo Dedessa Project Area (innC)
May 2007
Year
1961
1962
1963
Jan Fob March
sai 21.0 24.7
April May June July
24 o 232 21 5 20.7
Aug Sept Oct Nov Dec
20 2 21 5 22 0 21 9 197
200 21 8 24.9
22.5 23 2 21 0 20.0 20 0 21 3 22 1 202 19 0
21 7 23.2 24 3 16 3 15.9 21.6 21 1 20 8 21 4 21 7 24.5 21 3
1964
21 7 22 9 254 24 5 23 7 21 5 20.4 20 4 21 4 22 0 21 5 200
1965
196fi
21 5 21.8 24 0
24 6 23 5 21 6 21 3 20 8 21.5 22 4 232 20 5
22 7 23 8 25 3 24.6 24.1 21 7 21 4
208 21.5 22 3 22 0 18 8
1967
1966
19.5 22 5 25.1 24 B 23.7 21.2 20 7 20 5 21 3 21 1 23.0 18 7
19.9 22.4 23 6 24 5 24 1 21 0 21.6 21.1 21.2 21 4 21 2 19 S
1969 22 4 23 2 25 1 24 6 24 22 0 20 7 20 7 21.5 21 7 21 2 18 9
1970 21 5 22 9 250 24 9 24 3 22 a 21 4 20.6 21.6 22.3 198 18 2
1971 21 6 20 4 23.9 24 7 237 21 1 21 0 199 21 1 224 21 7 182
1972 21 S 23.1 24.2 24.9 23.2 21 0 21 8 21.3 21 6 223 22 8 20 2
1973 22.7 22.6 25.a 26 0 24,1 21 B 21 3 20 8 21.5 21 7 217 17 4
1974 21.2 23 3 25.3 23.9 23.9 21.0 2a 6 21.3 21 3 21.2 19.1 19.0
1975 21.0 23 6 25 9 24 0 23.7 217 20.5 20.2 21 3 21 9 20.4 189
1976 20.8 239 24.3 24.3 23.1 21 0 21.0 20 6 21 6 22 4 22 5 19.7
1977
1970
1979 22 2 235 24 7 24 2 24.2 21 9 21.3
1980 22.3 24 1 26,1 25 8 24 4 223 21.1
21.1 22.0 25 1 26 6 238 21 9 20 9 21 2 21 1 223 20.9 20.4
23 0 23 5 24.9 25.3 244 21 4 21 0 21 5 21.9 23.5 23.0 20.9
1951 22 4 22.6 26 2
1962 22 7 22 3 23 8
1983 20.3 23 6 26 1 25.6 25 0 22 0 22.3
1984 206 20 6 25 4 26.2 24 5 21 9 20.9
25 i 24 7 223 20.6
24 9 23 5 21 9 21 2
1965 21.5 22 9 25 7
19B6
1967
1991 23 0 236 25.1
1992 22 1 24 1 25.2
1993 22.6 23 5 243
1966 22 4 24.5 25.1 25 8 25,3 225 21 3
1989 21 3 22 3 24.6 24 5 23.3 21.9 21 3
1990 21 0 21.9 24 0 26 1 106 224 21 4
21 5 24 7 239 24 3 24.6 22.0 21 3
21 8 23.0 25 4 25.1 24.2 22 6 22 2
25 1 24.0 21 7 2D 6
2000 21 6 22.9 26.fi
2001 23.0 24 3 260
2D02 23 2 23 6 26 0
1994 21 6 24 2 268 24.9 24 3 22 3 21.1
1995 223 24 5 26 4 26.5 25.3 23.1 219
1996 22.6 24.1 26 3 25 9 24 7 21 9 21.7
1997 23 4 224 26 9 25 5 24 4 23 1 22 3
1990 24i6 24 9 27 4 27 7 26 2 23 4 22 4
1999 21 9 22 8 26 2 26 3 24 9 228 21 6
25 I 24 6 226 21.3
25 2 24.6 223 21.1
25 B 24.4 22 7 21 4
26 6 25 5 22 6 21 9
26 4 25 5 23.0 22 0 22 2
21.6 22 0 22 3 21.6 20.9
208 22.0 22.0 22 0 19 5
21 t 21 5 220 21 6 19.2
20 7 21 6 21 0 23 0 20
2i 8 21 7 22.4 22 3 136
20.7 21 1 20.2 23 4 20 6 2C4 21.5 21 5 22 1 19? 21 1 21 2 21 7 22.0 20 4
21.6 21.9 23 1 22 7 20.2 21.6 21 9 22 5 20.6 18.8 21 6 21.7 22 0 21 9 21 6 i 21 4 21 9 22 1 22 4 20.9 20 B 22 0 21 4 21 4 182 21.3 21 0 22 7 21 a 21.3 21.4 21.8 22 9 21 7 19.6
21.5 213 22 0 233 20.0
22.1 22 3 23 9 233 22.2
21 8 22.4 22 4 27.0 20.2
22.3 23.2 24 0 25 1 229
22 3 23.1 24 2 22 0 19 1 21 3 22 9 23 5 2r o 198 2i 0 23.0 24 0 23.5 20 a
2003 21 9 24 b 26.4 25.7 25,0 23 2 22.0
25.9 25.0 228 22.7
22 2
2 2 2 300 24 2 23 6 2l 6
23 3 23 1 22 7
2004 24.2 24 2 26? 265 25.6 22.8 21.5 22 1 2?
22.2 22 7 23 0 23 5 20 6 22 6 23 2 21 a
Waterworks Design S> Supervision fnterurii?- - - - - - - - - - - - - - - - - - - - -
In tts.rl.um w,u>l.urrmUnr.u! Cmmlwu ,M Technocrats m
u LiftIrjtJtatessi [rr Ifatloo Project
Meteorological and Hydrological Aspects _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
An ■
Ax. Year
CMinIOICU miiiiiiiuni iniupvi
Jan Fob March April May
w
*+ Ann nt'des&J Project Ar&J |tn "Cj
June *July Aug_ISept Oct.. Nov [
-
D&r
1961 97 10.5 13 0 S4.7 14.9 14.6 14 7 14.3 14 5 13.0 1&.3 0.0
1962 a & iOS 13 9 is.a 15.0 143 14 2 14 2 14 4 13 0 9.5 7 7
1963 9.5 11 2 13 6 9.9 10 3 14.7 150 14.7 14 4 12 6 11 6 B 6
1964 9 5 11 1 14.2 15.0 15,3 146 14.5 144 14.4 13.0 10.1 5 5
1965 94 106 13.9 151 15.1 14.7 15.1 147 13 2 104 8.3
1966 99 11.4 14 2 15.1 15.5 14 0 15.2 14.7 14.5 132 10 3 7.6
1967
I960
1969
1970
1971 9.5 99 13 4 16.1 15 3 14 3 14.3 14.1 14 2 13.2 10.2 7.4
1972 9 4 112 13 5 15 2 14 9 14.3 154 15.1 14 0 13.2 108 8.2
1973 99 10.9 14 4 16 3 155 14 9 15.1 14.7 14.5 12U 10.2 7 1
1974 93 11 3 14 2 14.6 15.4 14 0 14 8 15.1 14.3 12.6 9.0 7.7
1975 9.2 11 4 14.5 15 1 153 14 8 14 5 14.3 14.4 12 9 9.6 7 7
1976 9.0 11.6 13 9 148 14 9 14.3 14.9 147 14.5 13.2 10.6 80
a s t0.9 14 1 151 15.3 14 4 14.7 14 5 14.3 12.5 IQB 7.6
0 7 10.8 13 2 15.0 155 14 7 15.3 14.9 14.3 12 6 10 0 3.0
9 6 11.2 H0 150 15.5 14.9 14 7 14.6 14.5 125 1OO 69
94 11 1 140 15 2 15.7 14 9 152 14.7 14 5 13.5 9 3 7.4
1977
1978
1979
1900
1981
1962
1903
10.1 114 14.0 15.4 150 T4.S i 4.9 15 1 14 8 13.9 10.8 a.s
92 11 0 14.0 15.6 *5.3 14.9 14,0 15.0 14 2 13.2 9.8 8.3
9 7 11 4 138 14 8 15.5 I4 9 15.1 15 3 14 0 13.2 10.2 35
96 11 7 146 15.7 15.0 15.1 15.0 14 7 14 S 130 10.3 /.9
98 tttfl 14.7 153 16 0 15.1 14.fi 149 14.5 130 102 7.3
5.9 106 133 15.2 15 1 14 9 15 1 14.7 14.5 12.9 108 3.4
6.9 11 4 14.6 15.6 16.1 15.5 15.6 155 14 6 13.J 10 5 7.6
1904 90 10.0 142 16.0 15 8 14.9 14 8 14 6 142 11.9 110 8.4
1985 94 11.1 144 153 15.5 14 8 14.& 14.4 145 127 10.4 8.0
1986 9 4 120 13 4 ISO 158 150 15.1 u 9 14 3 12.3 103 8 3
1987 0 5 11.1 14J2 153 15.6 15 4 158 1SJ 145 13.6 1Q 7 82
1980 96 119 too 157 16 3 15.3 151 15 3 14 5 13 3 9 7 76
1989 9 3 iQ.e 13.6 14 9 150 14 9 15.1 153 14 6 13 0 10 3 8.8
1990 97 10.6 139 153 12 0 152 15 2 152 130 10 6 8.5
1991 10.1 51 4 14.0 15.3 15.9 154 15.1 14.7 148 126 10 1 7.4
1992 9.7 11.6 14.1 15 4 15.0 >5 1 15.0 15.1 14 7 13 4 103 86
1993
1994
1995
1996
1997
1998
1999
2600
99 11.4 13.6 156 15.7 1S.4 15.2 15.2 14 7 13 5 10 2 79
95 11 7 15.0 152 15.7 152 15.0 15.2 14 7 13 0 11 0 8 1
90 119 148 162 16.3 157 15.5 15.6 150 136 n.o 90
9.9 116 14 f 15 a 160 14.9 15.4 15.4 IS 1 13 3 1IU 82
102 10 5 15.1 156 15.8 15 7 15.8 153 15.6 14 2 11 0 5 3
10 8 12,1 15.3 16.9 16.9 159 159 15.3 15.6 14 3 10 3 78
96 11.0 14 7 160 16.1 15 5 15.4 IS 1 15.4 13 9 9.9 80
9.5 11.1 149 162 104 IS 4 15 0 154 15.5 14 2 11 1
84
2001
2002
2003 9-6 11.0 14 8 16 7 15.0 156 IS 7 15.3 136 11.0
2004 106 11.7 14 7 162 16 5 15.5 15 3 157 15 2 13.4 10.9
10 i 11.6 146 16 1 165 156 156 157 155 14 3 11 1 8 8
10 2 11.4 150 is 8 155 16 1 15 7 15.4 13 0 ID 9 9 2
84
88
Water Works Design & Supervision Enterprise
Jufaitirtfr with incftrcontlieiita] Coosulladta and Technocrats Pvt LtdAjJq fcdessa Irrigation Project
Meteorological and Hydrological Aspects
AJ: Eslimaledl Maximum Temperature at Arjo Odessa Project Area (In _C)
May LW
Year Jan Feb March Aorrt May June July Aug Sept Ocl NOV
1961 34.7 33.0 35 6 33 6 31.7 28 6 26.7 26 1 244 30.9 33.5
Dec
31 4
1962 31.2 330 35 6 31 6 31 8 27.9 25 6 25 0 24 2 31-1 30 9 30.4
1963 33.9 35 2 3J.9 22 8 21.7 28 8 27.2 26.9 24 2 30.6 37 6 34.0
1964 33.9 34 7 366 3J4 324 28 6 26.3 26 4 24.2 31.0 32 9 333
1965 33.6 33 1 35.7 34 7 32 1 23.6 27.5 26.9 24.3 31.5 3S.S 32.8
1966 35 4 35 8 36.5 34 7 32 9 28.9 27 6 26.9 24 4 31.4 336
1967
1966
30 4 34 1 36.2 34 7 32 4 28.2 267 265 24,1 296 35 1
31 1 33.9 34 0 34 3 32 9 20 8 27 8 273 24 0 30 1 32.4
30 1
29 9
31 3
1969 35.0 352 35 1 344 32 8 29 2 26 7 26 7 24 3 30 6 32 4 27 0
1970 33 6 346 36.0 34.8 33.3 29.2 276 26.9 24 4 32 1 30 2 29.1
1971 33.7 31.0 34.5 346 32 4 28.0 27.0 25.7 23 9 31.5 33 1
1972 33 6 35 0 346 346 31.7 27 9 28.1 27 5 24.5 31 4 34 9
1973 354 34 2 □7 1 375 32 9 290 27 5 26 9 24 4 30 5 33 1
1974 33.1 35.3 365 33 5 32 7 28.9 28 B 27 6 24 1 29 9 29 2
1975 32 8 35 7 37.3 34 a 32J 28.9 26 5 26 1 24.2 3D 0 31 2
1976 322 36.2 35.7 34 1 31 5 27 9 27 0 26.9 24.4 31 5 34 5
1977 35 9 35.6 353 35.4 33 4 2B.5 27 1 27 6 24 8 33.0 35.2
1976 32 9 34.S 37.5 35.9 32 5 29.2 27.0 27.4 23 9 31.4 31 9
1979 34.7 35.5 35 6 339 33 1 29 1 275 279 24 g 31 4 33.1
1980
1961
1982 35.4 33 7 34.3 34 8 32.1 29.2 27.4 26 8 24,4 30 7 35.2
1983 31 7 35.7 37.6 356 34 2 30 4 28.8 28.2 246 31 S 34 1
34 8 36 5 37.5 36 1 33 4 296 27 3 26 9 24 9 30 9 33 6
35 0 34.2 37. B 35 I 33.8 29.6 26 6 27.2 24 4 30 9 33.1
1984
1965
1986
1967
32.2 31.2 36.5 36.7 33.5 29 1 27 0 26.7 23 9 28 4 35 8
33.8 34.6 37Q 35 2 328 26 9 26 5 264 24 3 303 33 8
1988 35.0 37 2 36.1 361 346 29 9 27 5 27.9 24 8 31 7 31 5
33.6 37.5 U S 34.4 336 29 3 27 5 27 3 24 0 30 5
34.0 34.a 36 5 35.1 33.1 30.1 28 6 27 9 24 8 32 5
33 6
29 1
323
27 8
30 3
30 2
31 5
33 4
32. B 33 4
31 2
305
32.9 29B
33 0
31 4
32 6
34 7 32 3
1989 33 2 33 6 35.4 34 2 31 9 29.1 27 5 27.9 24 6 30 9
1990 32 8 33 2 35.7 36.2 254 29 8 27 5 27.7 24 3 31 1
33.5
30 I
34 5
1991 35 9 35.a 36.1 35 2 33 7 30 1 27 5 269 24 9 30.1 32 7
34 3 33.4
1992 345 36.5 36 3 35 3 33.6 29 6 27 2 27 5 24 7 37 0
1993 35 3 35 5 350 35 9 33 4 30 1 27.6 27 7 24 7 32 2
1994 33 7 36 7 366 34 8 33 3 29 7 27 3 27 B 24 7 31 0
1995 34 8 37 2 3BQ 37 2 34 6 30 8 28 2 28.5 25.3 32 3
33 3
29 1
34 0
1996 35.3 36.5 37.9 36.3 33 5 29 2 20 0 28 2 25 4
33 2 31 3
35 7 31 9
35 6 35.5
1997
31 5 33 7 323
1990
365 33.y 388 33 7 33.4 30 8 26 7 28.9 26 3
33 8 38 3 36.6
1999
34.2 34 5 37 fi 36 8 34 1 30.4 27 9 27 6 25 9
384 37 7 39.4 38 8 35.8 31 1 28 9 28 9 76 l
34 1 33 6 30.5
2000
33 7 34 7 35.2 37 3 34 8 30 1 28.3 28 2 26 0
33 0 3? 1 31 6
2001 35 9 368 37.4 3f 0 34.9 30 5 28.4 28.7 26.0
2002 38 2 35 7 30 7 36.2 35 2 30.3 29.3 28 7 25 a
2003 34 2 37 1 36 0 36.0 35.3 30 0 28 4 2$ 7 25 7
2004 37.8 366 37 B 37 2 35 0 304 278 20 6 25 5
33 7 3fi 0
34 1 3R 7
32 8
32 3 35 Q
31.8 35 5
332
346
36 2
33 0
34 H
Water Works Design & Supervision Enterprise
In Assodauon wiUi Inttirconitaenta] Consultants and T^hnacrats Pvt. Ltd1/1* TH< j 114<
uni ll/itr^hsuk.il; ViDrrtii.
W IF
>4 ■ timwNrf ?ar*ftlv« MutHHflify i-l 4kj>1u Dede *44 Frp^l *r*4 parties'!)
'4* Jjs f #b MrlP ' n
lltfj Jwn
July M
,n J1
S
CM T»r
IfHt
4?
V
ifl
11
7!
"B
it?
4?
42
42
rid
72
"M;
F8
Ito
44
’1
to
41
M
M
fcfi
96
to
44
41 "2 4J 13 14 u
■ *4 • i
IW*. 4" w
17 4 Ji "5 13
to to '4
19 91 VJ 43 47 to
14 14 12 M n to
11 ii 14 42 ■to to
41 ■M Jirt * k ?t MS 4fl KIJ 41 I4i 110 49
IM'
>1
17
M
"4
11
11
19
W
111
to
to
ISM
to
44
j
'to
71
41
14
■■
Bl
40
41
to
to
M
44
■>9
71
13
14
49
4B
lH)
f?
ii
<9?
M
42
44
40
N
’9
r fah
■12
40
HWl
73
is
Ifll/T
®
■1
50
44
74
rtl
47
Mk
47
47
42
to
1972
44
<1
rf!
70
7l
79
IM
il
OH
bMk
43
to
WJ
44
MS
V
tM
71
■if
12
4H
»
44
7/
ISk4
si
-k
19
VI
to
74
4i
KJ
Ml
91
43
72
13
IB?5
w
T«
11
70
•*1
dI
dM
13
90
44
p:i
Aft
19**
$4
ki
44
V
41
70
•1
92
il
197 7
91
11
■it
32
40
■nd
.■
41
fll
49
irt
i|?
■k.
■9*a M 1B to 44 71 7 7
42
to
i9r® 6rt
•si •M 70 77
IMO W 4d s.v u 74 dl iyai M 4-k to 43 72
■M2 47 *2 V> 41 71 10
I9U •W 41
7fJ 79 to
iMJ SGl 1 - I" Ml 74 » IMS MS MJ H 4/ ft to "9W Mj 3/ 40 71
IfflT SO 44 « 40 ri 01
19B4 Q ■u 19 13 ?5 *2
IW9 4J 41 K) M ?3 ■’9
IMO k *M ■r,i 44
ij$3 49 QJ to ?5 90 45
1»4 V SJ 5ft 47 fa Be
4? sn 44 44 71 15 44 43 4ft rtt 49 17 di- 47 M 79 71 ni Art iM 41 42 7?
1J1 90 IM 47 to to 11 49 to- in 42 to 14 471 ■Nl 74 ■12 to Mi il 17 di 7? 70
47 47 B2 73 • -s 41 i'j W 41 7-j 71
*JT 03 47 7J w 11 M ■Ji 64 42 ta U af ji to to ’ i
! jNj 91 i'Ji 92 73 to 'Ki 14 44 49 M to
M 49
to 42 IM
■ MS 40 54 1? F2
r MJ
■v
ijy*
to U U 71 SO 45 M 13 72 7ft 41
'4 44 42 44 ?9
'Jd
1$W 91 i4 M 4* 74 90
2£iX- la W 41 47 Fl Si
as
4n 19 aa?? 91 *9 to
to tt sc
"4 "4 9J. i2 to i 7
JM 49 73 to
K! 'JJ 34 ai
*
to
3DOI i7
jffl
ao
if
to w fl' K
TJ
*T
<
n
Hj 93
to
M
M
"4
2002 71 TO 42 >a It as 2Ws 71 MJ W 4* W
20W Ml to OJ *4 si
9i #2
Al
*_
Ml
19
3”
*3 •M
to 12 to
to
■*
to
r to M t3 to 'd
fc 1
*’"' Wark. B..IHU 4 Sup.nm^
.....
~ ' — • - M. u*Arjo Drdessa Irrigation Project
Meteorological and Hydrological Aspects
tin hrs/dayl
Year Jan Feb March
‘April May June July
A5:
1961 Es0t.i3mated7M.3ean D7a.1ily Su6n.s6hine5D.4uratio6n.5at A4r j3o Dedessa Project Area
Aug Sept Oct Nov Dec
62 9.1 9.2 0 9 7.4
1962
67 6 9 8.2 7.0 9.0 6.3 2.9 2.0 6.3 6.5 7 0 7 5
1963
1964
7.2 62 84
6.8 7.3 4.4 2,6 3.8 S3 0 0 9 1 53
9.6 6.3 7.7 B.0 a.r 5.8 3.0 3.0 6.8 9 1 90 10.0
1965
1966
9.1 8.3 6.6 6.5 83 3.4 4.3 5.5 7.9 7 4 8.4 8.1
73 8 2 7.1 85 7.8 5.3 4.2 3.8 8.0 9 2 9 8 83
1957
I960
7.9 96 64
72 9.1 8.1 49 52 83 8 5 78 9.0
1969
8.1 8.0 7 7 6 1 6,0 aa 23 32 5.7 6.5 10. i 8.3
8 2 7 5 7 5 73 7.6 6.1 3.7
1970
1971
10.0 9.5 9 7
8.2 7.6 7.5
?.a 94 8.0 48
4 1 6.2 7 9 8 3 83
4 7 7.5 7.9 H 3 83
1972 92 88 7 4 94 0.3 04 5.4 4 8 8.0 a.6 9 9 7 7
1973 as 09 8-5 84 10 1 73 3.2 4.1 72 9.5 9 5 90
1974 7.9 0.1 7.3 67 9 1 59 n.a 4 8 5.8 5.6 0 1 0 3
1975 94 8.3 7.5 64 7 1 5.0 3 1 1 6 4.1 7.5 8.4 9 2
1976 90 8.7 7,8 8.7 6.0 7 1 37 4 1 52 66 67 0 1
73 7.6 6.1 3.7 4.1 6.2 7.G B 3 8 3
1977
1978
1979
1900
1981
6.2 6.3 6.5 7.2 7.4 SB 37 4.1 5 3 69 82 53
9.4 58 75
5.3 6B 60
6 t 5.3 5 8
1962
1903
1904
8 5 86 4 6 5.9 79 5.8 37
7.6 7.8 6.1 2 3 3.8 5.5 6.8 8.9 7.1
70 6.7 51 2.4
6 5 7.4 s.a 3.6 3198 45..29 57..89 77,.88 8765
7.4 a.o 83
60 7.6 7.1
8 i 99 8.1
6 5 7.1 6.8 3.9
60 66 78 5.4 336.7 8578 7555 06.46 8723
4 5 2.6 5 5 96 7.9
1985 86 76 75 68 64 5.9 2.0
89 6.6 60 4 7 4 3 70 W 1 05 0 1
1986 6 9 62 5,5
19^7 B 1 7 B 6.2
1286 04 7.0 9 S 0.4 0.3 70 2.7
5.3 7.2 3.7 33
8.3 5.0 5.0 4.9
1909 8.6 84 7 3
1990
1991
1992
1993
1994
92 49 63
7.2 96 73 3.7
3 3 54 4.6 3 7
8 3 7.3 7.1 6.0 54 65 4 3
67 69 8.2 7,0 90 63 2S 26..20 96.31 9625 0765 7745
3 l 58 7,5 0 7 7 B 40 4 1 74 94 0 2
4 2 7 4 7,6 8.3 11 o 49 5.5 05 10.2 U 1 5-1 6.3 53 8.2 66
3.9 5.9 95 8.9 9.2
9.6 0 3 7.7 80 0.7 5.8 3.0
7 2 6.2 6.4 6.0 7.3 4.4 2.0 3.0 5.8 80 9 1 83
1995 91 63 86
65 63 3.4 4.3
1996 70 82 7.1 8 5 78 5.3 4.2
1997 7.9 9.6 8 4
1998
1999
2000
02 76 75
10 0 95 9 7
6.1 8.0 7 7 8 1 6 8 68 23
7 2 9.1 8 t 49 52 0 3 05 7.a 90
30 6 0 9.1 90 10 0
5.5 7 9 7.4 H 4 8 1
3.8 6 0 92 98 83
7 3 76 6 1 3 7
7 6 94 80 4 0
7.3 76 6 1 3.7
94 8.3 64 54
4 32 1 56.27 67.95 180.31 B 3
4 7 75 79 83
83
2001 52 76 75
2OD2 92 88 74
8.3
2003
2004
8.5 69 0 5 84 10.1 7.3 3.2
41
4a
52
80
7.9
8a
83 8 3
99 7 7
7.9 6.1 73
6 7 9 1 5.9 4 a
4.1 7.2 9.5 5 5 9Q
4.a sa 8.6 0 1
83
Waler Works Design t snpmislw Enterorts WraBtaMM e.
Kutonu M(
r
Etllwrat!
wAr|nWessa Irrigation Project
Meteorohgical and Hydrological Aspects
A6: Estimaled Mean Daily ETo of Arjo Dedessa Project Area
Year
(in mm/day)
Jan Feb
; March Apni . May | Jur»i July ' Aug I Sept j Oct | Nov , Dec
1961 3 73 393 4 49 4 26 3.73 3.64 3.0* 3.54 4 43 4 27 3 86 324
1962 3 23 375 4 66 4 32 4 43 3 49 2 63 2.5 3 72 3.63 3 48 3 19
1963 3 46 372 4.66 3 44 3.36 311 2.71 3 3 63 3 98 4 22 3 56
1964 1 3 95 4 18 4 85 4.66 4.52 3.45 2 72 2 79 3 97 4 25 3 8B 3 82
1965 3 84 4 13 4 83 4 25 4 43 2.97 3.1 3.43 4 13 3.08 3 92 3 45
1966 3 68 422 4.47 4 73 4 35 3.4 3 07 3 3.7 4 31 4.09 3 35
1967
196B
345 4 44
4 77 4.45 4.6 3.95 3,15 3.32 4 22 4 03 3 72 3 46
3.53 4 06 4.5 4.64 4 1 3.71 2.63 2 9 3 59 3 59 4.06 34
1969 371 4 06 4 5 4 43 4.28 356 2.91 3.06 3.72 3 94 37 3 19
1970
4 01
4 45
5 06
4 50 4 76
4.01
3 21
3 22
4.06
4 04
3 58 3.2B
1971
3 66
39
449
4.49 4 24
3 49
2.93
3 Q1
3 69
4
3 75 3 29
1972
3 B6
4.34
4.5
503 4.34
3 55
3.39
3 .26
4 17
4 23
4 2 3 34
1973
3 81
43
4 87
4.S2 431
3 B*
2 81
3.09
3 97
4 32
1974
401 3 34
3 58
4 18
453
4 24 4,61
3 51
3.3
3 29
3 62
1975
4.07
3.82
4 27
4 66
4 34 4.09
1 95 3.35
33
2.73
2 44
3.2
1976 373 4 38 4.65 4 75 4.02
3 07
3 64 3.49
1977 34 3 05
1978 3 05 3 62
4 J4 4.49 4.24
3 63 293 3 06 3.5 3 69 3 46 3.38
3 46 2.9 3.1 3 70
3 87 3 06 352
1979 3 38 3 89 418 4 37 4 06 3 36 2.04 3.07 3 3
1980 3 29 3G3 4 21 4 39 4 32 3 50 2.93 3 05 3.7
4 64 47 4 39 3.S7 2 Sfi 3 04 3.53 3 74 3 79 3 23
1931 378 425 3.90 4.13 4 42 3 63 2 91 3.2 2.86 3 64 4 01 3.3
IS 3.84 3 3*1 3 00 3 66 3 44
1962 3,6 3.74 4 63 4.32 4.13 3.77 2 96 2 96 3 87
1903 354 4 14 4 55 4 76 4.15 406 3 43 303 361
-3 66 3.49 3 3
3 7 3 82 3.32
1985
1985
1967
1984 3.58 4 31 4 73 5.02 4.08 3 55 3.14 3 11 157 4 3 3 98 3.46
3 73 4 04 4 59 4.36 3.93 3 53 2 71 2.61 3.63 386 3 88 3.32
3 43 3.94 4.31 4 03 4 22
3 67 4 14 4.31 4 74 3 03
1905
1939 372 4 13 4 42 4 39 4 64
3 76 4.2 504 4 82 4 50 3 78 2.71 3 34 3,59
3 W 2 85 3 08 3 22
3 5 3.27 316 4 06
3 82 4 01 3 46 4 3 83 3 96
4 17 4 02 3 48
1990 3.82 3.38 4 31 3.57 3 35 3 25 2 92 3.07 359
3 83 2 97 3.35 3.77 4 06 3.74 3. 24 1
1992
1993
1994
1991 3 79- 4 05 4 43 4 31 W 3-72 3 06 3.59 4.49 4 37 3 92 367
3 42 3 94 471 4.62 4.65 3 63 2 73 2.59 3 75 4 22 3 &4 3.11
1995
3 94 4.3 4 79 4.65 4 55
3 92 4 34 405 4.34 4.53
3.54 3 75 4 68 4 29 4 25 3.21 2.72 3Q4 357 3 7 3 51 3 30
1996 368 4 29 4.57 4 88 4.37
1997 3.77 4 43 4.05 4 46 4 65 407 3.23 3 46 4 41
3 5 2 75 2 63 3.91 3 98 3n 3.52 j2l
3.35 3 09 3.Q3 377
1993 3.91 4.33 4 8 4 93 4 24
1999 3.60 4.07 4.57 4.57 4 36
3.65 2,66 2.05 3 74 3.63 2.98 3.11 3 83
2001 3.76 4 21 4 56 4.64 4 42
2002 4 4 39 4 75 5.13 4.59
2003 3 75 4 49 4 92 4,82 5.06
2004 364 4 28 4.50 4 51 4.83
2000 4 03 4.45 524 4 79 4 06 4 15 3.31 3.35 4
1£)
3 05 2 98 3 3B
3 71 3.46 3 * 4 29 3 80 2 65 3. jfi 4 yg
3 6 3 22 3.35 3 72
4 09 3 91 3 4
4 26 4 06 3 75
3 94 3 92 3 59
4 31 4.09 3 46
4 32 39 385
3 83 4.12 3.36
4 11 3 7 342
4 16 3 92 3 5
4 19 3 92 3 57
4 34 4 24 3 54
4 47 4 19 3 63
4 21 2 06 361
m2
, ,aAr]o Dedessa Irrigation Project
Meteorological and Hydrological Aspe cts
A7: Estimated Mean Monthly ETo of Arjo Dedoss a Project Area
May 2007
Year ■ Jan j Feb |March April . May , Jungj JiHy i Aug [ Sept I Oct | Nov | Doc |j Annual
1961
1962
116 110 139 12B 116 109 94 2 110 133 132 116 100 1403
1963
1964
100 105 144 130 137 105 81 6 77 4 112 112 104 99
108 104 145 103 104 93 2 aa 92.9 109 124 127 no
1965
1966
122 117 144 140 140 104 84.3 86 6 116 132 116
119 116 150 128 137 69 96.2 106 124 120 118
114 118 138 142 13S 102 95 1 93.1 111 134 123
1967
107 124 148 133 143 118 97 7 103 127 125 111
119
107
104
107
1968
1D9 114 140 139
127 111 01 4 89 9 108 111 122 105
1969 115 114 140 133 153 107 90 1 94 0 112 122 111 99
1970 124 124 157 137 148 120 90.4 99 7 122 125 107 102
1971 113 109 130 135 132 105 908 932 111 124 113 102
1972 120 122 140 151 135 106 105 102 125 131 126 104
1973 110 120 151 149 152 115 67 2 95 9 119 134 120 104
1974 lit 117 140 12? 143 105 102 1D2 109 586 104
1975
1976
1977
118 120 144 130 127 99 84.7 75.7 96 120 109 108
116 123 144 143 125 111 908 94.8 105 115 104 105
1976 119 101 144 141 136 107 B0 94 2 106 116 114
105 100 135 135 132 104 90 96 113 120 116 109
1979
1980
104 109 130 131 126 101 ai g 95.3 109 109
1961
1982
1983
102 102 130 132 134 107 90.9 94.5 111 123 110
117 119 124 124 137 106 90 1 99 2 86 5 113 120 102
112 105 144 129 128 113 92 3 92 5 116 120 105 102
110 116 141 143 129 122 106 94 100 115 115 103
100
104
107
1984
1985
111 121 145 151
H6 113 142 131
127 107 97.4 ■ JB 5 116 133 120 107
1986 106 110 134 921
1987 114 116 134 142
1986 117 110 156 145 142 113 04? 103 ioa 129
122 106 84.1 B7 1 109 120 116
131 91 3 88.2 95.6 965 H8 120
119 ws 101 98 122 124 115
1969 115 117 137 132
121
1990 118 94 B 133 107 104 974 90.6 95 til 136 117
1991 117 113 137 129 119 112 94 8 111 135 131 115
144 H5 92 105 113 126 112
1992 106 110 146 139 144 109 a* 5 803 113 115
103
107
123
108
100
114
90 4
1993 110 105 145 129 132 96 4 4 94 3 110 127 117
1994 122 120 149 139
1995 122 121 154 13Q 114401 6190.45 9865 42 81709B 112176 112322 1' 2IB2
108 105
1996 114 120 142 147
1997 117 124 153 134
1996 121 121 149 149
1999 114 114 145 137
20 CO 125 124 162 144
135 101 95 B 94 113 134 123
144 122 1O0 107 132 134 117 119
132 115 82 6 91 9 112 1 19 124 104
135 109 92 4 963 115 127 111 106
105
116
1 1 0 171
2001
117 B8 144 139
151 12S 103 IC4 126
2OO
2 124 123 14? 154
2003 116 126 153 145
2004 119 120 L42 135
137 110 92 4 96 115
142 111 107 106 129
129 118 109
130 118 111
15? 117 68 2 98 122 139 126
135 127
150 IM 100 104 112 130
110
112
1308
1308
1420
1410
1400
1444
1358
1369
1466
1366
1466
1464
1346
1332
1375
1362 1359 1299 1343 1338 1358 1401 1432 1 349 1320 1412 1443 140B
131a
1411
1360
1355
1437 1439 1425 1505 1419 1402 1518 1429 1515 149B
61.7 112
Waler Works Desigo Supervision Eni^prke- - - - - - - - - - - - - - - - - - - - - - - - - - - In Asttdrtu wltn infercwilBMUtf Consul^ and TectajM^ Kl Lllt
109Arjo &td*EE3 itriEaiJon Project
Meteorological and Hydrological Aspects
AH: Estimated Mean Monthly Rarnfair al Arjo Ded^ssa Project Area
111
----------- 1
.
Ywr
Jan F»b March April May June July Aug Sept Ocl N&V Oec Annual
1987 15 6 0 M.3 21 7 172 172 i*o 220 220 1115 151 0 12 1320
I960 O 57 6 0.75 36.4 93.8 189 186 207 192 9097 21 7 MS 1070
1969 37 7 35 9 53 7 140 121 144 iSfi 212 165 56 39 7.39 * 1132
1970 29 2 30 513 21 2 149 154 249 162 256 107 2 4.44 4 34 1217
1971 11 3 0.32 207 30 8 14? 193 1AO 135 262 188 2 323 14 1 1210
1972 156 11 1 15 89 1 53 166 188 157 170 49 48 69 9 24 990,6
1973 0 997 5.66 29 4 236 155 186 233 143 58 82 122 5 77 1075
1974 38 7 7 96 31 8 514 287 205 242 168 219 7? 78 4 6? 16 7 1292
1975 23 5 55.1 21.1 60 4 116 124 189 159 14t 131.3 115 12 5 1045
1976 237 16? 903 55B 154 154 192 215 273 88 58 38 5.37 1303 1978 3 35 565 103 122 154 206 206 181 122 6 0 58 12.5 1181
1979 156 8.89 V 256 97 5 202 235 159 15J 64 94 31 2 T2.5 1024
1989 15 5 17.0 57 3 118 164 IM 136 176 246 4987 287 0 1110
1983 15.6 8 23 27 6 356 149 213 296 270 177 1139 57 2 0 1361
1984 156 0 31 5 69 0 234 249 443 198 230 8 716 ?B8 5.77 1514
1985 270 0 12,3 105 257 341 242 212 315 482 32.5 37 7 1607
1936 0 39i.2 *6.9 58.4 37 5 315 274 244 191 103 8 35 9 0.46 1345
1987 289 17.2 BE.6 79.0 123 282 488 326 183 116.4 42.3 34 3 1785
1989 14 1 43 7 74.3 16.3 335 325 177 297 343 259 9 154 3.8? 1903
1933 25 6 26 7 763 106 245 2a* 318 332 297 189 3 61.3 47 1 ZOOS 1990 B 77 37 3 50 4 833 90.6 436 228 319 241 7389 33 4 3 12 1607
1«1 26.4 7.91 68 2 74 4 139 106 3*4 309 222 98 59 35 13 1464
1992 2*4J 32.8 ioe 105 222 225 287 291 250 ID4 7 53.6 15 5 1697 ma 1 CM 31 09 5 100 213 313 217 347 168 149 4 3 03 0 1609
11.2 1.15 20.1 539 127 227 255 228 2?9 a 467 13.7 0 1223
1995 0 22 9 75.5 109 222 195 2?9 310 279 36 40 11.2 23 3 1563
1996 46.5 19 1 162 71 7 338 225 ?45 197 2i5 74 57 44 6 7 B6 F645
199? 39 6 097
1993 13 04 81 1 152 152 200 264 272 239 2359 67 2 1 04 16JB
1999 31 7 2.91 15 92 3 393 427 257 239 309 197 3 B 69 42 1 2014
139 293 314 205 291 ZM 213 40.4 2 51 1530
2000 O 0 3,89 105 195 MS 222 260 274 255 34,4 7 39
2001 0 32 55 5 60 3 327 346 293 292 312 206 3 199 24 1
2002 17 7 2 1& 39 ? 42 2 106 252 274 153
1702
1983
2003 5 Bl 63.5 117 121 58 9 358 232 300 1S5 51 59 11 5 1 86 I486
59 11 l 84 53.1 1226
2004 4 96 2 1 61 2 51.5 ISO 353 326 243 249 193 9 40 7 13 1
IgAS
Avir«fl« 15.3 Tfl.4 53 6 59.6 J60 5 2435 245 9 238.2 228 6 115.5 3i 4 12 7 1459 5
GV O.S3 0 96 0 68 0.55 0.49 0 J7 0.31 &2S ftJJ 0 591 09 f 13
Skwi 0320. ? B 0 74 0 f 0.62 0 38 I 44 t? .07 0 J7 0 635 2.33 T 4£f
“ ’•OX
0 209
0.16
JS5 57 6 raT 7 139 9 392 7 437.6 4^7.6 3*6 6 M21 263 3 T5CJ 753 1 2014 5
Min 1 0£? 00 0.8 5 f 37 5 I00.J 136.2 J 35.3 ?4J 3 a s u ft .□ yso. 6 waterworks Design & Supervision Enterprise ^—
-
luAssacwElaowiUi [oiercQndnnitai Consultants and Technocrats hi lid
r.iAr jo Dedessa IrrlEaltoD Project
Meteorological and Hydrological Aspects
May 2007
8.2 9.1 92 10
10
11.1 11
1Z1 12
7 ©
* SP.
rd
3:
3
1-
£
o
CJ
O.
Cfl
C
E
TH
>1
m
□ ■o
£3
a
L«
o
£
Qi
43 sAj-Jg tcdessa JmgairoB Project MeteorofogicaJ and Hydrological Aspects
Annex B Rfrs-ufts obtained from th.* Hydr-afo<|ical Analysis
Bt ■ EslimalEtf Monthly Flows at Arjo Dodesss Oam Site
May 200?
jnri
r? iiimj ri
rar ,■
1 Yair Jan
Mjr
J if ft
Jul
Airg
fort
Nov
jchM
f™-
Feb
Ap<
May
‘ IM 30 74 26 02 25.73 6H.61 49 ?8 207 7 751.5 972 5 900 661 291 8 101 4
5962 34.66 18 98 1947 $973 21 39 157.2 397 6 5608 700 8 5122 84 92 31 95
I9&J 22 72 123 12.25 30 86 111.6 235 3 429.5 526.3 622 8 223 9 111.8 97.23
lAj.r't.fwlvfi"erl* —
4.$ 3152 19.55 7 138 1982 35 71 19 2 19 63 13 95 34.65 150 3 451.6 571.2 414 & 455 6 107 4 53 96
259 20 13 23 4 16 88 39.8 111 $ 361 4 66? 668 2 517 ft 2B2.5 $9.26
1619
3045
2139
2355
2924
1964 23 01 10 69 a K6 5 654 21 59 134 7 449 2 40F 2 3t 1 8 ?3 3fl 12 69 4S08 1463
IMS 7 F52 3 4&Z 1775 5 54 47.33 123 a 280 559 $04 1 155 7 4531 25 72 1&86 10+9 6 052 11 Q2 9993 9 $85 86 35 2B8.9 2962 438 4 132.9 50 52 28 15
1«7j 7 768 3 775 5.501 12.5 2F.&2 157.2 4128 633 402.9 231.4 97 47 38.7
1156fi 24 16 77 49 14.79 5 553 25.08 203 6 364 E 689 1 905 1 315 2 114 9 46 11
1969 25 14 84 13 97 24 24 2056 87.63 174.3 301 1 e$i 3 315.2 65.15 70 31
ISM 31.93 19.11 23 19 44 0a 31 91 114.4 219.3 1043 $69.7 280 5 46 23 23 01
19$1 16 3 12.32 10.51 18 94 44.17 113.8 517.4 964.2 486 9 310.9 29.61 21 7
1992 14.62 1523 9 *35 14 96 42 85 1166 2351 497 2 338.1 482.9 99 78 4 s 9
»i
1993| 254 17 72 16 74 39.56 79 85 226 9 383 1 59ft 7 377 5 243 a 107 6 36 17 1994 23 32 1?4$ 10.62 11 34 46.32 1601 341.3 736 3 514 S3 66 41 3B
21 0A 1995 12 1fl 7.787 i0 15 14 06 29 04 60 34 143.8 343 1 291 93 56 36 4< 82 R 1996 29 25 18 44 26 36 21 96 107 7 271.3 462 2 5152 35-a 225.1 71 57 49 76
2001 503 37 86 45 32 41.35 97 36 291 4 4711 630.3 602 2 4038 13D $ 6Q 7ft 2002 59.09 36 38 37.91 45.85 35 1 127 292.1 366 4 346 1262 70 05 4 7 88 2003 33 66 23 05 38 53 53.75 364T 87 39 347 2 393 2 S40S 315.2 &Q27 46 11 2004 31 2 25 55 20 76 20 73 49 4? 146 8 336 3 365 2 384.9 3223 6$ 26 46 IT
1764
1369
2634
2719
1764
2546
2547
1909
2263
2011
1124
2157
2865
1590
2005
1845
Water Works Design & Supsprislon Ent^ris^--------------- j 0 fendiUM mlmemotHe.uiCeuniint, and TrcllDH1Crata
■mrwmhIrjoDrfttjj [nlfitlaQ Project
Meteorological and Hydrological Aspects 62. Reglonar monthly coefficient of variation* gy goo?
—— 1—
rn
Simulation Results of Ario Dedessa Reservoir
I
Year Month’
13
Inflow
3
DF
(nrf'sj
4.
Ec-Rf
fmnV
$
IWD
(MmJJ
6
(Eo.RI) SI 1WR
cs
(Mm3J (Mmj;
fMntJ/
.7 8 9
w
I "T RflServo/r Status
Stotag?
11
Area
12 13
Spill
14
5TRQ
15
r.spw
18
404
Sep
$77.4
00
0
00
0.0
10
0.0
576 4
1006 3
74 1
135V9
57G 4
404
Od
JK.3
0.0
111
0.0
82
1.0
0.0
324 1
1006 3
74 1
1351 9
324 1
404
New
102.7
00
143
46 2
106
10
46 2
44 9
1006 3
74 1
1351 9
44 9
404
Doc
47.7
00
135
60 0
10.0
10
60 0
-23 4
982 9
73.1
1351 5
0.0
404
Jan
22,5
00
146
74 0
10 7
10
74,0
-63.2
919 7
70.4
1350.7
0.0
404 F«? T2.J 404 Mar T6.J 404 AP' 16 8
404 Ma> j 40.1
404 Juri 180 9
404 Jul 400 3
404 Aug 647.4
406 Sep 717 9
0.0 147 05 0 104 0 9
00 164 504 109 0.6
86.0
50 4
0.0 146 7.4
94 0.8
0.0 ao 0.0 5.1 oe
0.0 o 0.0
0.0 0 0.0
0.0 0 00
0.0 0 0.0
0.0 0.6
00 1 0
0.0 1.0
00 1 0
82 1.0
7.4
0.0
00
00
0.0
oo
0.0
■84 0 635 6 66.7 459 7B9 9 64.6 ‘0.9 769.0 64.6
34 1 623.1 68.1
>60.1 983.2 73.1
390 3 1006.3 74 1
6464 1006.3 74.1
716.9 1006.3 74 1
768 6 10053 74 1
13494 0.0
1348.7 0.0
1346 f 0.0
1349.2 00
1351 5 0.0
1351 9 376.3
1351 9 846.4
1351 9 7169
1351 9 700 6
7«9
405 Oct - ------ J
777.8
—
0.0
______
111 00
Water Works Design &. Supervision EnternrR*Arjo Onteua Irrigation Project
Meteorological and Hydrological Aspects
Bfir j.......continued?
May ZXJ07
<23
405 NOV 4M.T
4
6
T
a
.
9 >< J
1J
14
t
0.0 143 45.2 106 1.0 46.2
75
405 Dec 193.8 0.0 135 ao.o 100 1.0
405 Jan 70.5 0.0 146 740 10. B 1.0
405 Feo
405 Mar
405 Af*'
405 May
405 Jun
4B.7 00 147 85.0
10. B 1.0
60.0
74.0
66 0
46.9 0.0 154 50.4 11.7 0.9
31.3
43,5
149,4
0.0 146 7.4 10.3 0.9
00 80 00 5.7 09
0.0 0 00 0.0 1.0
405 Jul 466.8 00 0 0.0
00 1.0
50 4
74
0.0
0.0
0.0
347.3 1006.3 74.1
1228 1006.3 74.1
-15 3 990.9 73.5
-48. t 942 8 71 4 -16 2 926 6 70.7
12.6 939 2 71.3 36.9 976.1 72 0 14B4 10063 74.1
1351.9 347,3 1351 9 122 8
1351.7 00
1351.0 00
1350 8 00
1350.9 0.0
405 Aug 640.7 0.0 0 0.0 00 10
406 Sep 5)6.8 0.0 0 0.0
oo 10
0.0
o.o
406 Oct 402.5 0.0 111 0.0 8.2 1.0
0.0
406 Nov 168.2 0.0 143 46 2 10.6 1.0
452
406 Dec 71.S 0.0 135 GOQ 10.0 1.0
60 0
465.8 1006.3 74.1
639 7 1006 3 74.1
SIS 8 1006.3 74.1
393.3 1006.3 74.1
106 4 1006 3 74.1
05 1006 3 74 1
1351.4 0.0
1351.9 118,3
1351 9 465.8
1351 & 639.7
1351.9 515 8
1351.9 3933
1351.9 108 4 1351 9 0.5
026 6
406 Jan
50 1
00 146 74 0 108 1.0
74 0
-54.1 952.1 71.8 1351.1 00
406 Feft 28.8 0.0 147 65.0 10.6 1.0
85.0
406 My | 17.0 0.0 154 50.4 11.3 0.9
50.4
406 Apr 13.5 00 145 74
9.7 08
7,4
-71.7 060 5 68.7 1350.1 0.0
-45.6 634.9 66.7 1349 4 0.0
-4.5 830 4 66 5 1349.4 00
Waler Works Design & Sunemsinn Fnnmrf»I
I
I
I I I I I I
f- CD
to
rt
d
O
8 ri
pO
e
oQ
in
Oo
o G>
to
T«
n“l
to
*=■
Lfl
TO
w=
8
s
TO
8
to
«—■
CD
rJ
to
■r“
CD
TO
a
TO
T-
»=■
uD
to
»=
£
T"
in
rt
h- in cn CM to
V
to
CM n-
o
■•r s
s
in
CD
h-
TO
TO
CD
O
o
p
o
p
p
p
O
CD
TO
TO CD
d
C
■»“
•*
**
■?_
■”
¥“
*“■
O
O
TO d
Ci
to
O
a
G>
o
r-H
O
TO
TO
TO
uS
■M e>
O
o
o
a
cd
o
d
■='
O
o
•"
£
Oi
■n o
i
3
C
C
c
u
TO
TO
tfj
Mb
id
TO
t*
m
TO
o 13
e* cm
M>
r-_
s
*-
3
T-
2
■*
ri
n
ooo
ddd
CO IO
ci
sa
■f-i TO 8
*M 5 □ < -jj
C ■* ? & O s a c
oi5
nj
“k
WatBT Wnrlft? Fia^e,■Aijo DAtasa Irrigation Project MBteorological and Hydrological Aspects
__
May ao?
Annex C: Standards
U i; G e mm only u Sed Vai u e? ot runon tuei i il,ph i i ls Class Description of catchment
A Flal ru bvalefi and ijlck collpn MiJS
0 Flat partly cullivaled stiff soils
Runoff
percentage
10
15
c
Average catchment
20
D
H:lls and plains with tittle cultivation
E
Very hilly and Steep, with little ar no cultival i-r
35 J
45
C2: Rif naff tcbefTici^rkt for porwiou S surfaces by selected hydrologic soil
groupings and slope ranges
Terrain Type
Soil Type
.A.
c
D
Flat, <2% 0.04-0.09 0.07 -0.12
Rolling, 2 - 6% 0.09-0 14
012-0.17
Mountain. 6-15% 0.13-0.16 0.16-0.24
Escarpment. >15% 0.16-022 0.24 - 0.30
0.11 -0.16 0.15-0 20
0,16-0.21 0.20 - 0 25
0.23 - 0.31 0.28 - 0 38
0 30-040 0 38 - 0.48
Nate Where A. 0. C. jnd D aelmed *s Shown =n Cj
Water Works Design & Supervision Eiiterpr^T” In undrttewMi IdUnanttoaiitai Consultants ■nHedinMrMs
111
Pvt Ltd.Arjo DttfKsa JtrigaUan Project
Meteorological and Hydrological Aspects
C3: SCS Curve Numbers for Various Conditions1 Coizer Description
Mm jow
Cover type
I Fallow Bare soil
Crop .residue cover (CRi
I Pasiure, grassland, or range- ' continuous lorage for grazing31
Mearfow-raniinuous grass, protected from grazing
Bfush-weed-grass mixture with brush the maror element’ Wuods-grass combination5
1
. Woods6
Hyd’roj'ogi'
c
conrftfo/i
* Poor Good Poor Farr Good
— Poor
Fair Good Poor Fair Good Poor Fair Good
Curve numbers for
hydrologic soil group
ABCD
Farms-burfdings, lanes, driveways — and surrounding lols
77 86 91 94 76 05 90 93 74 as 88 90 68 79 86 89 49 69 79 84
39 61 74 00
35 59 72 79
48 67 77 83
35 56 70 77 30’ 48 65 73 57 73 82 S6 43 65 76 82 32 58 72 79 45 86 77 03 36 60 73 79 30* 55 70
59 74 82 8767
4rid and semi-arid rangelandse Hyd
can 75% ground cover and iighlly or only occasionally grazed
3 Poor c £0% ground cover
Fa< 50 1o T5% groixxf cover
Good > 75% ground cover
4 Actual curve number is tees- than 34); use CN = 30 for runoff computahons.
5 CNs shown were computed tor areas wrih 50% grass (pasture) cover Othec combmalions of condrliors may be compulcd from QN$ ?or woods and pasture.
* Poor Forest Irtler. small trees, and brvsh are destroyed by heavy grazing ex regular
burning
Fair Woods grazed but not burned, and soma foresl litter covers lhe sexi
Good Woods proicctcd from gra/hg. litter brush adequately cover sod
Poor < 3D % ground cover (litter, grass, and brush oversEory)
Fa* : 30 Io 70 % ground cover Good' > 70 % ground cover
Sort Groups
Grow A Sand, loamy sand or sandy loam. Soife having a low runoff potential due to high infiltration rates. These soils primarily consist of deep, weiJ-dramed sands and gravels
GtolielB. Sin loam. or team Sols having a mwlerately low runoff potential due lo
moderate infihraiten rales These soils primarily consist of moderately deep io trenn
moderately well to waU drained soils with moderately fine to moderately coarse texlures
GfOb!E_C: Sandy clay loam. Soils having a moderately high runoff Dotf-nlml m a infilirahon rates These so-te pnmanly consist of sods in which a layer exisls n^r
Gr[)tj0 p- Clay loam, silty day team, sandy clay. s»lty clay or clay. Soils having a high runoff potential due lo very slow infiltration rates These sods primarily consist o( days with high sweiimg potential, sols with permanently-high water lables, S&.I& with a clay pan or day layer at or near ttie surface, and shallow soils over nearly impervious parent material
Water Works Design & Supervision Enterprise----------- '— ------------- ’ ]n AssoclaUon with Intercontinental Consultants and Technocrats fM LtdIrjrUrtessi trrtpooa Ptojwi
Mek pro logical and JJy^uJjLi cal A.5pect3
Dam oTffj/gn Wood tnffow
Mm. sfandenft
Category of reservoir frwWaT
General
flare
cofldirJon1
_______ w_ai aiu? _
Wind speed,
Min. wave
surcharge
A: Breach endangers in
SpUiing long lerm av Daily
fives in commentary Inflow PMF
Larger of 0.5 PMF or 10,000 year flood
B: Breach may
endanger lives not in
a community.
extensive drainage Full
C: Breach wth negligible nsk to hfe and causing limited
Larger of
0 5 PMF or Larger of 0.3
Average annual max hourly wind Wave surcharge
10,000 year PMF Or 1.000 allowance > D.6
?lood Larger of
year flood m
Av. Annual max. hourly wind Wave
0.3 PMF or Langer of 0.2
surcharge
1.000 year PMF Of ISO allowance >04
damage
Full
flood
year flood m
05 239 231 310 203 302 156 41
cv
Star*.
Ml*
Mln
0.563
r .15 L6 1 09 0.68 0.058 -0.9 f 0.837 □ 56 0.345 0.375
68 >01 700 250 497 44 7 499 472 328 253 46
1 256
2.913
0 0 0 9 0 0 rst 202 128 9 0
T2
1 114
1.172
0
law
0.14
0.16
2322
1446
Water Works Design & Supervision Enteric---------------------------- AaocUU™ .Uh l»ttrainOnralal CoMolttlll, ,nd Tectaoeriu, Pi1 M
12SArJo-lMessa IrrlgiUon Project MeUoroloKiealandBydrotogical Aspects
_l _ _ _ -ay
f-------
Ywr Jan fet) March April May Juntf July Aug Sept
C4: Mean Monthly Rainfall a
rtn ml
Jirnm* Station
Oct Nov Bee Annual
1953
1954
1955
1956
1957
1958
1959
1960
1961
1963
1964
1965
1966
1967
1968
1969
197D
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
19BB
1989
1990
1991
1992
33 49 58 133 ?72 203 399 211 256
a 49 88 TJ3 93 210 194 214 152
33 49 88 135 94 2?B 235 244 169
91 25 100 109 « 183 288 254 215
29 4 83 2fiQ 142 226 160 195 249
0 52 117 215 225 278 185 169 5?
« 06 53 130 141 202 203 215 280
81 149 w 130 103 170 27? 138 151
11 39 104 145 284 2f® 135 210 212
0 86 90 225 197 237 272 262 243
40 57 131 116 106 206 221 206 225
43 4 39 203 102 249 205 191
56
21 73 1DQ 153 122 161 ■307 172 139
4 15 196 82 157 273 207 283 250
3 74 63 106 154 233 173 248 210
5S 61 199 91 109 165
189 135 104
70 135 91 160 103 288 197 263 148
10 3 58 81 267 153 205 204 201
12 74 127 115 101 161 159 193 167
20 11 7 149 148 160 297 160 181
5 5B 76 103 320 165 221 265 240
4 65 100 171 120 I9B 252 194 151
36 85 107 112 1&9 324 211 233 190
73 56 54 16 130 197 203 768 191
5 71 42 136 204 22? 184 215 203
32 118 111 23 116 232 153 164 1 15
23 42 500 301 108 189 96 164 141
1 7 136 62 252 114 193 250 154
105 43 61 136 211 253 141 192 157
20 40 97 161 27B 166 1 74 229 299
24 11 32 83 191 183 211 166 18?
25 20 77 147 203 135 260 163 128
0 40 62 115 151 250 233 134 163
26 09 156 BO 180 204 186 160 136
01 59 31 67 182 165 185 2&4 220
20 47 136 179 102 170 232 213 204
25 46 133 56 to* 320 280 200 246
79 01 62 169 1 so 223 200 246 140
20 50 56 152 144
?87
_ 21? 344 J 75
115 1 3 27 68 76
TffS 36 23 50 16 96
118 3
0fi 75 11
07 16 42
130 58 32
35 66 28
97 221 73
154 24 109
10? 116 25
56 17 13 132 215 2 31 59 55
85 3S 5
149 68 36
124 107 44
56 163 0
57 SO 10
25 1 1 90 7 55 93 118 25 229 61 15 64 57 30
75 & 22
109 27 26 3i 127 1
94 21? 37
1411 54 ? 12 138 50
63 50 12
09 14 47
116 46 52
172 2 0 107 28 170 23 93 19 01 6 79
__ iso __ 70 _ 36
1743
1270
1507
1523
1500
1446
1604
1509
1494
2012
1&06
1341
1333
1019
140B
1283
1743
1405
1 350
1537
1479
1414
1723
1491
1442
1165
1320
1337
161 1
1614
1208
1297
1331
1440
1477
1627
1712
1445
Waterworks Design it Supervision EmernrtHu —
129
“ WKK ixumUMou,! Craun™, ai„|
Tec noc aB
’'
Lt(LArjo DEdessa [rrtfitJirfi pfojcct
Meteorological and Hydrological Aspects
Water Works Design & Supervision Enterprise ’ —
130
rn Association with IntartMlliientid Consultants and Tectmacrats
L(±Arjo Dedessa IrTigadDn Project Meteorological and Hydrological Aspects
D5: Mean Monthly Rainfall al Dedessa Station
______ {Irnnmj
May ?Oir/_ _
March April |way bun*
!*“& _Sppl__ Oct
Nov
Year Jan Feb
1971
1972
1973
1976
1977
1978
1979
1980
1981
1983
1984 1985
1986
1987
1986
1989
1990
1991
1997
1993
1994
1995
1996 1997
1998
1999 2000 2001 2002 2003
2004
152 40 11 6 5 90 167 283 497 219 161 123 6S 0 0 3 41 266 273 203 209 146
00
0 0 0 83 80 00000
217 196 ’04 121 60 49 20
191 245 197 239 193 14
0 0 2 13 320 285 272 240 130 96 7
0 40 39 68 150
0 0 35 It 244 207
ZDS 39 68
00
334 625 401 196 107 32
A¥VM0* CV Skfw Mu Mm
1 91 1 07 1 28 008 051 2.10 2 7tt 2 75 0.94 ■0 25
21 48 160 154 275
00000
0 0 9 20 221 306 297 309 123 0 8 1 0 47 09 219 316 373 296 158 146 27 0 5 12 73 90 104 339 259 22i 04 S 4 3 25 29 141 399 428 296 215 97 54 1 9 32 8 275 341 370 442 300 24! 3 0 0 160 36 243 289 337 289 305 120 22 4 10 39 2 11 280 402 245 152 53 19 7 17 33 74 101 21S 355 304 132 5 1 4 0 0 0 64 197 153 207 171 183 65 0 8 26 95 141 224 307 264 170 132 15 0 0 1 79
0 0 24 19 01 112 265 241 177 09 10
21 4 79 60 239 311 300 380 370 c 12
13 0 13 154 184 203 277 247 147 0 60
0 D 13 14 251 399 196 371 254 191 29
10 0 0 47 176 306 151 274 351 141 17
0 0 0 154 241 448 136 347 300 192 22
0 11 27 3i 143 214 196 224 254 125 40
6 IS 30 31 77 203 252 126 102 17 0
0 35 50 0 73 366 417 302 193 67 36
0 5 6 35 106 252 427 210 140 147 36
3 6 26 49 150 274 312 277 209 104 28
0 29 0 37 0 25 0 30 0 54 0.75
025 0 64 0 35 0.67 -0.04 0.59
«0 625 442 lao 241 60
112 136 126 102 0 0
Dec
0
14
5 0 0 4 0 0 14 23
1
1
0 76 0 10 6
0
0 0 0 II
0 29
8 5 0 8
2 OS 3 66
78
1679
1222
704
1128
1278
1695
1306
1695
1284
1691
2101
1880
1216
1251
1069
1382
1032
1656
1299
1717
1494
1042
1296
665
1544
1470
1426
6 23
0.05
2101
Waterworks Design & Supervision EnteruS--------------------- - — In AUKtatlon with IntErcoutlnenuj Consultants abd Techno Ll(J
HlAjjo DfitesEa irrifaclM Project
Meteorological and Hydrological Aspects DO. Mean Temperature at BeMt Slation
May 2007
YMi
(in oC i Jan
-------- r
Jun
Jul I Aug I Sep [ Oct J No* 1 P**
1971 179 19.9 2i 2 20 6
20.4 18.2 16.7
16 6
15.5
1972
19.5
20.9 184
19 fl
10.3
15.4
15 B
17 2
is.a
1973 179 10 7 21 5 ?1 5
17.9 14 3 16 4
1974 17 7 198 19.3
1975 173 19.3 197
20.2
19B
18.2 16.9
157
*6.0 17 3
17 2 17.1
17 ?
16 7
16 2 17 7
IB 1
174 2J 9 179 170 17.2
1976 17 9
19.1 18 fl
170 17.6 17 2 17 1
17.7 17.0 16.7
1977
1fi 2
IS 1
l&O
16 fl
:60
I 1978 1 17.3 ia* 19.3 IB 9 ts 5 17 5 160
13.1
165
1979 21.D 20.5 197 19.5 7.9 15.6 173 17-3 175
19®?
I9B1 17.3 17.5 17 1 1 1M2
192 191 176 172 16 9 17 4 17 Q
170
19 7
*7.6
174
S9B3
7.5 19.1 20 1 17.6 17.4 17.B 18 3 18 7 >9 0 194 20.3
1984 21 4 21 2 220 19 7 18.0 169 173 17.4 136 189 196
1985 26 5 20 5 21 4 205 18.6 1B.D 172 17.1 17 3 17 7 18 fl
189
1906 19 9 206 20.8 20 9 21 4 18 1 174 17 0 17.7 162
13 7 184
1987 194 20.0 20.4
18.1
18 2 10.3 190
I9B8
1989
T990
19.7 20.3 20.8 ?I6 196 1B.1 170 17.3 17.5 10 3 1B2 17.9
17.8 18 7 19 1 19 3 19.0 178 15.0 173 17.7 17.5
Ifl 1 187 19 5 20.2 19.3 ifl 5 17 4 17 4 i7.a 102
10.0 17 0
18.9 19.1
1991 193 208 207 21.0 204 103 17 4 18 2 134
1992 1? 1 20 1 21 3 208 20 7 19.5 104 180 156 19 I
1993
18 7
16.fl
20 Q
20 6
1994 20.9 209 22 0 21 3 19.5 17 0 177 1B2 190 196 166
1995 205 20.8 21 3 21 4 19 9 194 176 18 t 10 $ 18 0
1996 19.2 2l,0 PQ 5 20 7 191 18.4 17.8 180 10.3
1957 192 199 21 5 109 19.3 18.6 178 18 0 188
I8.9
195
18 3 13.5 13 7
1996 139 21 2 21.2 23.2 21.0 W.3 IB 1 18 3 IB .9 19 2 192
1999 1 196 21 7 21.7 21 0 191 19 7 173 17 7 186 17 9
2009 J
17.7 17,9 18.5
19.1 20.9 20 7 21 2 19.9 18 0 17.5 17.7 18 6 19 4 192
16 9
19 2
16 9
1 2002 19.2 21.1 21.6 2i 0 21.2 10.5 18 3 17$ 16 1
2603 2GG ?| s 211 21 2 21 9 18,7 176 18.1 10.6
1 20W ! 20 8 21 0 22 1 21 5 200 18.3 173 18.1 10 6
IB I
19.0
18.7
169
19.6
cv 0.08 are 0 05 0 05 0.06 0 #2 0.05 0.04 0 05 -1 2# -3 96 -J T9 -0 08 0 00 ■4 24 -2G5 ■0 36 -0 58
MIO 13.5 75 17. T Jfl.J J7.0 7.5 14.3 IS 7 t6Q *« 1 20.9 27.7 22 J 232 21.9 20.4 18.4 ■ fi J J9 6
18.7 19.7 20 5 20 6 r$.e rs.o J73 r?j #7.9 ?S0
0.05
-0.54
15.5
19 4
Water Works Design & Supervision Enterprise ~ In Association with Intercontinental Consultants and Technocrats Pvt. ltd.ArJ» Didessj Irrigation Project
Meteorotogical and Hydrological Aspects
07: Relative Humidity a! Beetle Station iin%)
Yea* Jan Frb Mar 1 Ap» May Jun Jul Aug Sop
Nay 200?
19B7
BO
Oct Nov 1. G?c
30 69 53
1988 63 80 sa 52 70 78 89 04 83 78 63 50
1939 51 S3 67 62 68 BO 83 ■85 34 72 64 75
1990 59 B2 56 60 70 79 82 80 80 70 69 60
1591 55 48 56 67 78 80 82 84 77 1992 65 56 62 66 75 77 01 74 1993
1594 53 48 48 57 78 63 85 72 01
71 65 85
72 69 04
61 66 51
1995 46 SO Si 59 72 75 85 83 76 69 69 67
199S 59 5* 63 62 75 82 83 84 80 1997 Bl
72 63 64
199B E5 55
6J
19M 59 50 49 55 76 76 84 34 80 73 54 63
2000 58
82 84 02
2001 62 62 65 w 73 83 84 84 83
2002 I 69 60 66 65 67 81 85 86 03
80 74 70
00 74 67
2M3
62
55
63
60
57
81
86
86
84
73
69
61
2004
61
54
56
62
66
si
85
E4
a?
74
70
69
4 wag*
60
57
58
6?
70
78
84
63
87
69
63
60
Water Works Design i Supervision Enterprise " In Association with Intercontinental Consultants and Technocrats
PVT. Ltd,Arja HedEEEa Irrt^uiaQ Project
Meteorological and Hydrological Aspects
D0- Wind Speed at Jimma Station (rn rn/sj
May 2007
Year
1973
1974
1975
1973
1977
1978 1979 1930 1981 19S2 S901 19B4 1905 1906 1987 198B 1939 1990 1991 199? 1993 1994 1995 1996 1997 1998 1999 200U
2001 2002 2093
March April May Jun* July _Aug
08 0 8 09 0 9 08 09 i.i 1 ? 0.9 1 i 09 0.9 0.8 0 9 1 1 09
09 1.2 08 1 3 1.4 09 0.8 08 0.9 0.0 0 8
08 07 1 0 1 0 09 09 0.6 09 0.9 09 0.0
0.7 06 09 09 to 0.8 08 09 0.9 08 0.7
07 06 1 2 1.1 09 0.9 0.7 03 08 08 10
09 08 00 09 06 0 9 0 7 o.a 08 0 7 06
07 08 09 09 08 07 07 07 07 0.6 06
0.7 0 8 09 0.7 0.8 06 0.6 0 7 0 6 0 5 95
0 7 0.0 06 0.8 0.8 07 Ob 06 0 7 06 0.6 0.6 0 6 08 07 07 07 06 06 0.6 0 6 06 06 ■ ■■ 0.6 06 0 5 06 0.6 06 05 05 06 07 06 06 05 0 5 OS 0.5 0.4 0 3 0.5 OS 06 06 05 0.5 a s 04 0.4 0.3 02
O.i 0 1 0.2 02 02 0.1 0 1 0.1 0.1 0-1 0 1
01 0 1 0 1 0 t OS 0.1 0.1 0.1 0.1 0 1 0 1
05 06 0.6 0.6 06 0.6 05 0.6 05 0.6 0 6
0 1 0 1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0 1 0.1 06 06 07 07 0 7 D.6 0.5 0.5 05 0 5 05
05 05 06 0.6 0.5 OS 05 05 05 0.5 U.S 0.1 0.1 04 0.2 03 0.1 0.1 O.i 0.2 o.i 0.1
04 06 0 6 0.5 0 5 0.4 0.4 0.4 0.4 0.4 0 4
0.4 0.5 0.6 O.S 0.4 04 0.4 0.4 0.4 0 4 □ 4
0.4 0.5 0 5 0.5 0.5 0.4 04 0.4 04 0.4 0 3 Q.4 0 4 05 O.S 04 05 0.3 03 0.4 04 03 0.3 0.3 0.3 0.3 0.3 03 0.3 0.2 0.2 0? 0 2 02 03 0.3 03 0.3 03 0.2 03 0 3 0.2 D ?
0.2 03
03
03 0.3 0.3 0.2 0.2
o.i
2004
4rcr>pr CV
S***
02 0.2 02 0.3 02 0.1 02 02 0 1
0.3
0.2
0 1 0 t 0.2 0.2 0.1 03 0. IQ 0.11 0.09 0 19
U1
02
ni
062
0 52
■Q£W
0 75
0 42
0 76
0.35
0.32
0 33
032
0 19
0 S3
0 39/
063
.
Q 02
0.3
4 0 3? 0.29 006
Water Works Design & Supervision Ente^rt.p ‘
in Mndadu ™Iwtrel„ „
u
(BBI C„KU|1„,S andArjo-Ccdessa Irrigation Project
MeteoroJogical and Hydrological Aspects
09: Sunshine Duration at Bedefe Station
inhrs/davl
r May Jun Jul , Au?
May 3W7
■“j
Sep
Oct Nov Dec
1MS 8 5 82 79 7 9 7.4 6 3.8 5J 6 5 7.9 8.0 6.4 1998 89 56 7.7 64 82 64 3.0 4.8 6 9 6 6 7 9 1991 79 8 1 68 53 7 1 4.5 2.7 34 5-9 3 0.4 7
1992 57 7.7 7 1 03 6 1 34 22 6.7 6.2 62 8 3
3993 7.6 6.6 7.5 55
1994 7.7 75 77 76 ■ 24 34 5.8 9 S 04 93
1995 SB 66 7 7 6.5 ■ ■ » + ■ ■ tr 1996 * - 7.9 ■« a- 37 43 6 7 9 7.9 7 0
1987
1988
7 9 72 6 9 0.5 5.6 6 5.3 6.7 84 8 0.3 8,3
9.3 71 6.5 82 79 64 26 4 2 5.1 97 y b
1997
1998
1999
72 92 7.5 60 7 6 1 4 1 4.6 8.4 7.8 6.7 8 3
75 77 64 8.7 6.4 6.7 2.9 3.3 4.7 54 9 4 9 2
6 1 9 1 8.8 76 7.6 66 3.5 4.6 66 58 9.0 0.8
2KD 9 88 9 6.1 7 8 8 2001
Hr ■ 5-5 6.4
■
+
2002
2003
2004
Avwjg*
■■ 8.2 7 5 9 1 3.4 6 1 5.6 3.1 6.9 6 0 8.3 7.6
79 86 7.3 8.8 9.6 57 2.9 36 6,1 9 5 87 8 6
7 5 79 6 57 7 4 4 3 4.2 4.5 3.6 0.2 a. 3 7,7
a 2 7.6 7.5 7.3 76 6 r 17 4,1 52 7.9 S3 0.3
Water Works Design & SupervjsioIe^nSSArjtiiDedKs a WcatlMi Project
Meteorological and ElydralogicaI-Aspects
Annex E: HydrologicaJ Data
Ej__ Lia-I of Selected Hydral'ogiCal Obsp-rv-iMtpn SldEi-ons
May !!OU;
s.
No
Station
Nd.
Station Name
Latitude. N I Longitude. E
I-
Deg Min. Dog.
Min,
Catch. Area
2
(km )
-1
1 1 ! 114001 Oedesw near Arm
2 114002 Angar near Nekeml L-_ . .* — ■— —
114005 Dabana near Abasing
08
4T L36
29
9981
!
!4
5
09
09
30 36 35 3742
02 36 03 2BBi
114007 Angar near Gubn 114008 Yabu a" Yabu
07
48
36
36
29
42 -47
s 114009 Urgessa near Gtfthbe
07
50
19
7
114013 D-abana near Bwnno BedeHe
06
24
36
39
1?
47
8
114014 Dedessa near Demb* (Tobap
QB
1806
9
114016 Lokd near N-ekamt
09
—— ------------------------ _—
03
22
36 27
3B 36
375
10
114019
Temssa near Agarn 07
51 36 35
47.5
11 113004 Weiks near Gudei
0B
12
113038 lutfris near Guder
oa
d
56
io
37 44
37 45
13 101006 uka ai uka
06
35
14 -I
091008 Giigelgb be iwar Asendabo
0? 45
3?
22
li
3B
nr 52.5
2966
15 091012 Gdjeb near SllEbe
WJ
25
36
23
3577
Par lod
i960-2004
1994-2004
1963-1984
1990-2003
1979-2004
1979-2004
1964.2003
1965-2DB3
1997-2004
1989-2004
1998-2004
1386-2004
1980-2004
1967-2004
1970-2004
'.Vater Works Deslo & Supervision
to Assads tra Interconttnemjil Consultants ano T«
’ - - - - - - - - - - - 1«Arju-Detfessa Irrigation Project
Meteorological and Hydrological Aspects
Annex E2' Mean Monthly Streamflow at lledessan near Arjo Station
May 2007
Tea/
1 Jan
11
Feb War Apf
May 1 Jun
Jul
Aug
Sep
Oct
Nov^[ Dec
i960
1061 1962 1953 1&64 1965 IMS 1967 196ft 1969 1970 1971 1972 1673 1974 1975 1976 1977 197B 1979 i960
19&1 1962 19BJ 19G4
1985 1936 1907 183b 1989 1990 1991 1992 1993 1994
-
■ w 1054 1124 * II
51 5 44 0 J7 5 94 9 656 ?B6 11?6 1613 1503 1304 280 177.5 S8 1 29.8 284- - 622 930 1170 655 107 55 9 36 1 19.3 179 42 7 14F 1 324 672 1370 IMO 374 104 170-3
382- - 549 230 1049 1301 1176 1337 205 73 6 554 25 3 16 4 47 8 27 0 160 034 1051 665 957 320 157 0 710 63.4 57.7 74 1 62.5- 057 1086 1212 -
22 7 20.4 - 7PB 1268 1201 1260 459 210.4
&60 539 21 4-
-
138 53 7
5Q 9 46 7 87 1 3B.7 732 349 950 1421 944 291 09 46 2
M 1- - <5 3 m 929
-
101 62 i
37.0 16.4 10.fi 12 5 53.5 241 823 1175 949 752 304 105.3
524 29.8 19.6 35 7 564 118 aoi 1237 7lfi 209 117 52 5
25.9 11.2 4 7 6 3 109.3 2M 1401
t49 64 B
365 162 14.4 9 1 93.7 261 641 1278 119 46 9
24 5 21.9 11.5-
48.3 37 8 24 7-
25.9 18.1 12.7
-
..
II
151 59 5
-■ »
55.5 201- 12.4 80.1-
■ 324 120 7
r
■ 22 a 464 130 533 a?5 610 262 94 44 o ia.o 15 3 10.0 60 6 190 9 504 914 1280 1244 393 103 92 5 BOO 43 4 43 3 35.4 53.7 S3
698 302 28 6 19 3 457 248 707 947
43 4 31 7 34 1 233 52.4 153
692 761 177
385 16 7 11 9 9.5 286 105 ?03 &65 521 131
566 1139 1116 1231 255
j,!+ j
121.3
12 0 54 2.6 118 62.4 169 430 927
176 9 5 181 13.8 12 8 119
13.0 5 9 124 17.3 367-
452 491
-
042 260
732 222
79 45 0
40.5 27.5 21 6 7.7 37 0 200 555
23 3 204 33.5 271 121 273
67J 366 160 67 B
139 *
S3.5 30.0 338 60 9 42.0
1S7 343
543 1143
409 Ki0? -
---
107 123 1
■ :»
24.5 23.9 138 20 7 565 161 360 824 564 606 154
42.5 27 9 24 4 547 105 2 312 GOO 1159 631
39 1 196 15 5 15.7 597 220 534 1221
407 177
858
156
60
30 1
73 4
63.3
36 9
Water Works Design 1 Supervision Enternn^ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1
in taMUUO «M li>.« «l„.„al C.orutanrv «, TeX,’™
t
Ll( ,ArjfrMsu Irrigation Pr&Jrct
Meteorological and Hydrological Aspects
£2. (. , , Continued)
May 2007
year ban
Feb
Mar
Apr
May
Jun ■Lil 'Aug Sep
Oct
Nov
Dflc
IMS
190$ 1937 1&93
i&gs
3MD 1 2001
2002
MM
2D04
20 4 12.2 14B ifl4 363 83 225 569 4&fi !5E 6fl
■ - - 304 141 a 373 723 954 5M - -
67.2
41.4 19 Q - ■
■*-
-
a
■-
-
-
-
-■
242 135.7
85 1 &9.S 66.1 57 2 128 3 4D1 740 1045 10D5 674 215 1117
M.O 57.2 56.3 63 4 4B 2 175 457
f
591 576
tn 115 33.9
56.4 36-2 562 74 3 40.0 120- 652-
52 3 40 2 30.3 287 65.2 202 526 639 643 536 140
CV SJcriv Max
Mlfl
46.2 287 26.0 332 66.5 223 654 1007 859 581 177 969 0.47 0.52 0.66 071 0 59 0.46 0 34 0.30 0 32 0 68 0.51 0.50
0.66 0.65 1,14 0.54 1.54 0.74 022 4 16 0.43 0.73 1 26 1.00
990 63 4 67.1 190.9 SUM 11761 1612 8 1502.5 1337 4 459.2 210.4
12.0 54 2.6 6.3 12.9 53.2 225 0 491 1 485.9 130.8 59 9 36 9
M^n annual Elaw = 3fijT Mm3}
Water Works Design aSnpen tal(111
,
I. teucUUHi .llh lourvenumala,Coos ltMB
,
Tk J,m'B M , M
---------
I?'ArJoDedtssa Irric ariott Project
Meteorological and Hydrological Aspects
E3: 41 Mean Monthly Stream flow at Dedessan near Dembi station
;Million ni3i
May 2(107
Year Jan Feb | Mar Apr
May Jun
Jul
Aug
Sep
Oct
Nov
Dec
1985
15B6
*■987
i9BB
1989
1990
1991
1992
1993
1S94
1995
1996
1997
1998
1999
2000 2001 2002 2003
2«U
64 3.7 4 2 78 26.8 92 85 185 302 272 70.2 21.9 8.5 55 9.7 8.4 9.4 50 262 206 299 67 229 11 5 5.9 J 5 97 9 2 18 5 105 243 342 216 104 44.1 27 i 179 157 12 5 64 23 9 153 217 392 489 142 52.0 18 8
ItO 7.6 4 5 11.5 0.2 31 167 253 272 142 24 8 13 5 18 3 58* 5.0 22 7 9.9 52 252 564 362 126 20.9 94
72 63 66 125 29 5 76 305 522 263 140 13 4 39 78 15 3 12.9 8 8 36 6 78 138 269 1B3 219 45 2 17 1
112 172 i6.a 376 bo a 252 334 378 2CM 110 43.7 14 7
12 3 13.5 16 B 22.5 37.6 112 274 381 282 59 266 16.4
129 12 1 16 5 238 46.7 07 190 272 331 101 32 5 33 7
12 9 9 4 165 238 48.6 07 190 272 331 101 32 5 .33 7
21 2 130 23.2 38 1 552 142 219 343 204 262 13R 56.1
28.1 135 20.3 12.7 31 1 HO 272 415 299 329 88 0 21 1
13.0 6 5 83 95 549 148 242 245 214 302 46 4 13.3
102 56 4 5 9.7 41J2 119 29C 309 242 209 32 0 21 .9
12.7 9.6 11.2 145 55 5 226 330 322 296 JI 2 58.6 22.5 65 69 66 9.0 6.5 63 192 255 195 66 27 7 14 9
7 4 4.0 92 24.0 6.7 59 241 223 324 82 20 3 10 o 13 0 13.0 13.7 33.0 98.5 19B 208 208 145 39 19 0 18 6
A wipe
CV
SfcfW jWjx
Mrn
12 2 947 11.5 ?69 36.4 112.4 232.4 316.9 273 154.3 48 4 20 5
0 47 0 45 0 48 0 56 £159 0 526 0.27 0326 0.28 *551 □ er O.5S
f 35 03? 0.47 o.ai 0 85 t.n?5 ■0.47 0.927 0 89
28 t 172 23 2 37 6 98.5 252 334 564 489 329 187 9 Sfi i 59 3.7 42 6.4 5.5 31 03 ids MS 39 73.4 8.9
2,6 J 9-H
Mean annual How = 1255 MmJi
Water Works Design & Supervision Enterprise
In tasMkaiiMi with Intercontinental Consultants and Technocrats M LtdArjo Dtdtssa Irrigation Project
Meteorological and Hydrological Aspects
E4: Annual Maximum Floods
i in mJtefr
May 2007
Year
Oe-uessj
wing'
Upper ntjr Dema-
Djibjflj
raiar
AtW-jifUi
OJJprt GJW±i< ne*r
■4«71CTjb<>
nrjir Sbrbc
jflngj-/ jm at
n eq cm Co
/IngAT rcc-jp
Guhfi
1
2
4
5
6
7
8
9
W
11
12
13
14
15
16
17
ia
ifi
20
21
22
23
24
25
26
27
28
29
30
633
1173
SQ3
789
850
951
814
H65
701
634
696
721
490
645
554
1083
369
480
502
574
771
750
646
804
353
525
525
744
312
601
213
206
212
243
354
228
200
151
189
262
164
175
226
175
211
244
271
300
370
287
487
264
434
449
247
196
257
ISO
314
341
238
202
248
151 132 198 272 130 176 330 127 151 231 167 110 705 116
168
129
148
151
223
135
149
119
92
96
127
143
85
121
247
86
106
192
237
159
255
100
174
339 180 185 258 186 241 284 217
214
140
249
177
268
138
297
314
104
150
203
226
132
245
366
164
164
261
164
150
202
132
193
199
439
236
336
361
209
247
256
157
271
252
128
141
73
55
124
107
134
105
125
142
136
142
149
176
172
109
106
79
181
128
Waterworks Design * Supervision EnlernrR, Action wW.
140
. " ASMMeteorological aad By ilrologic al Aspects
May 2&07
E5; Measured Sc dime nt Ounce titration at Gumara Gauging Station Field
I
rI
sample Lab
No .
Mo River / SUeam
I
Slation
Date & Time Time G^haight Flow
Depth
- — 1
-of Sampling (Sec) (m)
■ nrVsl x _l£QL_
Sediment
Width ■ Concert . Remarks
(m)
1
□ede&sa
Toba
15 Mar >90
4.16
0.26
0.70
0.35
0.54
0.80
0.39
6.9
13.8
51.56
485
2
Dedessa
Toba
15-Mar-90
4 16
406
3
Dede»&a
Toba
15-Mar-M
4 16
20 7
40.00
42.81
6G4
1
Dede&sa
Toba
21-Mar-M
5.41
5.41
5.41
9.14
7.0
59 69
665
2
Dedessa
Toba
21-Mar-90
656
3
Oede^sa
Toba
21-Mar-90
1057
1
Dedessa
Toba
8 40
1058
1059
1190
1191
1192
1223
1224
1225
2690
2699
2700
2704
2705
2705
2
9 14
8 00
J
Odessa
Dedessa
7 00
1
2
3
Dedessa
Odessa
Dedessa
Odessa
Dtfd&ssd
Odessa
Dedessa
Dedessa
Toba
Toba
Toba
Tuba
Toba
Toba
Toba
Toba
Toba
Toba
2-Jul-QO
2-JuUBO
2-Jul-90
173.13
90.63
215,31
135.62
22'Dec-90
22- De€-&0
22-Dec-90
18-Sep-90
50
50
50
9.14
4.37
4.37
0 43
14.0
6.1
6.6
13.3
19.9
70
190.00
90.94
14 0
99 37
1
2
3
4.37
0.74
0.46
21.0
63.13
96 50
1&Sep-90
16-Sep-90
IGMay-93
16-May-93
90.50
1
2
3
1
2
3
96 50
45
141.56
187.62
124.69
2.89
0 66
45
87 90
Odessa
Dtdessa
Oedessa
Ouessa
Toba
Tot>a
Tooa
Toba
2 69
0.61
iBMay-93
12'Ap<-93
12-Apr-93
40
108.63
2.89
8.01
0.71
81 40
8 01
73 05 64.61
8.01
61 59
59 20
III Water Works Design & Sn»»r.,uu—ES;____ conttnuecO
Field River ■*
o. sample Lab.No. Stream
No
r—
Station Date & Time
l-------------- 1
Time Gfhcighl Flow
of Sampling (8®c)
T-
Depth
[m)
I Sediment
Width Cancan Remarks
4 TWgGKJLDffY AND APPROACHES
■f--^iiirwiii i 11111 iiiiiaii
4
2. PHYSICAL HYDROGEOLOGY
2.1 HfMOGCClQGlCAL SETUP
2 2 Hf CROGEOlOGiC units
22.1 Fradu wl antf/of weafNerttf rtta/ic W*S 2.2.2 dffuvnW .................. 22 3 sftrffrnOflTS
2.3 ikVENlO*Y AND WEU. DATA
2.4 HYOftOOYAAMlC PARAMETERS OF A«Wf fES
XCROLiNDWAIT R POTENTIAL____________
Pfff—■ Illi II I L il. ..U.il—....
IIL.il..
..—6 6
.7 A
A
5
ll"HIIIUMJ —441—.
A
.9
r
3.1 Gjwjwwater re charge esttmaton 3. f. 1 cto sa 00 vr Art jJyxis
31.2 HWW AatertCe iTitrtftatf 4. WATER QUALITY —
4 T WAffA $ A MF-LES
“"tut num
—— •inrun i.4.
II
4J
4J
$AWPw Cm,um,b
2Ftff 1-1 Location map of Ar/o-Dedassa frrtgafion project
\Arja Dtfessa IrrlgsiSon Proftd Hydrogeologfatf In instigations
May 2007
■
1.1 Physiography
Ti:e basin drams a part of Jima high lands including Goma jAgaro), Setema, Sigimo. Umu Saka, ard pari of Jlubabcx including BorecM, Dedessa. GkN and Bedclle* Woredas above lhe proposed dam Arjo, Nunu Kumba Sitxi Sire and Warns Bonaya woredas are also
r
within Else catchment. The command area is drained by river Dedessa and other tributaries such as Wama River. The general stope of the ba&n/or catchment is toward NE, E and NW dueclions. The area has generally a rugged topography with the hrghest and rawest elevatoms about 2 890 a nd T 030 m amsl respedivfrly located at S iguno-Gcene age Similarly. Ago area is comprised by such Hood hasaHs of the so-called Makonneri basalt
Based on the investigations made in lhe area, various aquifer sat up
aquifers are weathered and for fractured basaltic lava flows and other acidic volcanic cocks such as rhyokte and rgn-nbrite The aquifers of volcanic origin have both confmed and unconFned character; for example the volcanic rocks in Agaro area show both characters The Manning layer in this particular area is h^hly weaihered volcanic ash of cla
revealed from existing wtfl dnlling data There are aquifers that a B dttfibuted ,0
,
espadally aiiuv.al sediments along river valley and streams, and colluvial s^ment mcvnrams and escarpment. In addition to ihese there are also minor aquifer atlribui^T
weathered basement rocks (granites and granitic pegmatites). This laEl aq(J(fef t
°
""" sigeMao » the project area have covaraye of 452.91 Km’ (4 40 % |
2.3 Inventory and well data
|
in order to undertake derailed investigation of the no
fl Unt Watpf o.
schemes have been mvernoned and their geogfaphIC£t| Radons nave been d .
OPS
MSp.«
«««
analy5JS o( hyd wl
,^"
KM
^ “®
u
Lhough complete wen data are not available in ih* afea Scrrir. |r
*
5
narrt been undertaken fa waler supply
dur,fly
e &^a5ur*men1s
parameters of water quaMy by using field test Kits such as rne pu
phyfiica|
^«TDS, ph and temperalure meter
Water Works Denigsi
10 Aa'drtO W!W
------------------ -—
CottSU|(lnu ;ind ?Arjo Dedcssa [rrtgadon Project
Hydrogeological investigations
May 2007
In adcfiti&n La these primary data, secondary tfala have also been collected Ort both water quality and other Well date. S atdiile rmages and aerial Ipholos have b sen i nterpreted I o identify geologies I sEnuchjres and other lithological bou ndary demarcation trial have been verified by field work
2.4 Hydrodynamic parameters of aquifers
As it has been mentioned previously. She mam aquifers in Arjo-Dedessa project area are fractured and/or weathered volcano lava flows (basaltic and acidic lava flows j and sedimentg. (afiluvigE and colluvial}.The boreholes m the fractured volcanic rocks and sediments are either with partial well data or totally without well date Table 2 1 shows I tie boreholes drilled previously m the study area and their depths.
Table 2, i Delates of barehples in the study area
No
Well No
PA/vlllage
Depth (mJ
SWL
1
Wen 1
Metta
55.75
16
2
Well 2
Meita
43$
12
3
■—
wen 3
k
Metta
43.5
17
4
HT-2
Qolto Sih
27
5
HT.&
I-
Cbilalo Blldima
72
15
HT-7
Chafe Anani
57
7
Wei 1
Chuli
52
1.3
0
Well 2
Chuli
’ _r.T- -----— - —
41
1.7
3
Weil 3
n'i
Chuli
25
2.1
10
„
Well 4
Chuli
30
21
11
Well 5
'---7--- T-------- -
Well 6
Chui
—------------------
25.5
15
12
42.5
2.2
13
L——
Ntada TaWa
Chui
■ ■ ——
____
Bakalcha Biftu
52
—
14
Iftu Biftu
____________
Bakalcha Bittu
3555
Water Works
“ *............ .. .......
SupervlsloiTSi^r;- - - - - - - - - - - - - - - - - - - - - - - - -
rJF'ff. ?-f £ rnjp stowfog
unjrs of dr/o-£3«fes sa rirar cjftfimwi
W. ' ,:lil i 1. ■ dmArjo Dettau Irrigation Fn)ect Hydrogeological Investigations
3. GROUNDWATER POTENTIAL
3.1 Groundwater recharge estimation
May 2007
in order ip develop groundwaler of an area, its pdentiaI including its annual replenishment
W h«h is usualy referred to as groundwater recharge, has to be known. Groundwaler recharge of an area can be estimated based on different approaches One of the best approaches is through water balance method. In order to employ this method of groundwater potential estimation, Ihe necessary data have been acquired for analysis. In supplementary to this method, base now analysis for River/stream flow (Dedessa River) have been undertaken to derive some coefficients for water balance Hence, in the groundwater potential estimation ot Dedessa River catchment both methods have been employed in order to come up with concrete result as much as possible
3.1.1 Base flow analysis
In order lo employ base flow analysis approach for groundwater recharge estimation, the
monlNy discharge of Oedessa River from 1961 - 2002 for a total of 15 years have been
used The river flow data is not consecutive due lo soma missing data tor some years
Accordingly, the mean monthly minimum flow of Aqo-Dedessa on 3nnual base ts shown in
TaWe 3.1
The difference between 1he total flow and ihe Minimum monthly flow is Supposed 1o be Ihe surface runoff Accordingly, the surface runoff for Oedessa river calchmem at the gauged station i$ 2,105,796.874 m1 Where as the 1o1al minimum monthly flow of 1he uver is 1,962,092,938 m3 as shown in the Table 3.1 The basic assumption in deriving groundwaler recharge from base flow analysis is that ihe monthly minimum stream discharge is equal to the base taw. This approach has been ment.oned by Wundl (1978) tha1 the monthly minium siream discharge best approximates 1he base how. especially. fw humicJ chfT atft '
,
Therefore, the b ase flow that i s supposed to correspond to t he groundwater recharge ■ s found to be 196.6mm. This vatoe >s obtained by dividing 1,962.092.938m’ by the area of the
2
gauged catchments, which IS 9.981 km This amount of ground waler recharge
Water Works Design & Supervision Enterprise
Id Association with teteJtontlDctttal CodsuUmu and Technocrats Pvt Ltd
11ArjoHed«5A Irrigation Project Hydrogeological investlgatiOQS
May W
minimal as rt amounts to onty about 13 53% of rhe total annual preopdahori of the area which is 1452.9mm.
Furthsrrwe. based on the same method. the surface runoff of lhe River catchment has Man estimated as the difference between ’he total river Haw of Dedesse flnd ihe minimum flow cn annual base and worts out to 2,105.796,874 n? that ts attributed 10 Surface runqll This value is used to derive the run off coefficient of the river catchment to asses 1he surface run off I or Cha e nbra Dadessa caichmant that wil be used in the water b alarice approach of the groundwater recharge estimation in the next sectaXV
Table 3.1 Monthly- total flow and MtrnnH .^i p.
n
.
" UMIA|Jnbe
Tetlmocrau ([(J
32Arjo Oedewa Irrlgillsn Project HydrogeQjQgical Investigations
Hay 2007
twsjxabon. continuous record of soil moisture, anti stream flow from a mtfleorfrkjgcal r-ecord and a f-aw observations- on the serf and vegetation. seasonal and geographic patterns oHmgation demand. 1 fie Mux of waler to lakes, prediction of human effect on h ydrologic cycle. ■ileopcld awt Chrw.
In this study bhfr waler balance melhcd is aimed al estimation of groundwaler recharge The banc assumption that is considered m this case is that rhe surface water divide coincides with the subsurface drainage basin Accordingly, othtf than the water that is percolated!
wlhin the linrf of the surface water divide, there is no ntenaqurfer How finftaw ar out flow) of grfkjndwar&r.
The basic equaiion* of waler bplance is:
Inflow = outflow +4S
'Afiere iS is change in storage
For the study area, the main inflow component 15 precipitation, but the outflow components are evapotranspiration and surface runoff assuming a* other components such as water abstract™ by human fw other purposes to be negligible. Besides this, the change m storage. can be considered to be zero K the water balance 1$ made by taking waler year /or hydralogic year Hence, the value of AS roll be negfigibl^w zero smee the calculation n to
be made on annual basis.
---- LU I
Evapotfa"'5praiion (AETJ can be derived for the catchment in addiuon to ths. the
The surface runoff follows
The monthly minimum stream (low has been consitJeretj as4rjg Dedessa r/rlfittoa Project
Hydrogeolcgicai jnrestigatlofls
Rc = D/PA
Where
Rt" RWfflff ttwNiciftrtt
D = overland Row = 2,10579*6,874 r 2W
J
A = drainage area = 9,961,000.000 m ■'drainage area a1 the r^ver gauging station. Bui Ihrs does not mean Iha1 the total drainage area of thg stud ied basin J Hence. Rc ■ E.105.796.674 m /1.4529 m < 9,961.000.000 m = 0.1453
s
1
This Runoff coefficient is used lo estimate the surface runoff for the river basin ■’Dndessa Rivfi/J under study
In order 1o estimate the surface runoff of Oedessa area the mean annual precipitation
1452 9mm has been used
Hence the surface runoff tor the entire DedEssa River catchment becomes 0 1452 X
1.-52m X 10.293.303.358-08 ml = 2.170,141,264.31 m’. Thu* the surface runoff works
our to 210.83mm This value is only aboul 14.51% of the total annual preaprtatlOn in lhe
fl 5ea Note lhat rhe total area of the studied river catchment at the out lei of the command
area is 10,293.303,358.08 m2
By assuming, lhe comodence of groundwater basin with lhat of surface waler drvffe and also by assuming lhat there is no artificial or natural mtra-basin subsurface or surface flow the grouridwale/ recharge of Dedessa riw catchment can he estimated as follows
GWf = P-(Sr *AETJ
Where GWf = Groundwater recharge
P = Annual precipdalicfi2 1452.9mm
AET - Actual £vapo-tran$p>ration
Sr = Surface runoff = 210.83mm
The Aclual Evapotranspiration, (AET). can be estimaied based on afferent methods- one or lhem is the empiocai Tore method Tore method is represented by the following formula °
Water Works Design & Supervision Enterprise
in ^soclaUos with Intercoottnent&l ConsulOnls and Technocrats Pvt Ltd.
14Arjg Mtosi Jrrlfa Upd haj«t
Hydrogeological tnvesdgadoas
2
AET -P -.J0 9 - IP'LJ ]
Where. P = annual mean precipitation io mm ■ 1452.5mm T = annual mean air temperature in C - 20
L e 300 * 251 * 0 05T1 [mm] ■ 120dfflrm Hence far Dedessa nver catchment. AET - 544.57mm
Miy 2W7
J
Therefore, in order ro estimate grcvrfwater recharge for Dedessa River catchment IM value i‘AET - 94 J 57mmJ obtained by Jure method is used1 in ibe waler balancei rneJfrod of groundwater recharge eslimalion.
Hence. gr&Lndwaler recharge Lhe area
Finally, an average value from the two methods, the base flow analysis method (196.6mm) and the water balance meiJxxJ (29? 5mm). which i& 247 05 mm, has Io be used as annual groumwaler recharge of (he area Th.s value t$ about 17% of the tMal annual precipHabon
me areaArjaDedcjsa IrrlgaUrm Projwt Hydrojealogi ca! investigaUoas
4. WATER QUALITY
4.1Water sampfes
Mty 300?
Natural water interacts with CrrvirCrff-mcni. arid also it ;S affected by anthropogenic process changing >is chem*caL physical and bictogical constrtuents. The uWizaLiori of this wate requires an understanding of such constituents. Hence, the waler should mee1 certain qua-'.ty standard that is set manly based nn 4s purpose m order Io use 4. Some important physical and chemical parameters have been determined for 1he water of the study area to compare dt quality with certain standards set by different Organization such as WHO tor specific water uses.
Waler samples from different sources, have been taken for physicochemical god microbiological analysis based on 1he aclualfexistrng geology, hydrogeology and geomorphology of the area Accordingty. a total of Ihirte&n samples have been taken from springs and Wells, Fig 4 1 shows ihe location of the watar sqmpfe pomfs. Alt the samples have been subnutted to the laboratory of WWDSE for analysis. In addition to lhe» water samcJes collected during the field work previously analyzed water quality py different instilutKjns have teen used for hydrogeorogical interpretation of the area
Among Che collected water Samples, four samples were taken from springs and nine were frcm boreholes. The numbers of samples have been determined based op vancus COKMtons such as geological and hydrogeological setup of the area and availably of previously analyzed physicochemical and microbiological data in the area
Water Works Design fc Supervision Enterorlsr ’ “ «».»». MH ixomm c,Illu B Md lE£ M(ws
,
j
im
16Fig. 4.1 A map lowing wiUr umpla poinls in Arpo- 0fld*8-M pi:
Afr*J
*
■J
<1
x
■ 35
o ■ £___________________________________________
Ab
-£
-d—"3?7“
* » -l w “
,™ j
Ci
m ap shifwrnfl Pipe'
N*-KHCC3
trifjnear tfiagrtm
samptt* rfl Arro- Dftrtssa art JCgncwlffatan
AO-C’
AE^S2
*
—»• -
AD-E3
AD-04
AO-O5
AE-OB
ADO7
AC1-06
AD-QS AQ-1Q JMMl AD-12
ft-gi 4.3 A map shrtng ScfloeHer
far water sample in Arjo-Detiessa areaM
Ci
Cl
->
Hr-
X.
-CC3
■■• HCS3
:*
Sa
SC*
V-2
1ix
50*
M3
Ti
K
CM
K
*
1
003
a
—z "S"
A£>o*
w
SJ
V. ncca
Ca
L 53*
i CM
for ^for sample* n ArjO- D^esa P^tWl area (CwetnL
f
JI!Cl
Hi
"v
wC03
Ci
Mfl
X
T
io-t
coa
K
•o *
«o
V 1 AD- H
Na -
C*
Mg
fl
iV Cl
w*
■JF
HCC3
K
_ ■"
•r 1
504
C03
40
™ AD- T3 “
*3
i
■Arjo tJedessa Irrigation Project
Hydrogeological Investigations 4,4 AgriculturaUirrigation water quality
May zoo?
Agricuhu ra? suitability of wat&r depends on crop type, di male, sori type, and amount ol irrigation water use. {Davis 1966). The main parameters to be analyzed to evaluate ffrigafon water quality are Boron, Sodium h azard. and S aNnlty. These parameters a fled donls either directly (e g. by causing an adverse physiological effects) or indirectly (e g by hmrling pi'ant root nutrient ar moisture uptake}. Salinity is best estimated based on Electrical Conductivity (EC) value. Other direct indicator of salinity is Total Dissolved Solids (TDS) The two parameters, TDS & EC are related by the following equation:
TDS (mg/L) a 640 x EC (dS/m), where mg/L = milligram per litre. d$;m = tied Siemens per meter
According 1q U S. Department of AgricuHure water with an EC greater than 4dS/m is considered as saline.
Sodium hazard is assessed by lhe so-called Sodium Adsorplton Ratio (SAR). It is caused by sodic water. Sodrc waler is water that has htqh sodium ooncenirali-on relative to the concentration of calcium and magnesium. Water is said 10 he sodic if its SAR is greater lhan 12 SAR is calculated as follows-
SAR= [N»*jNb.5(Csa+
+ Mg J
Jt
Where, lhe concentration of each cation is expressed in meq/L, If the concentration Is expressed in mmolriilre. SAR = [Na’Jf V [Cb * + Mg *)
42
According IO Todd (19B0 and reference. there in), the water qualify evaluate (or |frigaliQC based on SAR and EC are as shown m Table 4.1
Table Al SAR and EC values m terms of imgaton water sortability
Water cIMS E i&fttenl Good
F“
* H> 10- 15
Pdcw
I S*R
“--------- —------ -J
Water class
IsS-'m ■ ifl ,.fcCm
DouOUu
750
20QQ"
MM-MXKT ' *30M
In order io evaluate water qualily for irrigation from saio.1, and Soa um haa a ,
,
(or Arjc-Dedessa area, lhe parameters have been S-hcwn in Table 4-2
meas,J'M a a caiculalea and
„
are
t.
Water Works Design 4 Supervision Eriternrtse mw im.TO.ru,,,., c™,im
-- - - - - - - - ■
• JArjo Dedeua lrrt£atioa Project
Hydrogeological Investigations
Table 4.2 SAR and EC vaJueS fd the salinity ranges from medium salinity Io very high salmily. Fig. 4.5 shows values of TDS and EC for different water samples in lhe prefect area
Figure 4-5 Eledncal conductivity (EC) in usfcm and Total Dissolved Solids (TDS) in mg?L lor water samples 04. AD-05 and AD-06) have taw salinity, four samples (AD-07, AD-03, AD-12 and AC-13) have high salinity ; and two semptes [ACMJ1 and AD-1D) are ewiramety saline Thu qualitative descr-pbon doesn't follow I he standard procedure of waler quality classifcatori based on TDS andtar EC. bul if *s simply for the sake of description Waler Samples coded as AD-Ok AD-10, AD-12 and AD-13 are ell from springs; all olher water samples are from boreholes (drslad shallow Wells). Hence, d is possible Lo conclude thal even if they are aH from groundwaler, Ihey are from different aquifers. The more salme waler (having high IDS values] are mainly from waalherecf basement rocks [granite and graMic pegmalne], and deep'Sealed volcanic aquifers, especially al&ng fauR 'mes (eg. Ihermal spnngsk
25Fjg. 4-5 4 map showing ttw cCknfDur for Total Dis*ofved SoNct* (TDS ■ mg^U fof A^o-DwfesM Pro^cfirM
I
IDedHtt I ntfJKkn Project
J^dr&gEtiJagicil tn irestiitfitions
5 PIEZOMETERS OBSERVATION WELLS ANO WELL FILED
S.f Distribution of Plezometers/Observaffon Walls
May 2007
tn order Io monitor grouncfwafer quaMy and quantity of the area both before and alter lhe OOftstnjction of the eJam under invesiiqalpon. .1 total of Fourteen Psezomalers^Observation wells nave been proposed and lhair sdes have been located The geographic CWfigui^bonWKtributton of the pezometersjObservation wells is selected based on geology, hytfrogeofogy. topography,, groundwater 4low direction, ale ol ’he area Since the depth of the pi-cir
a
1332
i'iiM
1323
I32Q
pfcxxsdijres aith
Ste^peulf-C condiluXis iuch as hyrjrogealpgicar sei up b|eq
pfopottd fMzoflidef* 15 salable on Uia rnfl
p ho
L wn in Fig 54
9b 3™1|,; Oc atioft of 1he
Witti Works DcslfiJi &
---------- ------
37
J — JArJ» Dedessa irfigadoa Project
HydrugcologlcaJ Investigations
5.2 Future well field
May 2007
The potential acruifers for groundwater storage in IM area are basatbc lava flows win minor safes- including rhyotte and ignimbrite, and alluviaJ deposits in the river valley d Oedessa
This tan be vcrrficd by existing borehotes data in the area For examprefc BorehOte data m Agaro area show this situation.
Well held sites on which detail geophysical'investigation shall be undertaken have been kfenlihed based on geological, hydrogeological and geomorphological settingfor approaches Test wells drilling and construction shall follow lhe detail geophysical investigation.■Arjti DciSes-sa Irrigation froJecE
Dydrogeol apical investigations
6. WATER LOGGING ANO DRAINAGE
6.1 Topographic feaiures and soil characteristics
The undulating and rolling topography in upper part of the project area gradually acqui es ganrla ^pe of RaL land «(he botlom valley at Dedeasa. especially lhe few part where tbo command area becomes almost flat. This A al 'and »S covered with sediments njmly ot colluvial'delluv^al and ai.'uv^l uri<|.n This sediment is underlam mainly by hasemed rocks. The I cpcgraphy and land chsractensttasoi the command area can be said to tai under level (0- 1%). nearly level (1-2% slope}, very gentle (2- 4% slope I. and gentle (4- 6% stope), categories as about 35% ol (he command area falls under hrs! two categories and about 23% d the command area falls under lhe last two categories. Though lhe command area is plain, it has a rolling lopography and mere are several small hills dispersed in the conmanc There are rising hills also on the ouler boundaries of the command area on ooth birJci cf river DtdtSM
Tne mater pan of lhe area is comprised nt vertisol (47% of the command areal that has very taw pdntlsaWly Next Lo vertisols are camb*spls and Itrvisols covering 15% and 8 69% of the ares respectively Hence, this soil type hinders the infiltration of (ha most incoming ramfari during rainy season On onu hand this helps to restrain the rise of the groundwater table ihrougl reducing infiltration on lhe other hand the plain nature of the land wouldn't allow the surface run of! l.o flow out easily.
6 2 Existing groundwater lable
Groundwater level m the prqecl area varies from 2 to 2Dm b.g I
In tb command area the
a
groundwater tabto is 2 molars beta* surface dunng rainy season except in f6w ftxCepl mojl cases of surface water logging. During dry season 1he groundwaier iable was four d
,
than 5 meters befow natural ground surface. The rise of the groundwater (able can ha due CO different nalural conditions arwJ man made aclhnlieq th* .
- application of irfiqation practice is the =wr human interferences lor ij£e of groundwater i^hi»
imgation (drip, torrow etc) lhal is practiced and the crops propD5ed to ... deLftffl.fle (he Orient to which II may aifect (he use in groundwater level at the
■
.
1 D,e method of
Water Works Design & Supervise
JB AssOriadoaArje Brute sei Jirijratkio Prsjcd
Hydrogeological lumtigations
6.3 Future groundwater table and recharge from irrigation
M1J 2007
Whenever there litKeudMitit CombIu^
T J™
recJ,n««r»is Pn, Lw
31Arjo Dedttti Irrigation Project Kydro^eolagical Investigations
May 2)007
1. According tn groundwa
ter
recharge e
stimati
on
made m
this report, bul I he
iQlat
annual preci Relation id
the
awe, only
17%
-s
going for
recharging :he groundw
ater
if 1he same scenario
i>
considered,
the
an
nual grou
ndwater recharge from
the
application of irrigation in the command area becomes 241.95 mm This value is a crude eslimslipn Since uanous factors among which 1he irrigation merhod ten affetls the groundwater recharge
2. Akrng wrih other crops, cullivalion of paddy has been proposed in the command area Paddy r$ 1ho only crop 1hat requires conslanl standwig water in I he field for ils growlh and d evelopment. Thus paddy cvRivalioh results into percdglion loss, and only that quantity of waler which is lost through percolation has 1he chance and tendency of reaching groundwater It may be noted that aboul 330 mm of waler is estimated Co be tost through percolation, and only this quantity of water has thd scope of reaching groundwater, which may add to the rise of the groundwater The intensity of paddy r$ only 30% in phase- 1, which will increase finally to 45% m phase- It. Coos-denng lhe entire command on average the annual contributions of irrigation waler to the groundwater would be 99mm in lhe Phase- I. which will increase to 148.5 mm under phase* II.
Regarding other crops, they are all dry .rrigated ,.e„ no standing water is required. The irrigation water applied 1o 1he field in case of all other crops except paddy will be contained 8S soil moisture w-ir.n the r«n zone. Very small amount gi water, which will be l0SI below
the rout z one, w ill reach the groundwater Giber losses wiH be in form of
f fUnQ^
SUf 3re
Wtfch wiH be iaton care by surface drainage System As such (he addition to qf 'irto Mtsa Irrieawoi
Table 6.2 Estimation of wetted area hw Arjo- Dedessa Irrigation canal
Avirage
*
a J—
waned
ptrimater
(mifflj
' » comfl up win actua ro&ull pftlHpfltHty, jI3 value has been eslimated tab* 35% i n r ha command a f*a b y considering a range from day 1& send safe Thu parameter will be used Lo asltmate groundwater fevtJ nse due Io the application of irrigation
Finally, by Knowing rho groundwater recharge from lhe application of mqalion, and the porosily ol the aquifer end the kH malenals above it, the extent of the groundwater level nse due tQ 1M spplication of irrigation has bMO eslrmn'ed under different Ksnanoa as fafcws:
Scenario I. No groundwater flows out Ol the catchment (stagnant condition)
Annuel groundwater recharge from application of irrigation, GR = 241 GSmm
Effective porosity oi aquifer (sano)« command area, r, - 0.35 (35%)
Groundwater level use due 1o application pf irngatior,
GWLr = GRfok =24v95mnV0.35 = 0.591 m.
However, n should be nwed 1had groundwater is always m a dynamic conation; hence, ihe Stagnant groundwater cpnditipn never prevails in lite area. Therefore. the stated value ol groundwater level rise |0 59lei) will never happen
Scenario JI: Groundwater flow! Out of the catchment (dynamic system)
Annual groundwater recharge from apphtaifon of inrigatkjn. GR = 241 %mm
Effecuve porosity of aquifer (sand) m command area n, a 0.35 [35%)
According to b*9e flow HpnUM melhod. lhe ratio cf groundwater pullfow from lhe entire nver Moment to 1he groundwater recharge of ertfihmerf fion precipitation IS 79 50...
Hence, ihe regaining 20 42% tf lhe groundwater recharge conlribule^ to groundwater lev i nse Similady. if we apply such dynamicity to foa groundwater recharge fr(Jm ™<. 3 will irngaiFJn w-aiesr apphtdlon. rhe groundwater CXJtficrw from rhe irrigation appbcalten becomes ig? 54 mrY
Water Varfcl Oesl^n A Supcrvlsioji
foAsnclatlDO wtt talffWltinUl Consultary aa(j TeehQacttl3 P„ , |d
—
34AtJd-Dctf«sa Irrigation Project
Hydrogeological Jnvesilgatioits
May 24W7
e
1Q7Q.74mm=- 107m.
Scenario IV; (Scenario III under dynamic condition). This Scenario assumes that ground water is continuous flowing out of the catchment Hence, only 20 4 2% (76 S3 mm|
□f the groundwater recharge from Irrigation water will contribute to the groundwater level nse Therefore, the groundwater lever rise under this Scenario becomes GWLr = GR/n, =
76.53 mmTO.35 = 2j 8,65mm - 0.219m.
In conclusion. the assumption of stagnant groundwaler condition Scenarios (sccnarro I and III}, over estimalw the groundwaler level nse due Io the application of irrigation Because it assumes stati&'or stagnant groundwater condition that is not lhe case in realty s,n _ groundwater is usually in a dynamic condition The second Soenano (Scenario II) fe|,es
Heoca, if we reduce this, amount from lhe recharge due Io the application of irrigation meniKined above (241.95mm). the net recharge thart contributes Io th® groundwater level rise becomes only 49.4mm. Therefore. under this scenario the groundwater tevel rise due "o the application of irrigation will be
Groundwater Eevel rise due to application of irrigation, GWLr = GR/nf = 49.4 mm/0.35 ■ 0.141m.
Scenario III According 1o 1h® paddy cultivation and seepage toss from canals the annual groundwater recharge from the application of imgalion es 374.76 mm as mentioned before It this i$ the case, the groundwater level nse due to the application of irrigation under stagnant groundwater condition becomes:
Groundwater level n$e due to application of irrigation. GWLr = GR/n =374 74 mm/0.35 “
groundwater recharge estimation from imgation water appl^tion ea ja|c - ,
preapilanon However, groundwale.' recharge from irrigate ^jter from paddy fffgrfcfl and canal loss should be higher than from scenario underestimates the groundwaler recharge Therefore aCr
rn-ai irom vpiH?-aiiDn particularly
t
h* piLaiMjn Meno® ihic
investigation. the Scenano that works oest is Scenario IV. Henrs ih- Cordin9 this
« .■
level n$e cfue 10 the application of imgatran water will be 0.519 m However, '1 h®* t0 noted that the Oxisling soil jn ^)e
' tne af|nual groufi
|,,
C w a oruwater
loam 5*lls 35 re
area is mainly day and 7 aied from sail survey (sampling and analysis) under the same project
Waterworks Design & Supervision Enterprise
In AssDctatMtt With tntertCntlneout CoisuIimu and Technocrats PvL Ltd.
“ 35Dedcssi Irrigntlqu Frujwl
Hjdro^cologieal LgvcstlgattaiLS
May 2007
Thesollhas UiWrege fttftulfa DondudMtyofO rjM0056m^.i.B.0.4S2 ifl/titf-This vahjs is very small inhibiting 1he Infiltration of any vfller f preci prl alien or irrigation} to GtftjnchwfSf Men«, ine crmfritaxlion uf groundwater radwgs from Uw appUcahtxi gf irrigation should be less ihamhe amount slated here. TtW*fan. the groundwater level rise due 10 lha applicabcm of Irrigation cannot <«Mt HilSmtyw
Arother factor iha1 can reduCS rhe conlnbutinn of irrigation applicalKin to grounuwJJter recharge is lb* presence of number of Creeks that are transversal to the trend of the command area and Dedessa flivcr. Some infiltrated water from the irrigation ipptiaflpn wul co me out as re^eneratico through the creeks before reaching lhe groundwater tabic Profile across seme c/eeks and Ded&ssa river in the command area is available in Fig. 6.1 (a, bB c, d and e) The lines along which the profiles have bean lakan are also shown in the map Fig
Although lhere is w well documented wefl cc*mple rocks and thermal springs. CoM grrjundwate aSS°Cia,e£l wi,h
vokanx: rocks m the area has very few TtS; and hence, very lDlv Toial Dissolved Solids of lite project area is available at Fig 15
3r '9inBled from
7- A map showing
Water Works Design it Supervision Enterprise "
In Asswladite wit* InimoBtiBenttl Coasultacu and Technocrats Py
L L(dArjo&sjpsia rrflfukn Project
Bydrogeitiftglcal investlgatioiis
flay mat
Hance. 1ha huwti soil/wate/ safrnriy during 1hfl design period of the project can be M*iiralled naluralty [through high prcCipilaltoo and topography of lha area) or artificially Ihrough appropriate irrigation water rbanagemartf.
torWo^Desig^SupeT^^---- - - . . .
Ip ftxKcfedOu WIW UnTOrtHttil OOMttilitte aim
“’“Scrats PtL Ltd,
■if)A-rJa lirdfiua [rfijatloo Project
Hydrogeological Investigations
May 2W
8. EXSITING AND FUTURE PROSPECT OF GROUNDWATER
8.1 Existing groundwater development
Presently, the majority of lhe Woredas* capital lawn and the rural community m the river catchment are supplied potable W from groundwater, either through borehole construction or from spring develocxnert with the exception of Sadete low that get wafer from Dabana River through te* treatment of raw water. The yield of groundwater from some volcan.c lava how shows very promising result both for current and future water supply from groundwater for different purposes. Can be mentioned as examples are boreholes (or Agard town where the yteld is about SOlit/sec from a Single borehole Furthermore, the aquifer in this particular area has multilayer system attributing to a confined aquifer
Here. rf <5 vital to discuss Agaro town as an example. The town is entirely supplied water from groundwater through borahotes. There are three new boreholes and 1wo aid boreholes. Among these boreholes, four boreholes are currently functional, one from the old and three of tee new borehctes
In addition to this, the Quaternary sediments m the river valley are the potential aquifers for groundwaler development particularly shallow groundwater
Other Woreda towns teal are suppted potable water from ground water are Ar|O Alnago Galira and Atnago
8.2 Future groundwater prospect
The exiting gectogical. meteorological. hydrogeological and geomorp^oluyi^i it
in the river catchment indicate there are areas thai can be devafooed m
n r Jni °f groundwater for various waler supply purposes Accordingly, potental well fjAlri <,..=<■ u
T1
IBS ^ve been identifi pfi
in order to develop groundwater. These identified well field sues have Io b on geophysical investigations and test well drilling before being entirety
likely limitation in the future groundwater development in lhe area « . . J 3
hot iho quaniit* h
quality (relatwery Ngh iron concentration). The map of potential grounds» future development is avertable at Fig. 8.1
'
a 12 r dfeas for
The ”*
faier Works Design & Supervision Enterprise ———
j B Association with Intercontinental Consultants aoj Tettnocrau Py L
t
W4 /rup
0
ter porwrtttafJ a-fpj-i fof fufw* tfevp/iiprt?w?f «r.tYi MHM
**»i®AUTHOR
TITLF-
call no.
EDITION
VOLUME
CAre. NO.